
Modeling of Mixing-Precipitation Processes:
Agglomeration

A comprehensive description of the barium sulfate precipitation process in a wide
range of supersaturations is presented. By using an additive to stabilize the par-
ticles, the decoupling of the primary from the secondary processes, as well as the
agglomeration from aggregation was possible. By being able to study the two pro-
cesses independently, a model describing the agglomeration of barium sulfate in
the range of high supersaturations was validated experimentally for the first time.
The proposed model has proven to describe the experiments with a high degree of
accuracy in the whole range of supersaturations investigated. Additionally, by
comparing agglomeration kernels of various complexity, ranges where simplifica-
tions are possible were identified, thus enabling the future development of models
with better performance.
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1 Introduction

Microparticle formation by precipitation is an important com-
plex process, where process design, being challenging and
expensive, may benefit from a model-based approach. How-
ever, the development of such models for reactive precipitation
processes is also challenging due to the very large driving force
reached.

The precipitation of microparticles has been studied by var-
ious authors experimentally as well as theoretically using
barium sulfate as a model compound. A lot of effort has been
devoted to the decoupling of the different phenomena involved
to study them separately, thus resulting in most of the studies
focusing on a relatively small range of concentrations. This
allowed for the identification of the governing mechanisms and
for the development of the first principle equations describing
the various mechanisms in the process like nucleation and
growth [1, 2].

However, the industrial processes are operated under condi-
tions where such decoupling is not possible and the various
simplifications, like disregarding agglomeration, are no longer
valid. Some work has been performed in studying agglomera-
tion under such conditions, but the resulting models were only
developed for limited values of supersaturation [3, 4], whilst a
comprehensive description valid in a wide range of operating
conditions and enabling predictions and process design is still
lacking.

The aim of this work is to come up with a comprehensive
description of the barium sulfate precipitation process in a
wide range of supersaturations by applying a rigorous
approach to the description of the kinetics of precipitation as
well as to the definition of the experimental protocol. Ulti-

mately this will provide new insight into the study of reactive
precipitation at high supersaturations.

2 Primary Processes Revisited

The mechanisms and kinetics of barium sulfate precipitation
have been studied by multiple authors over the recent years,
resulting in a plethora of expressions for describing the pri-
mary mechanisms in the process – ranging from purely empiri-
cal to more predictive ones derived from first principles. The
nucleation and growth rates calculated using different models
proposed in the literature exhibit major differences among
them. This inconsistency could be attributed to the difficulty in
obtaining accurate experimental data for estimating the model
parameters. This difficulty stems from the high driving force
attained during reactive precipitation and the resulting small
time- and length-scales of the process. But even when referring
to the purely predictive models in the literature, different
expressions can be found. Therefore, in order to understand
the differences between various approaches and to choose the
most appropriate model, a brief overview of the description of
primary processes in the scope of barium sulfate precipitation
is presented below.
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2.1 Driving Force of Precipitation

The driving force in precipitation is the difference in the chem-
ical potentials between a molecule in the solution, ms

1), and in
the crystal bulk, mc, defined as:

Dm ¼ ms � mc (1)

The chemical potential of a molecule in the crystal bulk is
equal to the molecule’s equilibrium potential me:

mc ¼ me (2)

whereas the chemical potential of a non-dissociating molecule
in the solution can be expressed as:

ms ¼ me þ kBT ln a=aeð Þ (3)

where kB is the Boltzmann constant, T is the temperature, a
and ae are the actual and the equilibrium activities of the mole-
cule, respectively.

In case of ionic compounds like barium sulfate, whose mole-
cules in solution are dissociated into ions, Eq. (3) becomes:

ms ¼ n1ms;1 þ n2ms;2 þ . . .þ nnms;n (4)

where ni is the number of i-th ions in the molecule, and ms,i is
its corresponding chemical potential.

In the case of barium sulfate, by substituting Eqs. (2)-(4),
Eq. (1) can be written as:

Dm ¼ kBTln
aBa2þ

ae;Ba2þ

aSO2�
4

ae;SO2�
4

 !
(5)

The supersaturation ratio, s, is therefore defined
as:

s ¼ aBa2þ

ae;Ba2þ

aSO2�
4

ae;SO2�
4

(6)

Expressing activities as a product of concentra-
tion and an activity coefficient, Eq. (6) can be fur-
ther transformed into:

s ¼
cBa2þcSO2�

4

KSP
g2

– (7)

where ci is the molar concentration of the i-th ion,
KSP is the solubility product, and g – is the mean
ionic activity coefficient. A comprehensive compar-
ison of different models used for the calculation of
the activity coefficient has been presented earlier
[1]. In this work, g – is calculated using the Pitzer
model, taking into account the complex formation
of barium sulfate [1].

Whilst s is the correct definition of the supersaturation ratio,
in the literature usually a different expression for its description
is used, namely:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cBa2þcSO2�

4

KSP

r
g – (8)

where s = S2. In most of the cases, this thermodynamically
incorrect definition does not affect the final results because its
effect is compensated by the estimated values of other model
parameters. In the following section, an example showing the
importance of using Eq. (7) instead of Eq. (8) to describe the
supersaturation ratio in the context of the definition of nuclea-
tion rate is presented.

