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Abstract --Giardia duodenalis,Cryptosporidium spp. andToxoplasma gondii are protozoan parasites that have
been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United
Nations and the World Health Organization. According to the European Food Safety Authority,
4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed
to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were
available to detectGiardia, Cryptosporidium andToxoplasma (oo)cysts in food. Therefore, no regulation exists
regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs
contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of
protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination
along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective
protozoan (oo)cysts in foods, and (ii) the efficacy of controlmeasures to eliminate this contamination. In order to
conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required.
This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis
cysts, Cryptosporidium spp. andT. gondii oocysts, and their potential for application in exposure assessment to
determine the presence of the infective protozoa and/or to characterize the efficacy of control measures.
Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure
to these protozoa.
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Résumé -- Estimation de la viabilité et infectiosité des stades (kystes et oocystes) de Giardia
duodenalis, Cryptosporidium spp. et Toxoplasma gondii transmis par la nourriture et l’eau : une
revue des méthodes. Giardia duodenalis, Cryptosporidium spp. et Toxoplasma gondii sont des parasites
protozoaires qui ont été soulignés comme agents pathogènes émergents dans les aliments par l’Organisation des
Nations Unies pour l’alimentation et l’agriculture et l’Organisation Mondiale de la Santé. Selon l’Autorité
Européenne de Sécurité des Aliments, 4786 épidémies d’origine alimentaire et hydrique ont été enregistrées en
Europe en 2016, dont 0.4% ont été attribuées à des parasites, incluantCryptosporidium,Giardia etTrichinella.
Jusqu’en 2016, aucune méthode standardisée n’était disponible pour détecter les kystes de Giardia et les
oocystes de Cryptosporidium et Toxoplasma dans les aliments. Aucune réglementation n’est donc proposée
concernant ces dangers. Cependant, compte tenu de leur faible dose infectieuse, l’ingestion d’une quantité
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d’aliments faiblement contaminés peut entraîner une infection de l’homme. Pour évaluer le risque lié aux
protozoaires dans les aliments, des efforts doivent être faits dans l’évaluation de l’exposition pour estimer la
contamination le long de la chaîne alimentaire, depuis la matière première jusqu’aux consommateurs. Cette
évaluation nécessite de déterminer : (i) la prévalence de parasites infectieux dans les aliments, (ii) l’efficacité des
mesures de maîtrise pour éliminer cette contamination. Pour mener une telle évaluation, des méthodes capables
d’identifier des parasites viables (vivants) et infectieux sont requises. Cette revue décrit les méthodes
actuellement disponibles permettant d’évaluer l’infectiosité et la viabilité des kystes de G. duodenalis et des
oocystes de Cryptosporidium spp. et T. gondii, et leur potentiel pour être appliquées dans l’évaluation de
l’exposition pour déterminer la présence de parasites infectieux et/ou caractériser l’efficacité des mesures de
maîtrise. Les avantages et limites de chaque méthode sont présentés et une stratégie d’analyses est proposée
pour évaluer l’exposition à ces protozoaires.
1 Introduction

