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SUMMARY

Manyneural networks formedical imaginggeneralizepoorly todata unseenduring
training. Such behavior can be caused by overfitting easy-to-learn features while
disregarding other potentially informative features. A recent implicit bias mitiga-
tion technique called spectral decoupling provably encourages neural networks
to learn more features by regularizing the networks’ unnormalized prediction
scores with an L2 penalty. We show that spectral decoupling increases the
networks0 robustness for data distribution shifts and prevents overfitting on
easy-to-learn features in medical images. To validate our findings, we train net-
works with and without spectral decoupling to detect prostate cancer on tissue
slides and COVID-19 in chest radiographs. Networks trained with spectral decou-
pling achieve up to 9.5 percent point higher performance on external datasets.
Spectral decoupling alleviates generalization issues associated with neural net-
works and can be used to complement or replace computationally expensive
explicit biasmitigationmethods, such as stain normalization in histological images.

INTRODUCTION

Neural networks have been adapted to many medical imaging tasks with impressive results, often surpassing

humancounterparts in consistency, speed, andaccuracy (Liu et al., 2019).However, thesenetworks areprone to

overfit easy-to-learn or statistically dominant features, while disregarding other potentially informative fea-

tures. This leads to poor generalization to data generated by different medical centers, reliance on the domi-

nant features, and lack of robustness (Geirhos et al., 2020; Pezeshki et al., 2020). For example, a neural network

classifier for skin cancer, approved to be used as a medical device in Europe, had overfit the correlation be-

tween surgical margins and malignant melanoma (Winkler et al., 2019). Owing to this, the false positive rate

of the network was increased by 40 percentage points during external validation. Furthermore, three out of

five neural networks for pneumonia detection showed significantly worse performance during external valida-

tion (Zech et al., 2018) and recent neural networks for COVID-19 detection rely on confounding factors rather

than actual medical pathology (DeGrave et al., 2021). Even small differences in the sharpness of images from

two different scanners can degrade the performance of neural networks significantly (see Robustness section).

Although generalization issues need to be solved before any neural networks can be applied in clinical prac-

tice, the phenomenon is still poorly understood (van der Laak et al., 2021). This may be because the detection

of generalization issues is hard and often requires state-of-the-art methods of explainable AI (DeGrave et al.,

2021). An external dataset is one of the only methods of testing generalization performance, although it will

uncover generalization issues only when the neural network fails to generalize to the dataset. If a neural

network achieves high overall accuracy on the external dataset, it may still always fail for some subset of sam-

ples. Any particular external dataset may also contain the same sources of bias as the training data.

Explicit methods have been proposed to address specific sources of bias, like using augmentation to

address staining differences in tissue section slides (Tellez et al., 2019) or normalizing each image with a

common standard (de Bel et al., 2019; Janowczyk et al., 2017). The obvious problem with explicit methods

is that they only control for selected biases and more subtle sources of bias, like small differences between

patient populations, may go unaddressed. Implicit methods of bias control are required before neural net-

works can be safely applied to clinical practice.

Learning dominant features at the cost of other potentially informative features, also known as shortcut-

learning, is a common problem in all neural networks and one of the main reasons behind the
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generalization issues (Geirhos et al., 2020). Shortcut-learning occurs mainly because of gradient starvation,

where gradient descent updates the parameters of a neural network in directions capturing only dominant

features, thus starving the gradient from other features (des Combes et al., 2018). The gradient descent

algorithm finds a local optimum by taking small steps toward the opposite sign of the derivative, the direc-

tion of the steepest descent (Cauchy, 1847). The recently proposed method of spectral decoupling (Pe-

zeshki et al., 2020) provably decouples the learning dynamics leading to gradient starvation when using

cross-entropy loss, thus encouraging the network to learn more features. The effect is achieved by simply

adding an L2 penalty on the unnormalized prediction scores (logits) of the network.