2.2 Nucleation

According to the classical nucleation theory (CNT), an expres-
sion for the nucleation rate RN has the following general form:

RN ¼ A exp � B

ln2eS
� �

(9)

where eS is the supersaturation (we will consider both eS ¼ s andeS ¼ S).
A common approach to obtain the kinetic parameters A and

B is to linearize Eq. (9) and fit it to the experimental data. In
Fig. 1, results for the homogeneous and heterogeneous nuclea-
tion obtained by Vicum et al. [1] (dashed line) using the experi-
mental data by Nielsen [5] (square markers) and eS ¼ S are
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Figure 1. Comparison of the experimental (symbols) and theoretical (lines) ho-
mogeneous nucleation rates of barium sulfate as a function of supersaturation.
Supersaturation was calculuted using Eq. (8). The red area corresponds to the
range of supersaturation investigated in this work.

–
1) List of symbols at the end of the paper.
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presented. The measured nucleation rates in the homogeneous
regime are in the range of 1010–1020 # m–3s–1.

Since the measurement of the nucleation rate is performed
by counting under a microscope the number of crystals formed
per unit volume, the resulting measured value must be, to some
degree, fraught with an uncertainty. To get an idea of the effect
that such uncertainty might have on the estimation of the
kinetic parameters, the nucleation rates were recalculated using
a value of the kinetic parameter Ahom ten times larger than that
reported by Vicum et al. and the resulting values are also plot-
ted in Fig. 1 (gray dashed line). As it can be readily seen, bear-
ing in mind the accuracy of the experimental data in this range
of supersaturation values, a change of an order of magnitude in
Ahom yields a rather similar fitting of the experimental data.
This observation leads to a drastic reduction of the confidence
in the parameters estimated by fitting the experimental data.

Alternatively, especially in the range of high supersaturation,
instead of relying on experiments to get the nucleation kinetics,
a predictive model could be used. To describe the homoge-
neous nucleation rate in a fully predictive manner, the kinetic
parameters Ahom and Bhom can be calculated based on the CNT
and the nucleation theorem. In this approach, Bhom for the
homogeneous nucleation can be expressed as [2, 6]:

Bhom ¼
16
3

pV2
0

g
kBT

� �3

(10)

where V0 is the molecular volume given by Mc/rcNA, k is the
Boltzmann constant, T is the temperature, and the specific sur-
face energy of the cluster/solution interface, g, can be defined
as:

g ¼ 0:514kBTV�2=3
0 ln

1
V0Ce

� �
(11)

where Ce is the molecular solubility defined as
ffiffiffiffiffiffiffi
KSP
p

NA.
In the scope of the barium sulfate precipitation, a common

expression for Ahom (for homogeneous nucleation) is that pro-
posed by Mersmann et al. [2]:

Ahom ¼
3

2

g
kBT

� �1=2

V0D Ce
eS� �7=3

(12)

with eS ¼ S, and the monomer diffusion coefficient, D, being
defined as:

D ¼ kBT
3phLm

(13)

where h is the viscosity and Lm is the molecular diameter,
defined as:

Lm ¼
6
p

V0

� �1=3

(14)

In Fig. 1 (dotted line), the nucleation rates calculated using
Eqs. (9)–(14) with eS ¼ S are indicated. As it can be seen, they
fit the experimental data rather poorly. This is often attributed

to the difficulty in calculating the specific surface energy of the
cluster/solution interface and is fixed by changing it to the val-
ue which results in a better match. But, as pointed out by Kash-
chiev and van Rosmalen [6], the reason for the poor fit lies
more likely in the incorrect definition of the monomer attach-
ment frequency and of the equilibrium concentration of nuclei
(see [6] for more details). After applying the necessary changes,
they report the following expression for Ahom [6]:

Ahom ¼
kBT
gV2

0

� �1=2

DCe ln eS� �eS (15)

with eS ¼ s ¼ S2. Nucleation rates calculated using Eqs. (9)–
(11) and Eqs. (13)–(15), with the supersaturation in Eq. (9) and
(15) defined using Eq. (7), are plotted in Fig. 1 (solid line). As it
can be seen, the calculated values fit the experimental data very
well. Moreover, since this expression is derived purely from
theoretical considerations, apart from being free of the inaccur-
acy stemming from the quality of the experimental data used
for parameter estimation, it is also applicable to supersatura-
tion levels outside the range used by Nielsen [5], where in the
case of fitted parameters an extrapolation would be needed.

At this point, the importance of employing an appropriate
expression to describe the supersaturation ratio should be
underlined. In the case of parameters A and B being indepen-
dent of supersaturation, when fitting parameters using Eq. (9),
it is irrelevant if supersaturation is defined as S2 or S, because
the exponent can be pulled out in front of the logarithm and
lumped into the constant B. But, when using Eq. (15) to define
A as a function of supersaturation, this is no longer possible
and the importance of applying Eq. (7) is apparent.

In case of heterogeneous nucleation, a purely theoretical
derivation of the expressions for the kinetic parameters is no
longer possible because it would require an assumption about
the shape of a heterogeneously formed cluster on the solid sub-
strate. Therefore, in this work, the kinetic parameters Ahet and
Bhet are defined as:

Ahet ¼ aAhom (16)

Bhet ¼ bBhom (17)

where a and b are the proportionality constants that need to be
estimated from the experimental data.