Giardia duodenalis and Cryptosporidium spp. are
enteric parasites of humans and various other mammals
[205,206]. Their cysts and oocysts are usually excreted in
high numbers in the feces of infected hosts (e.g., up to
109Cryptosporidium oocysts per gram of calf feces) and are
immediately infectious upon excretion without requiring a
period of development in the environment. Oocysts of the
coccidian parasite Toxoplasma gondii are shed exclusively
in the feces of felids. One infected cat can excrete millions
of non-sporulated oocysts shortly after infection [56].
Oocysts become infectious for humans and other warm-
blooded animals by sporulation one to five days later,
depending on aerobic and temperature conditions [57].
Giardia duodenalis cysts, and Cryptosporidium spp. and
T. gondii oocysts can be encountered in different
terrestrial and aquatic ecosystems where they can persist
for months, possibly years. In addition, these parasites are
extremely resistant to many chemical and physical
inactivation agents [59]. The cysts and oocysts of these
parasites can be transmitted to humans by the fecal-oral
route, directly by contact with contaminated hosts
(animals or humans depending on the parasites), or
indirectly by the waterborne or foodborne routes. Consis-
tent with this, Cryptosporidium spp. and Giardia spp.
accounted for the largest waterborne outbreaks reported
between 1998 and 2012 in the European Nordic countries,
with more than 50,000 persons infected, although Cal-
iciviruses and Campylobacter were the pathogens most
frequently involved [95]. Concerning worldwide water-
borne outbreaks due to parasitic protozoa, Cryptosporidi-
um spp. andGiardia spp. are the most commonly reported
etiological agents [61]. T. gondii oocysts have been
responsible for waterborne outbreaks to a lesser extent,
being responsible for 2% of parasitic protozoan outbreaks
between January 2004 and December 2010 [16,120].
However, due to the usually non-acute nature of infection
with Toxoplasma, the number of waterborne infections
associated with this parasite is probably underestimated.
In 2016 in Europe, 4786 food-borne outbreaks, including
waterborne outbreaks, were reported, of which 0.4% were
due to parasites including Cryptosporidium, Giardia and
Trichinella [60]. However, this number may be under-
estimated considering the large number of outbreaks
where the causative agent remains unknown (36%). For
the foodborne route, fruits and vegetables, in particular
those consumed raw or minimally processed, are probably
of greatest relevance [155,175]. Waters used to irrigate
fruits and vegetables can be contaminated by Cryptospo-
ridium spp., G. duodenalis, and T. gondii
[10,39,147,161,207]. Foods can also be contaminated by
oocysts and cysts due to poor hygiene conditions during
transformation or preparations, through food handlers,
surfaces, or equipment [64,72]. Concerning T. gondii, food
transmission is more likely through ingestion of cysts in
raw or undercookedmeat but this is now considered to be a
less predominant source of infection in certain areas or
populations [31,201].

The low infectious dose for these protozoan parasites
means that the associated risk to public health is
increased. The ID50 (number of oocysts required to infect
50% of exposed people) was estimated to be between 10
and 83 oocysts in healthy adults for C. hominis [40],
and< 10 to 2000 oocysts for different strains of C. parvum
[170,204]. Similarly, 10 to 100 cysts of G. duodenalis can
lead to symptomatic parasitic disease [180]. Giardia and
Cryptosporidium infections cause mild to severe recurrent
diarrhea or intestinal disorders, and Cryptosporidium is
one of the four pathogens involved in most of the cases of
diarrhea in children younger than 5 years in low-income
countries [130]. For T. gondii, the ID50 is estimated
between 1 and 10 oocysts in rodent models [56]. In
immunocompetent individuals, infections are usually
asymptomatic, resulting in the formation of latent cysts
in tissues and organs throughout the body [182]. Infections
can, however, sometimes led to severe ocular, cerebral, or
multivisceral complications, especially in congenitally
infected infants and in immunocompromized people.
Along with the immunity status of the host, the genetic
type of Toxoplasma is also relevant regarding the
development of clinical disease.

Risk assessment in foods includes four components:
hazard identification, exposure assessment, hazard char-
acterization, and risk characterization [65]. The oocyst
and cyst stages ofCryptosporidium,T. gondii andGiardia
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are now recognized as hazards in some foodstuffs, and data
are available concerning their characterization. Efforts
should now focus on determining exposure assessment.
This step includes the estimation of the presence of
infective protozoa and their amounts in foods along the
food chain. For Cryptosporidium and Giardia (oo)cysts,
exposure assessment is partially addressed through the
species/genotypes and genetic assemblages, respectively.
Indeed, only some species and/or genotypes of Cryptospo-
ridium spp. are pathogenic in humans [167,174]. For G.
duodenalis, only assemblages A and B are responsible for
the vast majority of human infections [206]. In addition to
these taxonomic data, information on the infectivity of
(oo)cysts is also critical to establish the public health
significance of protozoan transmission stages in the
environment. However, the Standard Method now
available for detection of Cryptosporidium and Giardia
in fresh produce [112] is based on immunofluorescence
assay microscopy that does not provide this level of
information, and neither do other methods that are based
on molecular biology detection. These methods have been
used to detect these three protozoa in different types of
food [4,105,151]. Thus, a rapid and efficient method to
distinguish infective (oo)cysts from non-infective (oo)
cysts is needed for exposure assessment. Although both in
vitro and in vivomethods have been developed to evaluate
the viability and infectivity of the (oo)cysts of these
parasites, currently none of these seem to be suitable for
routine application in the water and food industries. In
vitro methods include parasite excystation, fluorogenic
dye inclusion/exclusion coupled with DNA amplification
or not, ability to invade cells and replicate within, reverse
transcriptase-polymerase chain reaction (RT-PCR) of
specific gene targets, and fluorescence in situ hybridization
(FISH). In vivo methods consist of animal infectivity
assays.