We evaluate the utility of spectral decoupling as an implicit bias mitigation method in the context of medical

imaging. We use simulation experiments to show that spectral decoupling increases networks0 robustness to
data distribution shifts and can be used to train generalizable networks on datasets with a strong superficial cor-

relation. The findings are then evaluated by training prostate cancer and COVID-19 classifiers, where the net-

works trained with spectral decoupling achieve significantly higher performance on all evaluation datasets.

RESULTS

In this section, the utility of using spectral decoupling as an implicit bias mitigationmethod is explored with

both simulation and real-world experiments.

Dominant features

To assess the utility of spectral decoupling in situations where the training dataset contains a strong domi-

nant feature, the cutout dataset defined in Simulation datasets is used. Five networks are trained with either

spectral decoupling or weight decay on the training set. In addition, five networks are trained on the control

dataset with weight decay to provide a reference point of the performance under no spurious correlation

caused by the dominant feature. The mean and SD of the accuracy and recall metrics on the test data are

reported in Table 1. Accuracy is defined as the fraction of all instances that were correctly identified, and

recall as the fraction of positive instances that were correctly identified.

The use of spectral decoupling increases the accuracy by 8.5 percentage points over weight decay and

almost reaches the performance of the network trained on the control dataset. The networks trained

without spectral decoupling appear to make false predictions based on the dominant feature, although

the class activation maps (Chattopadhay et al., 2018) of the trained neural networks, do not significantly

differ between weight decay and spectral decoupling. As hyper-parameters were tuned on the test set,

the results should be interpreted only as a demonstration that spectral decoupling can offer an important

level of control over the features that are learned.

The simpler variant of spectral decoupling in Equation 1 did not increase the networks0 performance in any

way, and only after extensive hyper-parameter tuning, Equation 2 produced the reported results. The hy-

per-parameter tuning was sensitive to the selected parameters, and even small changes to the final values

significantly reduced the accuracy of the neural network. Similar results were also reported with the real-

world example in the original paper (Pezeshki et al., 2020). As extensive hyper-parameter tuning can deter

researchers from applying the method, we limit hyper-parameter tuning to a simple grid search over

limited search spaces for all other experiments, as described in Spectral decoupling.

Robustness

To assess whether spectral decoupling increases neural networks0 robustness to data distribution shifts,

five networks are trained with either spectral decoupling or weight decay and evaluated on the robustness

dataset described in Simulation datasets. In addition, five networks are trained with weight decay but

Table 1. Results of the simulation study with the cutout dataset on dominant features

Name Accuracy (SD) Recall (SD)

Weight decay 0.752 (0.019) 0.523 (0.039)

Spectral decoupling 0.837 (0.020) 0.715 (0.046)

Control + weight decay 0.875 (0.009) 0.832 (0.036)

The mean and SD (SD) values are reported for each set of five trained networks.
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without UniformAugment to assess how much the augmentation strategy improves robustness. The

robustness to data distribution shifts caused by sharpening, blurring, and reducing the intensity of either

hematoxylin or eosin stain are presented in Figure 1.

Performance of all networks trained with weight decay and without the augmentation strategy degrades to

roughly 50% accuracy. Training the networks again with UniformAugment significantly increases robustness

to all data distribution shifts except with hematoxylin stain intensity reduction (Figure 1C). When the data dis-

tribution shift is included as a possible augmentation (Figure 1A), the increase in accuracy is almost 40 percent-

age points with themost severe distribution shift. When the data distribution shift is not included as a possible

transformation (Figures 1B–D), robustness is more similar with and without augmentation. This result demon-

strates the importance of using augmentation as an explicit bias mitigation method.