Since the heterogeneous nucleation is very system-depen-
dent, instead of using the experimental data by Nielsen [5]
which was obtained with a batch reactor, we have used the
experimental data by Mohanty et al. [7] which was obtained
using a continuous setup similar to the one used in this work.
The parameters a and b were therefore estimated by fitting
Eqs. (7), (9), (10), (15)–(17) to the experimental data in [7] and
are equal to 3 ·10–21 and 0.001, respectively. In Fig. 1, the
resulting nucleation rate calculated by a hybrid model, where
the fully predictive homogeneous term (Eqs. (7), (9), (10), (15))
is combined with the estimated heterogeneous term (Eqs. (7),
(9), (10), (15)–(17)), is plotted (red solid line) together with the
experimental data obtained by Mohanty et al. [7] (lozenge
markers).
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2.3 Growth

The growth of crystals is usually described as a two-step pro-
cess, where the solute molecules first diffuse from the bulk to
the crystal surface (diffusion step) after which they are inte-
grated into the crystal lattice (integration step). Depending on
the supersaturation, this process can be either integration- or
diffusion-limited. Due to the high supersaturations reached
during reactive precipitation processes, the growth rate of ba-
rium sulfate is usually assumed to be diffusion-limited
throughout the whole process [4, 8, 9], also when the supersatu-
ration is almost completely depleted as the growth of crystals at
low supersaturations is negligible compared to that at high
supersaturations. However, in this work, this assumption is not
valid as, alongside the primary processes, we are also interested
in describing agglomeration, which represents a considerable
contribution also at low supersaturations, thus requiring the
use of a two-step model that accounts for both phenomena.

The integration step can be described as [1, 10]:

G ¼ kr
eSint � 1
� �2

(18)

where kr is the integration rate coefficient and the subscript
‘‘int’’ refers to the crystal-solution interface.

In this case whether the supersaturation is defined as S2 or S
is not as crucial as in the case of nucleation (see Sect. 2.2). The
reason for this is that the above given power law expression is
actually an approximation of the growth mechanisms govern-
ing the integration of molecules in the crystal lattice, which
have a general form of G~ ln eSint

� �
[11]. Therefore, the expo-

nent can be pulled out in front of the logarithm and lumped
into the constant. In this work, eS ¼ S and the value of
kr = 9.1 ·10–12 m s–1 obtained by Vicum et al. [1] using the data
gathered by Nielsen and Toft [10] have been used.

The diffusion step can be described as [1, 11]:

G ¼ kD ai � ai;int
� �

; i ¼ Ba2þ; SO2�
4 ;BaSO4 (19)

where kD is the activity-based mass transfer coefficient.
Obtaining reliable experimental values of growth rate in the

range of high supersaturation is difficult not only due to the
small time- and length-scales of the process, but also because
nucleation and growth cannot be decoupled. Therefore, due to
the scarcity of experimentally measured growth rates at high
supersaturations, usually a constant value of kD is used
[1, 12, 13] with the value chosen from the experimentally
obtained range of 10–5–10–4 m kg s–1mol–1 [12, 14]. Alterna-
tively, kD can be calculated using an expression derived from
the mass transfer equation:

kD ¼
ShDMc rs

L rc
(20)

where L is the diameter of a particle, rs is the solution density,
and Sh is the Sherwood number which, assuming that the par-
ticles are spheres smaller than 1 mm, is constant and equal to 2
[15].

To check if this assumption holds also in the case of growth
of particles with the size close to the critical nucleus, the size of

molecule, Lm, can be compared with the critical nucleus diame-
ter, Lc, defined as [2]:

Lc ¼
4gV0

kBT ln S2ð Þ (21)

In the range of supersaturations investigated in this work, Lc

@ 2Lm = 10–9 m, thus indicating that the nucleus consists of
only a couple of molecules and, consequently, that the assump-
tion of sphericity might not be valid anymore. The experimen-
tal data for very small particles is scarce; however, some
researchers have reported Sh much lower than 2 [14, 16]. If this
discrepancy between the theoretical limit and the experimental
results is due to the experimental error or to the effect of shape
is unclear. However, for simplicity, in this work a constant val-
ue of kD = 8 ·10–5 m kg s–1mol–1 is used.

By substituting Eq. (19) and (8), the activity at the crystal-
solution interface can be eliminated, and Eq. (18) can be writ-
ten as:

G ¼ kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBa2þ � G

kD

� �
aSO2�

4
� G

kD

� �
=KSP

s
� 1

 !2

(22)

3 Describing Agglomeration

Apart from the primary processes described in the previous
section, particles in a suspension can also undergo secondary
processes, namely, agglomeration, aggregation, and breakage.
When particles collide, they can form ensembles that can be
held together either by crystalline bridges (agglomerates) or by
the van der Waals or electrostatic forces (aggregates). Due to
the lack of a solid connection between the particles, the aggre-
gates can be re-dispersed by either changing the ionic strength
of the solution or by changing the flow conditions or by intro-
ducing additives, thus making aggregation a reversible process.
On the other hand, due to the much higher strength of the
crystalline bridge, agglomeration is considered to be irrevers-
ible as the agglomerates can only be separated by applying high
shear and by physically breaking them apart. Since the experi-
mental procedure applied in this study allows for the decou-
pling of aggregation from agglomeration (see Sect. 5.1), only
agglomeration is considered.

The rate constant of agglomeration, also referred to as the
agglomeration kernel, is typically expressed as a product of the
frequency of particle collisions and the probability of them
forming a stable agglomerate, defined as:

b ¼ ybcol (23)

where y is the sticking probability and bcol is the collision ker-
nel. Below, a brief summary of approaches to describe the two
terms is presented.