This paper aims to describe the different methods
currently available to determine the infectivity and
viability of G. duodenalis cysts, and Cryptosporidium
spp. and T. gondii oocysts. An infectious Giardia cyst is
defined as a viable cyst that is able to release its
trophozoites, which can then multiply under appropriate
culture conditions. An infectious oocyst of Cryptosporidi-
um spp. or T. gondii is defined as a viable (oo)cyst that is
able to excyst and release its sporozoites, which can then
infect host cells and differentiate within into a replicative
stage. In comparison, a viable (oo)cyst is defined as being
alive but not necessarily infective because its tropho-
zoites/sporozoites would fail to replicate in the host or to
cause infection in susceptible cells. The implementation of
these methods in the framework of exposure assessment in
food is also presented according to two main objectives: i)
determining the occurrence of infective parasites in
naturally contaminated samples; and ii) determining the
efficacy of control measures. Advantages and limitations
of each method are described in order to propose an
analytical strategy to address component three of risk
evaluation in foods, i.e. assessing exposure to these
infective parasites.
2 Evaluation of infectivity
2.2 Bioassay

The bioassay method consists of inoculating (oo)cysts
into animals in order to observe an infection. This
represents the gold standard to study (oo)cyst infectivity.
For each parasite, several models and methods are
described. However, as well as being extremely expensive,
the use of animals raises major ethical concerns that
complicate bioassay applications and should be limited.

2.2.1 Cryptosporidium spp.

Animal models, including calves, neonatal mice, pigs
and lambs, have shown that Cryptosporidium spp. and
strains vary in their ability to cause symptomatic
infections in various hosts. Models include drug-immuno-
suppressed and immunodeficient rats [32,179] and mice
(SCID, knockout) [21,38,94,156,177,212,230], pigs [101],
and gnotobiotic piglets [223,224]. However, the relevance
to human infections of infectivity data in animals is
unclear. Neonatal mouse models are becoming the
reference rodent models for the detection of infectious
C. parvum oocysts, allowing the determination of the ID50
or the lowest infectious dose (LID) required to establish
infection. Neonatal BALB/c [11,169] and NMRI suckling
mice [49,227] are considered the most appropriate models
to evaluate C. parvum infectivity, but other models have
been used (e.g., CD-1/ICR [73] and ARC/Swiss [102]). By
standardizing laboratory methods and data analysis,
Korich et al. [128] obtained reproducible results in inter-
laboratory trials usingCD-1 neonatalmice. Themethod to
assess infectivity involves quantifying the number of
oocysts observed in the intestine [73] or in the feces [103].
In terms of sensitivity, for some experiments andmodels, a
single oocyst can be recognized as infectious using this
approach [49,228]. However, because bioassays often use
different animals or strains of neonatal mice, different
strains of C. parvum, and/or different methods to detect
the infection, such studies have often produced contradic-
tory results [188,194]. Most of the animal models are not
susceptible to infection by C. hominis or by the other
species that sporadically infect humans (particularly
immunocompromized individuals) such as C. felis, C.
meleagridis, C. canis and C. cuniculus. The only animal
models, to date, for C. hominis infection are the
gnotobiotic pig model [224,225] and the immunosup-
pressed Mongolian gerbil model [14]. Mouse models allow
identification of infective C. parvum oocysts in water and
shellfish samples, and have been relatively widely used to
determine inactivation efficacy of chemical and physical
treatments in a simplematrix, but also in different types of
food matrices (beverages and solids) (Table 1).

2.2.2 Giardia duodenalis

Few rodent animal models have been described for
the evaluation of the infectivity of human isolates of
G. duodenalis, i.e. genetic assemblages A and B. These



Table 1. Methods to determine (oo)cyst infectivity and their application in exposure assessment.