Although the use of augmentation already increased the accuracy by almost 40 percentage points, the use

of spectral decoupling is able to improve the accuracy by a further 4.6 percentage points with the most se-

vere data distribution shift (Figure 1A). The increase in accuracy is more pronounced with blurring, 12.4 per-

centage points with n= 19 (Figure 1B), and eosin stain intensity reduction, where networks trained with

spectral decoupling achieve 1.2 to 8.5 percentage points higher accuracy with a 0.9 to 0.0 multiplier (Fig-

ure 1D). These data distribution shifts are not included as possible transformations in UniformAugment,

A

B

C

D

Figure 1. Robustness for data distribution shifts from the training data

The lines show the mean accuracy and the shaded regions represent one SD around the mean.
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and thus not explicitly controlled. With hematoxylin stain intensity reduction, all networks degrade similarly

in performance (Figure 1C). These results show that spectral decoupling is able to significantly complement

and improve upon augmentation, as well as improve robustness to data distribution shifts that are not

explicitly controlled by augmentation.

Prostate cancer detection

To assesswhether the results of the simulation experiments translate into improvements in real-worlddatasets,

we train networks with and without spectral decoupling to detect prostate cancer on H&E stained whole slide

images of the prostate. These networks are then evaluated on four different datasets described in Prostate

dataset.

The results are presented in Figure 2. Networks trained with spectral decoupling show higher performance

on all evaluation datasets. The difference between weight decay and spectral decoupling gets more pro-

nounced as we move further away from the training dataset distribution. Finally, there is a 9.5 percentage

point increase in accuracy over weight decay on the dataset from a different medical center. The reported

performances are not comparable between evaluation datasets, as each dataset has been annotated with a

different strategy and thus contain different amounts of label noise.

To further explore why networks trained without spectral decoupling fail to generalize to the dataset from

Radboud University Medical Center (Figure 2D), the robustness to H&E stain intensities are explored in Fig-

ures 3A and 3B. Spectral decoupling is less sensitive to both H&E stain intensity reduction and interestingly,

networks trained with weight decay actually increase in accuracy when reducing the eosin stain intensity.

This indicates that the difference between spectral decoupling andweight decay performance in Figure 2D,

may be partly because of differences in the stain intensities between the two medical centers. To explore

this possibility, the stain intensities of the external dataset are normalized with the Macenko method (Ma-

cenko et al., 2009) to match the training data stain intensities and the resulting performance increases are

A B

C D

Figure 2. Neural network performance on evaluation datasets

(A–D) Each consecutive evaluation dataset moves further from the training data distribution. Networks trained with

spectral decoupling improve accuracy by 0.35 (A), 1.0 (B), 3.6 (C) and 9.5 (D) percentage points over weight decay. All

networks are trained with UniformAugment.
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reported in Figure 3C. Both networks trained with either spectral decoupling or weight decay benefit from

stain normalization. Stain normalization is especially beneficial for networks trained with weight decay,

where the mean network accuracy is increased by 7.5 percentage points. Networks trained with spectral

decoupling still perform better than networks trained with weight decay coupled with stain normalization.

These results demonstrate that spectral decoupling can complement or even replace normalization

methods, with negligible computational requirements (Figure 3D).

COVID-19 detection

To assess whether spectral decoupling can help in real-world situations with strong dominant features and

spurious correlations, we train five networks with and without spectral decoupling to detect COVID-19 pos-

itive patients in chest radiographs. Two different training datasets are used to train the networks and all

networks are evaluated on the same external validation set, described in COVID-19 dataset. We first train

neural networks with the BIMCVG dataset, which represents an ideal situation where both the positive and

negative samples originate from similar sources. Second, we train networks with the combined PadChest

and BIMCVG dataset. This dataset represents a situation where the network can easily achieve high per-

formance by only learning to detect where a sample originates as most of the negative samples come from

a single medical center.

After training all networks, the predictions from each network are averaged to obtain ensemble predictions for

both weight decay and spectral decoupling. ROC curves for ensemble predictions are presented in Figure 4,

with bootstrapped (n = 1; 000) 95% CIs (CI) for each area under the ROC curve (AUROC) value. Networks

trained with spectral decoupling achieve significantly higher AUROC values for both BIMCVG (De-Long0s
test: Z = � 15:914;p = 10�56) and the combined PadChest and BIMCVG (De-Long0s test: Z = � 13:553;

p = 10�41) trainingdatasets.On theBIMCVGdataset, weightdecay and spectral decoupling achieveAUROCs

A B

C D

Figure 3. Spectral decoupling can complement or even replace computationally heavy stain normalization

methods

(A and B) Robustness to data distribution shifts, on the external dataset, caused by heematoxylin (A) or eosin (B) stain

intensity reduction.