3.1 Sticking Probability

Sticking probability is expressed as a function of a ratio be-
tween the cementation time tc and the interaction time tr.
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Cementation time is the time needed to build a bridge strong
enough to withstand the hydrodynamic forces acting on the
ensemble of particles and to keep the two particles together, the
interaction time between the two colliding particles is the time
available to them to build such a bridge. In the literature, two
expressions for the sticking probability are proposed [3]:

y ¼ exp �tc=trð Þ (24)

y ¼ 1þ tc=trð Þ�1 (25)

Eq. (24) is derived from the theory of drop coalescence,
whereas Eq. (25) expresses proportionality of y to the growth
rate. Several authors have reported a better agreement with the
experimental data using Eq. (25) instead of Eq. (24) [3, 17]. In
this work, Eq. (25) is used to describe the sticking probability.

The cementation time can be derived from a force balance
on the crystalline bridge and, assuming a point contact between
the colliding particles, can be defined as [18]:

tc ¼ kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcn e=nð Þ0:5

q
�L=G (26)

where kc is a constant combining parameters of hydrodynamic
and material properties, e is the energy dissipation rate, n is the
kinematic viscosity, and �L is the mean diameter of the agglom-
erate.

The interaction time is assumed to be the time between two
rupture events in the turbulent flow and can be estimated as
the lifetime of small turbulent eddies. Several authors have pro-
posed different length-scales to characterize those small eddies
– ranging from the Kolmogorov microscale [19], through
Lagrangian microscale [3] to the largest, energy-containing
scale [20]. Even though the resulting expressions for calculating
the lifetime of the eddies are slightly different, they all yield
similar results [21]. In this work, the interaction time has been
estimated by the lifetime of a turbulent eddy, defined as [20]:

tr ¼
C0:75

m ffiffi
2
p

k
e

(27)

where k is the turbulent kinetic energy and Cm = 0.09 is a model
constant in the k-e model of turbulence.

3.2 Collision Kernel

Usually, two types of particle collisions are considered in the
literature, namely, collisions due to Brownian diffusion (periki-
netic) and collisions due to convective transport by fluid
motion (orthokinetic). The orthokinetic collision kernel bortho

can be written as [22]:

bortho ¼ 1:3
e
n

� �0:5 Li þ Lj

2

� �3

(28)

where Li and Lj are the diameters of the two colliding particles.
The perikinetic collision kernel, bperi, can be defined as [23]:

bperi ¼ 2pD¥
ij Li þ Lj
� �

=W (29)

where W is the stability ratio. The mutual diffusion coefficient
of colliding particles, D¥

ij , is defined as

D¥
ij ¼ Di þ Dj ¼

kBT
3ph

1
Li
þ 1

Lj

 !
(30)

In the original work by von Smoluchowski, the interparticle
forces were neglected resulting in W = 1. When electrostatic
forces are considered, W can be written as [24]:

W ¼ 0:5 Li þ Lj
� � R¥

0

exp jtotal að Þ=kBTð Þ
0:5 Li þ Lj
� �

þ a
� �2 da (31)

where a is the surface-to-surface distance between the colliding
particles and jtotal is the total potential energy of the interpar-
ticle forces, which is a function of their distance. Based on the
DLVO theory (after Derjaguin, Landau, Verwey, Overbeek),
jtotal can be calculated as the sum of the attractive van der
Waals contribution, jvdW, and of the repulsive electrostatic
contribution, jel:

jtotal að Þ ¼ jvdW að Þ þ jel að Þ (32)

The van der Waals contribution can be calculated using the
expression proposed by Hamaker [25]:

jvdW að Þ ¼ �A
6

0:5LiLj

a2 þ Li þ Lj
� �

a
þ

0:5LiLj

a2 þ Li þ Lj
� �

aþ LiLj

þ ln
a2þ LiþLjð Þa

a2þ LiþLjð ÞaþLiLj

� �
0BB@

1CCA
(33)

where A is the Hamaker constant, which is 1.7 ·10–20 J for
barium sulfate in water [26].

The electrostatic repulsion of particles in a solution is mainly
due to the adsorption of ions on the particle surface and there-
fore depends not only on the size and distance of the particles,
but also on the concentration of the ions in solution. Due to
the charge on the surface resulting from the adsorbed ions, par-
ticles are surrounded by ions of an opposite sign forming an
electric double-layer. When two particles with the same surface
potential approach each other, their double-layers overlap
causing a repulsive force. The electrostatic potential energy of
such interaction can be written as [27]:

jel að Þ ¼ 64pere0
kBT

e

� �2

tanh 2 zey0

4kBT

� �
LiLj

2ðLi þ Lj þ 2aÞ

 !
exp �kað Þ

(34)

where e is the elementary electric charge, z is the valence, er is
the relative permittivity, e0 is the electric field constant, Y0 is
the surface potential, and k is the Debye length defined as:

k ¼ 2e2NAI
ere0kBT

� �0:5

(35)

I is the ionic strength of the solution.
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The main difficulty in applying Eq. (34) to calculate the elec-
trostatic potential energy is in obtaining the correct values for
the surface potential. Often, Y0 is calculated using a measured
z-potential. This approach is feasible not only when the experi-
ments have a rather high accuracy, but also when the relation of
the z-potential to the surface potential is known accurately. Un-
fortunately, this is not always the case and usually the z-potential
and the surface potential are just assumed to be equal [28].