Methods Parasites Applications

Detection in naturally
contaminated samples

Determination of the efficacy of control measuresa

Bioassays �
Ability of (oo)cysts to
induce infection of
animals

Cp River water [210]
Wastewater [109]
Mussels, clams, oysters,
cockles
[67,69,70,71,88,90,143]

Simple matrixb:
H2O2-based disinfectants [176]
Chlorine dioxide [198]
Ozone [141,187], ozone+monochloramine/+chlorine [27,28]
Salinity: 10, 20 and 30ppt of salt at 10 °C or 20 °C (12w) [68]
UV [11,46,148,154,187,195,198]
US [172]
Pasteurization [99]
Storage 15 °C (9m) [115]
Storage 4 °C and 10 °C (8w) [142]
Storage �10 °C to+35 °C (24w) [68]

Food matrix:
UV � Fresh apple cider [98]
PUV � Raspberries [131]
HHP, e-beam, microwaves � Oysters [42,43]
Heat (steam cooking) � Mussels [91]
Pasteurization � Milk [99]
Storage 6 °C (4w) –Apple [150]

G Wastewater [82,109,140] Simple matrix:
Raw and chlorinated
drinking water [111]

Ozone [74]
UV [37,139,140,154,196]
Gamma irradiation [203]

T Water [12,110,219]
Oysters, mussels [63]

Simple matrix:
Chlorine [222]
Ozone [59,222]
UV [59,220,223]
HHP [145]
Gamma-irradiation [55]
Radiofrequency [221]
Storage �10 °C to 70 °C (up to 54m) [53]
Food matrix:
HHP � Raspberries [146]
Storage 4 °C (up to 8w) � Raspberries and blueberries [126]

Cell culture infection � Cp Wastewater [85]
Water [133,190]

Simple matrix:
Chlorine [15,193], Chlorine dioxide [198], MOS [122]

Ability of (oo)cysts to
invade and infect cells

Ozone [122,187]
UV [83,122,123,186,187,195,198]
Heat 38 °C to 70 °C [193]
Storage 15 °C (9m) [115]
Food matrix:
Organic acids and hydrogen peroxide � Fruit juices [127]

Ch NA Simple matrix:
UV [118]

T NA Simple matrix:
Chlorine [218]
Iodophore-based disinfectants, formalin, acidified ethanol [218]
Ozone [59]
UV [59,223]

a Relevant for water and food industries;
b Simple matrix: water or buffer.
NA: No available data. Cp: C. parvum; Ch: C. hominis; G: Giardia duodenalis; T: Toxoplasma gondii.
H2O2: hydrogen peroxide; MOS: mixed-oxidant solution; UV: ultraviolet; PUV: pulsed-ultraviolet; HHP: high hydrostatic pressure;
US: ultrasound; m: months; w: weeks.
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assemblages are not naturally able to infect mice and rats
[132,232], but inoculation of trophozoites, and not cysts,
can still lead to infection of these animals (only neonatal
ones, however) [41,137].Mongolian gerbils appear to be the
only model enabling the assessment of cyst infectivity and
are also suitable to explore giardiasis symptoms and clinical
resistance [18]. In this model, cyst shedding seems
discontinuous and infection is usually assessed by deter-
mining thepresence of trophozoites in the small intestine by
microscopy 7 to 10days after parasite inoculation [2,137].
G. duodenalis genetic assemblagesA, B and E have all been
used to infect gerbils, although assemblageE is less virulent
[23]. This technique has been applied to evaluate the
efficacy of physical (UV and gamma irradiations) and
chemical (ozone) treatments on cysts in a simple matrix,
and to assess the exposure of humans to infective cysts in
naturally-contaminated samples (Table 1).

2.2.3 Toxoplasma gondii

A review of the relationship between seroprevalence in
the main livestock species and presence of T. gondii in
meat analyzed the data from studies providing a direct
comparison of two or more direct detection methods into a
performance matrix [171]. It was clear from this that the
cat bioassay performs best, followed by the mouse
bioassay. However, the bioassay in cats is performed in
very few laboratories because of the difficulty in
implementing an assay with considerable associated
ethical issues; therefore, Swiss Webster and SCID mice
are the main animal models to assess infectivity of
T. gondii oocysts [54,56,119], SCID mice being the most
sensitive. Mice are tested forT. gondii seroconversion four
weeks post-infection and brain preparations are then
examined for tissue cysts by microscopy [219]. Such
models have been used to evaluate the presence of infective
oocysts in water and shellfish samples (Table 1), and to
estimate infectivity of oocysts in soil [136]. Bioassays were
also successfully used to evaluate the efficacy of different
treatments (e.g., oxidants, UV, high hydrostatic pressure)
and the impact of storage time and temperatures on the
infectivity of oocysts in simple matrices or adhering to the
surface of raspberries and blueberries (Table 1).