(C) Network accuracy increases when normalizing H&E stain intensities with the Macenko method.

(D) Comparison of the computational requirements between spectral decoupling and the Macenko method. Images per

seconds estimation for spectral decoupling is calculated with a Equation 1, where by is a 51231 matrix and Macenko stain

normalization is performed on resized images of size 2243 224.
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of 0.812 (95%CI: 0.802–0.822) and 0.778 (95%CI: 0.767–0.788), respectively. With the combined PadChest and

BIMCVGweightdecayandspectral decouplingachieveAUROCsof 0.747 (95%CI: 0.736–0.757) and0.711 (95%

CI: 0.700–0.723), respectively.

When training networks with the combined PadChest and BIMCVG dataset, AUROC values of networks

trained with either method decrease, although the number of training samples is increased over 10-fold.

The decrease in AUROC is similar for weight decay and spectral decoupling, 0.065 and 0.067, respectively.

This indicates that spectral decoupling is unable to mitigate bias in the combined dataset. As most of the

negative samples originate from a single medical center, shortcut learning seems to happen even though

spectral decoupling encourages the network to learn more features. Detecting where a sample originates

is especially easy with radiographs because of systematic differences between data repositories and med-

ical centers, which could be exploited by a neural network (DeGrave et al., 2021). Thus, the higher AUROC

value of spectral decoupling is more likely because of increased robustness to data distribution shifts than

avoidance of shortcut learning.

DISCUSSION

Generalization performance is defined as themain challenge standing in the way of true clinical adoption of

a neural network (van der Laak et al., 2021). Van Der Laak et al. (2021) argue that there is a need for public

datasets which are truly representative of clinical practice. Although this is indeed important, we argue that

training datasets, nomatter how large, will never account for all possible variations caused by differences in

imaging equipment, sample preparation, and patient populations. Thus, it is crucial to couple extensive

multisource datasets with explicit and implicit bias mitigation methods to train neural networks which

are robust to unseen variations.

Two explicit methods of bias mitigation have been proposed for medical imaging. Augmentation of the

training samples is crucial as it substantially increases robustness for distribution shifts from the training

data caused by differences in imaging equipment or sample preparation (Figure 1, Tellez et al., 2019).

Thus, it is strongly recommended to use extensive augmentation strategies for training neural networks in-

tended for clinical practice. Normalization of all images to a common standard would substantially reduce

the distribution shifts (de Bel et al., 2019; Janowczyk et al., 2017; Swiderska-Chadaj et al., 2020), but comes

with a considerable computational cost (Figure 3D). Bothmethods address important problems and should

be complementary to any implicit methods of bias control.

Spectral decoupling is, to our knowledge, the first implicit bias mitigation method for addressing the

generalization issues in neural networks. The method is complementary to augmentation, increasing the

robustness for distribution shifts already addressed with augmentation (Figure 1A). Above all, spectral de-

coupling significantly increases the robustness for distribution shifts not addressed by augmentation (Fig-

ure 1B) and could be used to replace computationally expensive stain normalization methods (Figure 3C).

A B

Figure 4. Receiver operating characteristic (ROC) curves for COVID-19 detection

Inset values indicate the areas under the ROC (AUROC) values and bootstrapped 95% CIs. Networks trained with spectral

decoupling achieve significantly higher AUROC values compared to networks trained with weight decay.
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By encouraging the neural network to learn more features, spectral decoupling can also help in situations

where the training dataset contains strong dominant features or spurious correlations (Table 1). This is

crucial as the dominant features can also be inherent to the data, such as different cancer types. For

example, with prostate cancer, different Gleason grades (Epstein et al., 2016) are often unbalanced in

the training set. Owing to gradient starvation (des Combes et al., 2018), the features of the underrepre-

sented Gleason grades may not be learned by the neural network. Balancing the dataset, so that all Glea-

son grades are represented equally, is not easy or even desired as the grading is based on a continuous

range of histological patterns.