Alternatively, one could calculate the surface potential from
the surface charge density obtained using the Grahame equa-
tion [27]. Unfortunately, in order to do so, the adsorption iso-
therms of all the ions adsorbing on the surface need to be
known and this data is not always available. Luckily, in the case
of a reactive precipitation of barium sulfate using barium chlo-
ride and sodium sulfate as reactants, it has been shown that the
concentration of sulfate, sodium, and chloride ions have a neg-
ligible effect on the z-potential as compared to the barium ions
[29]. Therefore, it can be assumed that the barium ions are the
only potential determining ions and the overall surface poten-
tial can be calculated using the well-known Nernst equation:

y0 ¼
kBT
2e

ln
cBa2þ

cBa2þ
iso

 !
(36)

where cBa2þ
iso

is the concentration of the barium ions at the iso-
electric point.

Moreover, the effect of ions on the relative permittivity needs
to be considered. Gavish et al. [30] have studied the effect of
NaCl concentration on the relative permittivity of barium sulfate
and stated that in the range investigated in this work such effect
is less than 3 % and, therefore, can be considered negligible.

When two particles are approaching each other in the solu-
tion, apart from the electrostatic forces, there are also hydro-
dynamic forces present resulting from an additional resistance
caused by the necessary squeezing of the liquid between the
two solid bodies. To include the viscous interactions as well,
Spielman [31] proposed a further modification of Eq. (31) by
introducing an additional parameter accounting for the change
in the diffusion coefficient as particles approach:

W ¼ 0:5 Li þ Lj
� � R¥

0

exp jtotal að Þ=kBTð Þ
D* a; Li=Lj
� �

0:5 Li þ Lj
� �

þ a
� �2 da (37)

where D* a; Li=Lj
� �

is the ratio between the actual diffusion
coefficient, Dij, taking into account the distance between the
particles and their size, and the diffusion coefficient calculated
using Eq. (30) assuming that particles are widely separated rela-
tive to their dimensions, i.e., D* a; Li=Lj

� �
¼ Dij=D¥

ij .
In this work, results for a set of a and of Li/Lj reported in the

literature (see Fig. 2 in [31]) were used to create a look-up table
that was used for interpolating the required values of D* during
our calculations.

Therefore, by using Eqs. (28)–(30) and (31)–(37) and by
assuming that the peri- and orthokinetic regimes are indepen-
dent, hence, their contributions can be simply added to each
other, the overall collision kernel can be calculated:

bcol ¼ bperi þ bortho (38)

Baldyga and Orciuch [32] have proposed an expression for
an agglomeration kernel when the flux additivity cannot be
applied. However, it has been shown that in the case of fast ag-
glomerating systems, both contributions are independent [33]
and especially for the case of barium sulfate agglomeration,
both models yield similar results [3]. Therefore, in this work
Eq. (38) is applied.

4 Modeling

4.1 Population Balance Model

To model the precipitation of barium sulfate, a population
balance equation (PBE) is used. Assuming a perfectly mixed
system, the PBE using the length, L, as internal coordinate can
be written as:

¶n
¶t
¼ �G

¶n
¶L
þ B� D (39)

where n is the number density of particles, t is the residence
time given by the axial coordinate along the tubular reactor
divided by the velocity of the solution, and B and D are the
birth and death terms due to agglomeration.

The PBE is coupled with a mass balance of the solute in the
liquid phase, which, for a perfectly mixed system, is expressed
as:

¶c
¶t
¼ �p

2
rc

Mc
G
Z¥

Lc

n L; tð ÞL2dL� p
6

rc

Mc
RNL3

c (40)

To complete the model, the following boundary and initial
conditions are used:

n Lc; tð Þ ¼ RN=G (41)

n L; 0ð Þ ¼ 0 (42)

c 0ð Þ ¼ c0 (43)

To solve the PBE, the method of characteristics with moving
pivot was applied [34] and the resulting set of ordinary differ-
ential equations (ODEs) were solved using the MATLAB ode45
solver. As an average particle size, L43 was chosen:

L43 ¼
m4=m3

p=kað Þ1=3 (44)

where m3 and m4 are the third and fourth moment of the dis-
tribution, respectively.

4.2 Computational Fluid Dynamics (CFD)

The agglomeration kernel depends, among others, on the fluid
dynamics in the system. Due to the series of expansions, the
flow conditions in the mixer change as the solution moves
from the inlets through the mixing zone and out to the reaction
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tube (see Fig. 2). Therefore, even though the mixing effects can
be neglected, the evolution of the energy dissipation rate and of
the turbulent kinetic energy along the reactor path needs to be
known. To obtain the required values of e and k, a CFD model
of the system has been developed using the commercial CFD
software Fluent 17.2. To solve the Navier-Stokes equations, a
standard RNG k–e model of turbulence has been used together
with an enhanced wall model to describe the near-wall flow.

The average values of e and k along the reactor were calcu-
lated using the following expressions:

�e xð Þ ¼
R¥
0

e xð Þf e xð Þð Þde (45)

�k xð Þ ¼
R¥
0

k xð Þf k xð Þð Þdk (46)

where x is the position along the length of the tube; f(e(x)) and
f(k(x)) are the position-dependent probability distribution
function of the energy dissipation and the turbulent kinetic
energy in the reactor, respectively. The resulting dependence,
expressed as a function of residence time, is illustrated in Fig. 2.