To summarize, animal models have been reliably used
to evaluate the exposure of humans to infective parasites
and can be applied to foods. However, thesemethods suffer
from limitations, themajor one being ethical concerns, but
also definition of a suitable animalmodel, lack of reliability
when low numbers are used, and expense (Table 3). These
disadvantages challenge the scientific community to
develop and investigate alternative methods to accurately
assess infectivity.

2.3 Cell culture infection
2.3.1 Cryptosporidium spp.

Investigators have turned to cell cultures as amodel for
Cryptosporidium infection to avoid the problems associ-
ated with animal models. Multiple cell lines support
Cryptosporidium replication, and complete life cycle
development has been established in several of them
[35,214]. Human cell lines are of particular interest, since
they can support the development of C. parvum and C.
hominis parasites. These cell lines are highly relevant for
human infections as oocyst infectivity and dose-response
relationships can easily be studied, and some aspects of
Cryptosporidium pathogenicity, such as cell damage and
barrier permeability, can also be examined. Human
enterocytes HCT-8 are currently the model of choice for
evaluating oocyst infectivity because they are relatively
easy to maintain and support infection with low oocyst
numbers [214].Moreover, the results obtainedwithHCT-8
cell lines have been shown to have a better correlation with
the neonate BALB/c and CD-1 mouse models than those
obtained with Caco-2 and MDCK cell lines [187,198]. A
non-carcinoma, human small intestinal epithelial cell
type, named FHs 74 Int has been described as exhibiting
higher levels of infection susceptibility compared with
other cell types [216]. A recent study described a further
cell line (COLO-680N) as a cell-culture platform that is
easy-to-handle and enables the long-term sustainable
production of infective oocysts at a laboratory scale, and is
presumed will provide a valuable tool for viability
assessment as well as other investigations [159].

Cell cultures can be inoculated with whole purified
oocysts, mixtures of intact and excysted oocysts, and free
or purified sporozoites. Numerous studies have tried to
improve the success of cell culture assays by pre-activation
of oocysts with bile salts [124], improving culture medium
composition [122,213], and favoring sporozoite-host cell
contact by centrifugation before co-culture [125]. Com-
pared with PCR and RT-qPCR [51,133], fluorescent
labeling and enumeration of developing parasitic foci in
cell monolayers is one of the simplest and the most reliable
ways to assess oocyst infectivity [117,190,197]. It has been
shown that an electrical impedance-based device is able to
provide insights on Cryptosporidium development in
HCT-8 cell cultures. By quantifying the magnitude of
the impedimetric response, this device can be used as an
infectivity sensor as early as 12 h post-infection [52]. Cell
culture assays have been reported to achieve a sensitivity
of one single infectious oocyst and are unlikely to be
subject to false-positive results [117]. However, no data are
available for species other thanC. parvum andC. hominis.

Cell-culture assays have been used to assess the
exposure of humans to infective Cryptosporidium spp.
oocysts in various types of environmental water samples
(Table 1), although in the most recent large waterborne
outbreaks of cryptosporidiosis, they do not appear to have
been applied [22,50]. This approach also seems relevant to
assess the efficacy of control measures that can be used in
food industries (i.e. oxidants, organic acids, heating or
storage at 2-8 °C) in simplematrices and in fruit juices, but
it has not been extensively applied in foods (Table 1).

2.3.2 Giardia duodenalis
Two studies have described in vitro cell culture of

G. duodenalis combined with PCR or RT-PCR assay
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[8,84]. However, as Giardia is not an intracellular parasite
and can be successfully cultivated in the absence of other
cells (i.e., axenic culture), the value of such an assay to
assess the infective potential is unclear.

2.3.3 Toxoplasma gondii

Toxoplasma gondii parasites can multiply in virtually
any nucleated cell types; however, only murine L20B
fibroblasts and human foreskin fibroblasts (HFF) cells
have been used to determine the impact of UV, oxidants
and other chemicals on oocysts in simple matrices,
combined with microscopy to detect tachyzoite foci
(Table 1). To date, there seems to have been no
application of this method to food matrices.

In conclusion, cell culture appears to be a good
alternative method to bioassays for those parasites that
are intracellular, showing a good correlation with
infectivity for both Cryptosporidium and T. gondii
oocysts. Thus, this technique has the potential to provide
reliable estimates of exposure to infective protozoa from
field to fork. Nevertheless, application of this method on
complex food matrices has still not been described
(Table 3). Due to its shorter time-to-results than bioassays
and its reported ability to detect as few as one infective
oocyst (C. parvum), this method should be of interest in
prospective occurrence investigations. However, for retro-
spective investigations, when hazards are detected in foods
or in case of foodborne outbreaks, more rapid results are
essential so that contaminated foods can be removed from
the market.