In COVID-19 detection, the networks0 performance decreased similarly for both weight decay and spectral

decoupling (Figure 4), when training the networks on the combined BIMCVG and the PadChest dataset.

Radiographs contain systematic differences between data repositories and medical centers, such as later-

ality tokens and differences in the radiopacity of the image borders, which could arise from variations in

patient position, radiographic projection or image processing (DeGrave et al., 2021). These differences

can be easily leveraged by neural networks to detect where a single radiograph originates. We speculate

that spectral decoupling was unable to prevent shortcut-learning because of the ease of shortcut learning

in the combined PadChest and BIMCVG dataset. In addition, our results showing the ability to prevent

shortcut learning (Table 1) were obtained after considerable hyper-parameter optimization and no signif-

icant differences could be seen in the class activation maps between networks trained with either weight

decay or spectral decoupling. Thus, removal of any obvious superficial correlations from the training data-

set is crucial as there seems to be a limit of how much spectral decoupling can help with dominating fea-

tures and spurious correlations.

The advantages of spectral decoupling can be clearly seen when the network is evaluated with out-of-dis-

tribution samples (Figures 1, 2, and 4). Neural networks trained with spectral decoupling retain their per-

formance with samples further from the training data distribution, which is exactly what is required from

neural networks intended for clinical practice (van der Laak et al., 2021). Although using an external dataset

may not reveal all generalization problems, it is clear that without spectral decoupling the neural networks

fail to generalize to this particular external dataset from Radboud University Medical Center (Figures 2D

and 3). Even in COVID-19 detection, where spectral decoupling seems to fail in preventing shortcut

learning, the performance of the network is significantly increased over the state-of-the-art.

Conclusions

Spectral decoupling is the first implicit bias mitigation method for training neural networks to be used

across multiple medical centers. The method adds no computational costs, is easy-to-implement and it

complements and improves upon explicit bias mitigation methods. Our results recommend the use of

spectral decoupling in all neural networks intended for clinical use.

Limitations of the study

Spectral decoupling is shown, by a simulation experiment, to offer an important level of control over the

features that are learned in the ‘dominant features’ section. Despite this, spectral decoupling is unable

to prevent shortcut learning as described in the COVID-19 detection section. We speculate this was

because of the ease of shortcut learning in the training dataset, as mentioned in the discussion section.

It is also possible spectral decoupling achieves significantly higher performance solely because of

increased robustness to data distribution shifts and not also through the prevention of shortcut learning.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Joona Pohjonen (joona.pohjonen@helsinki.fi).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The patient data originating from the Helsinki University Hospital data reported in this study cannot be

deposited in a public repository. This paper also used existing, publicly available data. These accession

numbers for the datasets are listed in the key resources table.

d This paper does not report original code. An interactive example demonstrating spectral decoupling

with mock data has been published before (Pezeshki et al., 2020).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Spectral decoupling

In spectral decoupling, the network is regularised by imposing an L2 penalty on the unnormalised outputs

of the last layer of the network, or logits by , which is then added to cross-entropy loss,LCE. This penalty prov-

ably (Pezeshki et al., 2020) avoids the conditions leading to gradient starvation in networks trained with

cross-entropy loss. Two variants of the penalty are defined as

LCE +
l

2
kjby jj22; (Equation 1)

LCE +
l

2
kjby � gjj22: (Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

PESO Bulten et al. (2018, 2019) N/A

COVIDx8 Cohen et al. (2020), Wang et al. (2020), Tsai

et al. (2021), Rahman et al. (2021) Chowdhury

et al. (2020)