5 Experimental

5.1 Chemicals and Methods

The chemicals barium chloride dihydrate ( ‡ 99 %, Sigma-
Aldrich Switzerland) and sodium sulfate ( ‡ 99 %, Sigma-
Aldrich Switzerland) were used in all experiments. Precipita-
tion of barium sulfate was carried out by mixing aqueous solu-
tions of barium chloride and sodium sulfate under stoichiomet-

ric conditions and at a constant temperature of 25 �C. First,
stock solutions were prepared by dissolving the salts in de-
ionized water. Afterwards, due to the very small time-scale of
the process requiring rapid mixing, reactants were continu-
ously mixed in a Y-mixer (inlet diameter 0.5 mm, outlet diame-
ter 1 mm, angle between inlets 120�) at an equal mass flow rate
of 20 kg h–1, thus ensuring that mixing does not influence the
precipitation kinetics [8].

A continuous, pulsation-free flow has been achieved by
means of a set of micro-gear pumps (mzr-11508X1, HNP
Germany) coupled with a Coriolis mass flow meter and con-
troller (M15, Bronkhorst, The Netherlands). After mixing, the
solution entered a tubular reactor with a diameter of 4 mm and
length of 18 m, resulting in a residence time of about 36 s –
sufficient to completely deplete supersaturation. After leaving
the reactor, a sample of 100 mL was collected. After diluting
the sample tenfold, the size of particles was measured by
dynamic light scattering (DLS; Zetasizer Nano ZS, Malvern
Instruments, UK).

5.2 Stabilization

During barium sulfate precipitation various primary and sec-
ondary processes take place simultaneously. In order to study
the effect of agglomeration on the final product’s properties,
first the primary mechanisms needed to be decoupled from the
secondary mechanisms to obtain a reference case where no
agglomeration takes place. Second, agglomeration had to be
distinguished from aggregation. Agglomeration and aggrega-
tion of barium sulfate can be suppressed either by electrostatic
or by steric stabilization. In case of the electrostatic stabiliza-
tion on the one hand, precipitation is performed with an excess
of barium ions cBa2þ=cSO2�

4
> 1

� �
, which adsorb on the crystal’s

surface, thus increasing the repulsive forces and therefore
reducing the collision rate of particles [35]. On the other hand,
in the case of the steric stabilization, a polymer adsorbs at the
surface, thus physically separating particles and subsequently
reducing the sticking probability.

The problem with the electrostatic stabilization is that even
though the primary processes can be decoupled from the sec-
ondary ones, the decoupling of agglomeration from aggrega-
tion is not possible as it would require the introduction of
barium ions into the system after the supersaturation is
depleted. This would lead to an increase of supersaturation and
reintroduction of precipitation. For more information on the
non-stoichiometric precipitation of barium sulfate, see [1].
Therefore, in this work steric stabilization using as a surfactant
an aqueous solution of a polyethercarboxylate (Melpers45,
BASF, Germany) has been applied.

Two types of experiments with the surfactant were per-
formed: (1) to study the primary processes only, the surfactant
was added to the barium chloride solution, thus preventing
both agglomeration and aggregation right from the beginning
of the crystallization process; (2) to decouple agglomeration
from aggregation, the surfactant was added to the sample col-
lected at the end of the reaction tube where the supersaturation
was already depleted, thus resulting in the de-aggregation of
crystals.
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Figure 2. Evolution of the energy dissipation rate (blue line, left
axis) and the turbulent kinetic energy (red line, right axis) along
the reactor path as a function of the residence time in the reac-
tor.
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6 Results

Two types of experiments have been performed: one where on-
ly primary processes were active and one where growth, nucle-
ation, and agglomeration took place simultaneously. Both cases
were investigated for a wide range of initial salt concentrations
varying from 0.015 to 0.1 mol kg–1. In Tab. 1, all the initial con-
centrations studied together with the corresponding supersatu-
rations are reported. To make easier the comparison with the
previously reported work on the barium sulfate precipitation,
where the quantity S defined by Eq. (8) was used, here also the
same definition of the supersaturation was employed.

6.1 Particle Stabilization

To determine the amount of additive required to stabilize the
particles under the investigated conditions, experiments were
performed where the initial concentration of additive in the
inlet, cadd, was varied from 0 to 16 g kg–1 (concentration of
polymer per mass of solution). We have observed that for all
the supersaturations investigated, cadd = 4.5 g kg–1 was sufficient
to see no more change in the measured particle size, which is
in agreement with the data reported in the literature [8, 36, 37].
In the next section (Sect. 6.2), it will be discussed whether
agglomeration was completely suppressed or not.

6.2 Primary Processes

To see the effect of agglomeration on the final size of particles,
first the experiments where only nucleation and growth are
active were performed. In Fig. 3, the measured average sizes of
crystals obtained using various initial supersaturations and the
additive in the barium chloride feed solution are depicted. As
expected, by increasing the initial supersaturation, the size of
crystals decreases.

To check the accuracy of the DLS measurements, scanning
electron microscopy (SEM) pictures of crystals obtained from
experiments performed at four different supersaturations,
namely, 532, 629, 741, and 978 (calculated using Eq. (8)), have
been taken (see Fig. 4). By measuring the sizes of individual

crystals in each picture, an average size of crystals for each of
the investigated supersaturations was obtained and the results
are also plotted in Fig. 3 (circles).

As it can be seen, the results obtained from the SEM match
very well with the DLS measurements, thus indicating that the
DLS measures the size of crystals accurately enough. Additional-
ly, because the measured size corresponds to the size of the pri-
mary particles, the amount of additive used was indeed sufficient
to successfully suppress the secondary mechanisms. The slight
difference in the case of the highest supersaturation could be
explained by the fact that primary crystals are too small for the
additive particle to attach to their surface and only when they
have agglomerated to a larger size, the stabilization was effective.