3 Evaluation of viability

Evaluation of viability means determining whether
(oo)cysts are alive. However, living, intact, metabolically
functional (oo)cysts are not necessarily infective, because
their trophozoites/sporozoites can fail to cause infection of
their hosts. Hence, to obtain a reliable assessment of the
exposure of humans to infective parasites, methods to
measure viability are of greatest use if they correlate with
the results from infectivity assays. If such a correlation is
not established, then detection of viable (oo)cysts does not
mean that infective parasites are present, and thus any
riskmay be overestimated. It thus follows, in using such an
assay to determine the efficacy of a treatment process, the
effectiveness of the process may be underestimated or the
process may be wrongly considered non-effective. In
contrast, if false negatives are found, or the method has
a poor recovery performance, the population of infective
(oo)cysts may be underestimated. In these latter cases, the
efficacy of a particular process could be overestimated, and
the subsequent risk posed to the population under-
estimated. In terms of food safety, it is generally
considered preferable to use an assay that may overesti-
mate the risk (and underestimate process efficacy), than
the other way around, as this conservative approach
(“worst-case scenario” approach) ensures that the public
health risk is minimized.
3.1 Changes in morphology and physical properties

Any visible modification in the morphology, wall
integrity, and internal content of the cysts and oocysts
may indicate a loss of viability at the single parasite level.
Cysts and oocysts with shape deformation, openings in
their walls, and/or filled with a granular content with no
evidence of intact sporozoites (C. parvum andT. gondii) or
internal bodies (G. duodenalis), likely represent non-
viable parasites that can be observed microscopically
[215]. Non-invasive methods have been described to
determine the viability of the oocysts and cysts as a
function of their size, morphology and surface electric
charges. For instance, electrorotation is a qualitative
technique that can be used to detect changes in the
morphology and physicochemical properties of micro-
organisms subjected to an electric rotating field. This
approach has been successfully used to investigate the
viability of C. parvum [86,87] and G. intestinalis [47], and
the sporulation state of Cyclospora cayetanensis which is
closely related to T. gondii [47]. More recently, micro-
fluidic devices have been designed to measure the size and
deformability of C. parvum and C. muris oocysts by force
spectroscopy [153]. This method has been reported to
reliably discriminate C. parvum from C. muris oocysts,
and viable from heat-killed C. parvum oocysts based on
the deformability properties of the oocysts. Such methods
could be useful for evaluating the viability of C. parvum
oocysts in environmental samples with low backgrounds,
such as drinking water. However, the use of these methods
has not yet been widely adopted, if at all, and their use in
the framework of exposure assessment in foods has not
been investigated. As the structure and physico-chemical
properties of (oo)cysts may be modified in the environ-
ment, including in food matrices, and following stressing
treatments [160], without affecting viability, it seems
unlikely that electrorotation and other biophysical
methods will develop beyond being research tools.
3.2 Excystation assays

It is generally assumed that parasites able to excyst in
vitro are viable and likely to be infectious. In order to
induce excystation and release of sporozoites (Cryptospo-
ridium and T. gondii) and trophozoites (Giardia), several
treatments have been described that are based upon
mimicking the conditions that the parasite would
encounter in vivo in a susceptible host. Thus, C. parvum
oocysts can be incubated at 37 °C in solutions containing
trypsin with or without sodium taurocholate, or surfac-
tants (sodium dodecyl sulfate) [36,66,178], but excysta-
tion rates can vary depending on the dose, time and pre-
treatment temperature [124]. Pre-treating C. parvum
oocysts with acidic and sodium hypochlorite solutions can
enhance excystation of the sporozoites [36,184]. An
excystation assay has also been described for C. muris
[157]. Due to the additional presence of sporocysts in
T. gondii oocysts, sporozoite excystation first requires
opening of the oocyst wall, which is usually achieved in
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vitro by physical means (sonication or bead beating), then
disruption of the sporocyst wall following incubation in
digestive solution containing bile salts [79]. Standard
protocols for excystation of Giardia trophozoites from
cysts have been available formany decades [25,26,100,181]
and tend to use two sequential steps, a low-pH induction
step (using, for example, acidified saline solutions at pH 2-
2.7, often supplemented with L-cysteine hydrochloride
and glutathione), followed by an excystation step in which
the cysts are exposed to a medium such as trypsin in
Tyrodes solution at pH 8. Bile supplementation may also
be used. However, successful in vitro excystation is
assemblage-dependent, and researchers often struggle to
achieve excystation when working with non-laboratory
adapted field strains [211].