N/A

PadChest Bustos et al. (2020) N/A

BIMCV+/� De La Iglesia Vayá et al. (2020) N/A

Helsinki University Hospital (2014–2015) This paper (not shared) N/A

Helsinki University Hospital (2019–2020) This paper (not shared) N/A

Software and Algorithms

PyTorch https://pytorch.org 1.8

Albumentations https://github.com/albumentations-team/

albumentations

0.5.1

PyTorch image models https://github.com/rwightman/pytorch-

image-models

0.1.8

Python https://www.python.org 3.8
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For Equation 1, there is a single tunable hyper-parameter l. For Equation 2, hyper-parameters l and g are

tuned separately for each class, a total of four hyper-parameters for the binary classification task in our

study. Pseudo-code for implementing Equation 1 is presented in Figure.

A simple grid search is used to optimize the hyper-parameters in Sections 2.2, 2.3, and 2.4. Bayesian opti-

misation is used in Section 2.1. Search spaces for the grid search are defined as S1 = f0:1;0:01;.;0:000001g,
S2 = f� 1; 0; 1; 2g, where l; lpos; lneg˛S1 and gpos;gpos˛S2. Hyper-parameter optimization is done on the

validation split, except for Equation 2 in Section 2.1, where we perform optimization straight on the test

split. For Equation 1, the tuned hyper-parameter is l = 0:01. For Equation 2, the tuned hyper-parameters

are lneg = 0:0969, gneg = 1:83, lpos = 0:000698 and gpos = 2:61 for the experiment in Section 2.1, and lneg =

0:01, gneg = 0, lpos = 0:001 and gpos = 1 for the experiment in Section 2.4.

Prostate dataset

A total of 30 prostate cancer patient cases are annotated for classification into cancerous and benign tissue,

where the cancerous areas were annotated in consensus by two observers (C.S., T.M.). All patients have un-

dergone radical prostatectomy at the Helsinki University Hospital between 2014 and 2015. Each case con-

tains 14 to 21 tissue section slides of the prostate. Tissue sections have a thickness of 4 mmand were stained

with hematoxylin and eosin in a clinical-grade laboratory at the Helsinki University Hospital Diagnostic Cen-

ter, Department of Pathology. Two different scanners are used to obtain images of the tissue section slides

at 20xmagnification. Larger macro slides (whole-mount, 23 3 inch slides) are scanned with an Axio Scan Z.1

scanner (Zeiss, Oberkochen, Germany), and the normal size slides with a Pannoramic Flash III 250 scanner

(3DHistech, Budapest, Hungary). From the 30 patient cases, five are set aside for a test set and four are used

as a validation set during training and hyper-parameter tuning. The test set is further divided based on the

scanner used to obtain the images. Digital slide images are cut into tiles with 102431024 pixels and 20%

overlap, resulting in 4.7 million tiles with 10% containing cancerous tissue.

To test the differences between cohorts from the same medical centre, another set of 60 prostate cancer

patient cases are annotated into cancerous and benign tissue by one of six experienced pathologists. All

patients have undergone radical prostatectomy at the Helsinki University Hospital between 2019 and 2020.

Each case contains 10 to 21 normal and macro tissue section slides of the prostate. Tissue sections have a

thickness of 4 mm and are also stained with hematoxylin and eosin in a clinical-grade laboratory at the Hel-

sinki University Hospital Diagnostic Center, Department of Pathology. All slides are scanned with an Axio

Scan Z.1 scanner (Zeiss, Oberkochen, Germany). Digital slide images are cut into tiles with 10243 1024

pixels and 20% overlap, resulting in 13.1 million tiles with 16% containing cancerous tissue.

For external validation, a freely available prostate cancer dataset is used, containing tissue section slides

from patients who have undergone a radical prostatectomy at the Radboud University Medical Center be-

tween 2006 and 2011 (Bulten et al., 2018, 2019). The dataset contains images with 250032500 pixels anno-

tated by a uropathologist as either cancerous or benign. Images are scanned with a Pannoramic Flash II 250

scanner (3DHistech, Budapest, Hungary) at 20xmagnification but later reduced to 10xmagnification. These

images are cut into tiles with 5123512 pixels and 20% overlap, resulting in 5,655 tiles with 45% containing

cancerous tissue.