In Fig. 3, the simulation results are also indicated (solid line).
As it can readily be seen, the simulations match the experi-
ments rather well. The good agreement with the experimental
data is especially remarkable in the range when homogeneous
nucleation occurs (S > 450) where the model is almost fully
predictive with only one parameter obtained from experiments.

Given the abundance of barium sulfate precipitation studies,
one could try and compare the experimental as well as the sim-
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Table 1. Summary of all the initial concentrations of reagents
used in the experiments with the corresponding supersatura-
tion calculated using Eq. (8).

cBa2þ cSO2�
4

S

0.015 0.015 404

0.020 0.020 473

0.025 0.025 532

0.030 0.030 583

0.035 0.035 629

0.050 0.050 741

0.100 0.100 978

Figure 3. Comparison between experimental (symbols) and
simulation (lines) results for primary particles and agglomerates.
Supersaturation was calculated using Eq. (8).

Figure 4. SEM pictures of barium sulfate crystals obtained at dif-
ferent supersaturations. Supersaturation was calculated using
Eq. (8).
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ulation results obtained in this work with those reported in the
literature. Unfortunately, it is not as trivial as it may seem at
first sight. Schwarzer et al. have used a different system where
the surface potential can no longer be approximated by
Eq. (36) and the additional effect of adsorption of protons must
be considered [9, 38]. Vicum et al. have employed the same sys-
tem as the one in this work allowing for a comparison between
simulation results, but they have studied the precipitation pro-
cess in a continuous stirred-tank reactor (CSTR) where the as-
sumption of a perfectly mixed system is no longer valid and
the effects of mixing have to be considered [1, 39]. Further-
more, the experiments were performed at much lower supersa-
turations where the shape of precipitated barium sulfate crys-
tals differ greatly from a sphere, thus requiring the use of
different shape factors. Nevertheless, their model can be com-
pared with the approach in this work.

From the available literature, only the results reported by
Kügler et al. [8] can be taken for comparison, because they
used the same system and a very similar experimental setup. In
Fig. 5, the experimental (triangles) as well as simulation (blue
line) results obtained by Kügler et al. are compared with the
model used in this work (black solid line). The model used by
Kügler et al. was proposed by Mersmann et al. [2] and has been
described in Sect. 2.2. As it can be seen, the experimental
results match closely with those reported in this work. More-
over, in the range of supersaturation between 600 and 1000,
both models perform similarly. But for lower supersaturations
(S ∈(400,600)) the model used in this work seems to describe
the experimental results better than the one proposed by
Mersmann et al.

The lowest supersaturation investigated by Kügler et al. has a
value of about 200 whereas in this work, due to the expected
change of shape of precipitated crystals, the lowest simulated
supersaturation value is 350. As reported by Podgórska [1, 40],
for supersaturation values lower than 350, precipitated crystals

have a surface shape factor equal to 348, i.e., roughly ten times
larger than the one for higher supersaturations, thus resulting
in much higher actual growth rates and an underestimation of
crystal sizes when not taking it into an account. This could
explain the sudden increase in the size of the precipitated crys-
tals in the case of supersaturation lower than 350 and the mis-
match between the model presented in this work.

In Fig. 5, the simulation results using the empirical expres-
sions proposed by Vicum et al. [1] (red line) are also displayed.
For S > 800, the simulation results for all three models are very
similar. For lower supersaturations though, the empirical mod-
el proposed by Vicum et al. differs from the one used in this
work. The difference can be mainly attributed to the difference
between the calculated nucleation rates. As it can be seen in
Fig. 1, the difference between the nucleation rates calculated
using the two approaches is increasing as the supersaturation
decreases, thus highlighting the above-mentioned inaccuracy
in fitting nucleation rates at high supersaturations (see
Sect. 2.2) and how a seemingly small change in the nucleation
rate can result in a very different simulation result.

6.3 Agglomeration

In Fig. 3, the measured average sizes of agglomerates obtained
using various initial supersaturations are indicated. To make
sure that only agglomerates and not aggregates are measured,
in those experiments the surfactant was added to the sample
collected after the depletion of supersaturation, ergo when
nucleation, growth, and agglomeration no longer took place.
As it can be seen, for all supersaturations investigated, the mea-
sured size is larger than the size of primary particles. For higher
supersaturations (S > 600) this difference is noticeably smaller
as compared to the lower supersaturations (S < 600) where it is
not only larger, but it also rises more rapidly with the increase
of the size of primary particles. This difference could be attrib-
uted to the change of the agglomeration mechanism from peri-
kinetic to orthokinetic as the size of particles increases. For
smaller particles, the perikinetic mechanism is dominant where
the agglomeration kernel linearly depends on the size of par-
ticles (see Eq. (29)). As the particles are becoming larger, the
orthokinetic mechanism becomes dominant where the agglom-
eration kernel’s dependence on the size of colliding particles is
cubic (see Eq. (28)).

The effect of different agglomeration mechanisms can be fur-
ther seen by looking into the simulation results. In Fig. 5, the
simulation results using the model presented in Sect. 3 are also
illustrated (dotted, dashed, and dotted-dashed lines). The only
model parameter, kc, has been estimated by fitting the model to
the experimental data. As mentioned above (see Sect. 3), three
different expressions for calculating the stability ratio were used
with kc = 7.8 ·10–6 when interparticle forces were neglected
(W = 1), and kc = 5 ·10–6 when electrostatic forces or electro-
static and hydrodynamic forces were considered (Eqs. (31) and
(37), respectively).