PyTorch style pseudocode for Equation 1.
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All digital slide images are cut and processed with HistoPrep (Pohjonen, 2021). A summary of the prostate

datasets is presented in Table.

COVID-19 dataset

For COVID-19 detection, we use large open-access repositories of chest radiographs. COVIDx8 dataset is

compiled from five different open-source repositories and contains radiographs from over 15,000 patient

cases from at least 51 countries, with over 1500 COVID-19 positive patient cases (Chowdhury et al., 2020;

Cohen et al., 2020; Rahman et al., 2021; Tsai et al., 2021; Wang et al., 2020). BIMCVG dataset (iteration 2)

contains 3,033 positive and 2,743 negative COVID-19 patient cases, and 9,171 radiographs, after exclu-

sions, collected from the multiple same medical centres during the same time period (De La Iglesia

Vayá et al., 2020). Only PA and upright AP radiographs (Cohen et al., 2020) with windowing information

were selected from the BIMCVG dataset. PadChest dataset contains over 67,000 COVID-19 negative pa-

tient cases, and 114,227 radiographs from a single medical centre in Valencia, Spain (Bustos et al., 2020). 19

corrupted images were excluded from the PadChest dataset.

COVIDx8 dataset is reserved as an external dataset, and two training datasets are compiled by using only

the BIMCVG dataset and by adding the PadChest and BIMCVG datasets together. 5% of both training da-

tasets are set aside for validation.

Simulation datasets

Two simulation experiments are used to more closely investigate the utility of spectral decoupling as an

implicit bias mitigation method. For both experiments, the dataset from Helsinki University Hospital

described in Section 9.2 is modified in specific ways.

Cutout simulation dataset

A dominant feature present in a real-world dataset could be, for example, a biological marker, a certain

cancer type or a scanner artefact. To represent these kinds of features, 16 cutouts of 838 pixels are added

to the images (Figure).

Prostate datasets

Center Scanner Slides Tiles Train data Test data

Helsinki University

Hospital

Pannoramic Flash III 250 Normal 1.0 million Dominant features Prostate cancer detection

Axio Scan Z.1 Macro 3.7 million Robustness and Prostate

cancer detection

Robustness and Prostate cancer

detection

Axio Scan Z.1 Macro 13.1 million – Section Prostate cancer detection

Radboud University

Medical Center

Pannoramic Flash II 250 Both 5,655 – Section Prostate cancer detection

Example of the cutout operation

Left: Benign sample. Right: 16 cutouts of 838 pixels added to the benign sample.
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For the experiment, 200,000 images are selected for the training set with an equal amount of samples with

cancerous and benign annotations. For the training set, cutouts are added to 25 and 2.5% of the benign

and cancerous samples, respectively. This makes the presence of cutouts in the image spuriously corre-

lated with a benign annotation. If the network overfits this correlation, cancerous samples with cutouts

may be classified as benign. Thus for the test set, cutouts are added to all cancerous samples and none

of the benign samples. For a control training set, cutouts are added to all images. Networks trained with

this dataset provide a reference point of the performance with cutouts but without the spurious correlation.

Robustness simulation dataset

Shifts from the training data distribution are common when evaluating the neural network with datasets

from different medical centres. Small changes in the images due to differences in, for example, sample

preparation or imaging equipment can cause shifts from the training data distribution. We assess the

networks0 robustness to these data distribution shifts, by applying transformations with increasing magni-

tudes to the images in the test set. Image sharpness and stain intensity were selected to represent possible

dataset shifts caused by differences in the used scanner and sample preparation, respectively.

The UniformAugment augmentation strategy consists of applying random transformations with a uniformly

sampled magnitude to the images before feeding them to the network (LingChen et al., 2020). Sharpening

the image is included in the set of possible transformations (Cubuk et al., 2019), meaning that the network

sees sharpened images during training. Thus, the data distribution shift caused by sharpening images is

being explicitly mitigated, which should help the network to predict correct labels for evaluation images

with higher sharpness. Blurring the image is not included in the set of possible transformations (Cubuk

et al., 2019), meaning that the network will not see randomly blurred images during training. Thus, the

data distribution shift caused by blurring the images will not be explicitly mitigated and the use of Unifor-

mAugment should not directly help the network with blurry evaluation images.

By evaluating the network with increasingly sharpened or blurred images, it is possible to assess whether

spectral decoupling can improve upon situations where the data distribution shift is, and is not explicitly

addressed. Additionally, there are large differences in the sharpness values of real-world datasets from

different medical centres and scanners (Figure).

Step-wise blurring is achieved by simple averaging with a n3n kernel, where n˛f2;.; 20g. Sharpened
version of the image xsharp is created by applying kernel

2
4�1 �1 �1
�1 9 �1
�1 �1 �1

3
5

to the original image xoriginal. Sharpness is then gradually increased by creating a new image xblend with

xblend = ð1�aÞxoriginal +axsharp;

where a˛f0; 0:1;.; 1g defines the amount of sharpness increase.

Kernel density estimation of the variance of the images after a Laplace transformation.

A higher variance indicates a sharper image. The image is generated from the preprocessing metrics calculated by

HistoPrep (Pohjonen, 2021).
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To assess the data distribution shifts caused by differences in sample preparation, the intensity of haema-

toxylin and eosin stains are computationally modified. Haematoxylin highlights cell nuclei, and eosin cyto-

plasm, connective tissue andmuscle. The stain intensities depend onmultiple steps in the staining process,

and thus the final colour distribution of the slide images varies a lot (Tellez et al., 2019). The stain intensity

modification is achieved by first separating the haematoxylin and eosin stains with the Macenko method

(Macenko et al., 2009). The concentrations of each stain can then be reduced by multiplication with a value

between 0 and 1 before the stains are combined back together. An example of the method is shown in

Figure.

QUANTIFICATION AND STATISTICAL ANALYSIS

EfficientNet-b0 network (Tan and Le, 2019), with dropout (Srivastava et al., 2014) and stochastic depth

(Huang et al., 2016) of 20% and an input size of 2243 224, is used as a prostate cancer classifier for all ex-

periments. For augmentation, the input images are randomly cropped and flipped, resized, and then trans-

formed with UniformAugment (LingChen et al., 2020), using a maximum of two transformations. Each

network is trained for 90 epochs, with a learning rate of 0:005 batch size
512 and cosine scheduling. Weight decay

of 0.0001 is used for networks trained without spectral decoupling. When training neural networks with

spectral decoupling, weight decay is disabled.

For COVID-19 detection, we replicate the training regimen from (DeGrave et al., 2021), where a DenseNet-

121 network (Huang et al., 2018) is pre-trained with the ImageNet dataset and then fine-tuned for 30 epochs

as a binary COVID-19 classifier. All hyper-parameters, other than spectral decoupling, are set to values

reported in the paper. Training and validation curves for the trained networks are shown in Figure S1.

For spectral decoupling, Equation 2 is used for the first simulation experiment on dominant features (Sec-

tion 2.1) and COVID-19 detection (Section 2.4). Equation 1 is used for all other experiments (Sections 2.2

and 2.3).

Each experiment is repeated five times and the summary metrics for these runs are reported. All reported

performance metrics are balanced between the classes when necessary and a cut-off value of 0.5 is used to

obtain a binary label from the normalised predictions of the network. To compare paired receiver under the

operating characteristic (ROC) curves, we use one-tailed DeLong0s test and report the Z-values and

p-values (DeLong et al., 1988).

PyTorch (version 1.8) (Paszke et al., 2019) is used for training the neural networks, timm (version 0.1.8)

(Wightman, 2019) for building the neural networks and albumentations (version 0.5.1) (Buslaev et al.,

2020) for image augmentations.

Separation of the hematoxylin and eosin stains with the Macenko method (Macenko et al., 2009).
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