As it can be seen in Fig. 5, for the largest primary particles
(S < 400) all three approaches yield very similar results. This is
expected, as for the largest particles, as already mentioned,
agglomeration is mainly due to the orthokinetic mechanism
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Figure 5. Solid lines correspond to the simulation results for the
description of primary particles using different models: the
model used in this work (black line) and the models proposed
in the literature (blue and red lines). Dashed lines correspond to
the simulation results for the description of agglomerates using
different expression for stability ratio. Supersaturation was cal-
culated using Eq. (8). Experimental results (symbols) are taken
from [9].
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which is not affected by the interparticle forces and depends
only on the size of the particles and on the flow properties (see
Eqs. (28) and (29)). As the size of the particles decreases and
the perikinetic contribution becomes significant, only the mod-
els including the electrostatic interparticle forces are able to
describe the experimental data well (dashed and dotted-dashed
lines in Fig. 5 obtained using Eqs. (31) and (37)). The effect of
viscous forces becomes significant only for the smallest par-
ticles (S > 550), requiring the use of the stability ratio proposed
by Spielman (Fig. 5, dotted-dashed line). Overall, as can be seen
in Fig. 3, by accounting for the electrostatic as well as for the
viscous forces, the model proposed in Sect. 3 is able to describe
experimental data in the whole range of supersaturations inves-
tigated.

Even more than in the case of primary processes, compari-
son of the agglomeration results presented in this work with
those found in the literature is rather difficult. Kügler et al. [8]
and Jasińska et al. [3] have studied the agglomeration of ba-
rium sulfate but since the energy dissipation rate in both cases
is unknown, the calculation of the sticking probability as well
as the collision kernel is not possible. Marchisio et al. [4] have
investigated a much lower supersaturation, where the shape of
precipitated barium sulfate crystals can no longer be approxi-
mated by a sphere. Given the above-mentioned difficulties, no
comparison with the literature has been possible.

7 Conclusions

By applying a rigorous approach to describe the kinetics of pre-
cipitation and to design the experimental protocol, a compre-
hensive description of the barium sulfate precipitation process
in a wide range of supersaturations was achieved. The pro-
posed experimental method allowed not only for the decou-
pling of the primary from the secondary processes but, more
importantly, also of the agglomeration from aggregation. By
being able to study the two processes independently, a model
describing the agglomeration of barium sulfate in the range of
high supersaturations could be validated experimentally for the
first time.

The proposed model has proven to describe the experiments
with a high degree of accuracy in the whole range of supersatu-
rations investigated. Additionally, by comparing agglomeration
kernels of various complexity ranges, where simplifications are
possible, were identified, allowing for the development of mod-
els with better performance in the future.
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Symbols used

A [m–3s–1] kinetic parameter
A [J] Hamaker constant
a [–] proportionality constant Eq. (16)
a [m] surface-to-surface distance between

colliding particles
ai [mol kg–1] activity of ion i
B [–] thermodynamic parameter
b [–] proportionality constant Eq. (17)
Ce [kg–1] molecular solubility
Cm [–] constant in the k-e model of

turbulence
ci [mol kg–1] concentration of species i
D [m2s–1] diffusion coefficient
e [C] elementary electric charge
G [m s–1] growth rate
I [mol kg–1] ionic strength
KSP [–] thermodynamic solubility product
k [m2s–2] turbulent kinetic energy
kB [J K–1] Boltzman constant
kc [–] constant Eq. (26)
kD [m kg s–1mol–1] activity-based mass transfer

coefficient
kr [m s–1] integration rate coefficient
L [m] diameter
Mc [kg kmol–1] molecular mass
NA [mol–1] Avogadro constant
n [m–3] number density of particles
RN [m–3s–1] nucleation rate
S [–] supersaturation ratio Eq. (8)eS [–] supersaturation ratio
Sh [–] Sherwood number
s [–] supersaturation ratio Eq. (7)
T [K] temperature
t [s] time
W [–] stability ratio
z [–] valence

Greek letters

b [m–3s–1] agglomeration kernel
g [J m–2] specific surface energy of the

cluster/solution interface
g – [–] mean ionic activity coefficient
e [m2s–3] energy dissipation rate
e0 [C2J–1m–1] electric field constant
er [m2s–3] relative permittivity
h [kg m–1s–1] dynamic viscosity
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k [m–1] Debye length
m [J] chemical potential
n [m2s–1] kinematic viscosity
rc [kg m–3] crystal density
jel [J] electrostatic potential energy
jtotal [J] total potential energy of the

interparticle forces
jvdW [J] van der Waals potential energy
y [–] stability ratio
Y0 [J C–1] surface potential

Abbreviations

CFD computational fluid dynamics
CNT classical nucleation theory
DLS dynamic light scattering
PBE population balance equation
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[8] R. T. Kügler, S. Doyle, M. Kind, Chem. Eng. Sci. 2015, 133,
140–147.DOI: https://doi.org/10.1016/j.ces.2014.12.024

[9] H. C. Schwarzer, W. Peukert, AIChE J. 2004, 50 (12),
3234–3247. DOI: https://doi.org/10.1002/aic.10277

[10] A. E. Nielsen, J. M. Toft, J. Cryst. Growth 1984, 67 (2), 278–
288. DOI: https://doi.org/10.1016/0022-0248(84)90188-X

[11] From Molecules to Crystallizer (Eds: R. Davey, J. Garside),
Oxford University Press, Oxford 2000.
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