Excystation is measured as the percentage of excysted
(oo)cysts determined by phase contrast microscopy, or
qPCR assays [173]. In order to differentiate between
excystation and “bursting” of the oocysts due to stress, it is
important, for Cryptosporidium at least, that active
sporozoite ratios are also determined. Sporozoites that
have failed to excyst can be visualized inside the oocysts
with a DNA binding dye, such as 4’, 6-diamidino-2-
phenylindole (DAPI) [36]. The excystation method
requires a large number of purified (oo)cysts, and an
insufficient number may occur when investigating natu-
rally contaminated samples. Consistent with this, only one
study reported the use of excystation assays to assess
exposure to infective C. parvum in drinking water
(Table 2). In most studies evaluating the impact of
oxidants or UV on Cryptosporidium and Giardia (oo)
cysts, excystation does not correlate with infectivity
assays (Table 2). Indeed, the ability of the parasites to
excyst does not necessarily mean that the parasites will
complete their development in the host. Thus, excysta-
tion methods overestimate the exposure of humans to
infective parasites, and treatments that do not kill the
parasites but cause them to become no longer infectious
to cells, may have their inactivation credit under-
estimated. However, in contrast, in vitro excystation
may also overestimate inactivation efficacy should
substantial numbers of viable (potentially infectious)
(oo)cysts fail to excyst when subject to a particular
protocol, but nevertheless still remain infective for
animals [108]. The same overestimation could also occur
should excysted sporozoites of C. parvum rapidly lose
their viability in vitro [152].

To conclude, despite there being a good correlation
with the viability measure based on vital dyes exclusion
(PI), excystation assays havemany limitations and cannot
be considered as an appropriate method to assess the risk
of infection associated with exposure to parasites detected
in food (Table 3).

3.3 Viability assays using dyes for live and dead cells

A commonly used approach to assess viability is to use
inclusion and exclusion of specific dyes, often known as
vital dye assays, as colored markers of viability. The dye
inclusion or exclusion can be evaluated by microscopy
(fluorescence microscopy, if the dye used is fluorescent).
As each cell (or parasite) can be coded individually
according to its dye uptake/activation or exclusion, the
assay can be applied to individual parasites or low
numbers. If large numbers of parasites are used, then
flow cytometry or cell sorting can be used [164]. Relatively
few experiments have investigated the use of such dyes for
investigating the viability of Toxoplasma oocysts, and the
double walls of oocysts and sporocysts indicate that
uptake of dyes into these oocysts may be more complex. In
addition, the characteristic autofluorescence occurring
with T. gondii oocysts may act as a confounder [58].

3.3.1 Dye exclusion methods

These methods are based on dyes that can penetrate
selectively into cells that have lost their membrane
integrity and are excluded by live cells, thus these dyes
stain parasites that are dead. Dyes that have been used
successfully for this assessment include non-fluorescent
dyes such as trypan blue [202], and fluorescent dyes such as
eosin, ethidium bromide (EB), ethidium monoazide
(EMA), propidium monoazide (PMA), and propidium
iodide (PI). EB has been extensively used as a DNA
intercalating agent, emitting red fluorescence in the dead
cells [229], as well as PI. EMA and PMA, both similar to
EB and PI respectively, display an azide group, allowing
cross-linkage to DNA upon light exposure, but the
main limit of EMA is that it can penetrate into intact
cells [168].

Trypan blue stain has been used to assess the effect of
household disinfectants on protozoan parasites contami-
nating fresh produce, including Giardia cysts and
Cryptosporidium oocysts, with preliminary results sup-
ported by infection studies [62]. PI has been successfully
applied to assess the viability ofC. parvum oocysts in such
complex food matrices as shellfish [78]. This dye probably
remains the most commonly used and thus, only studies
referring to PI are reviewed in Table 2. Whereas PI assays
have been shown to correlate with in vitro excystation of
C. parvum oocysts [36], and have been widely used in
studies in which natural die off in the environment is
measured, for investigation of the use of oxidants and UV,
PI staining of C. parvum and Giardia (oo)cysts in simple
matrices tends not to correlate with infectivity (Table 2).
This is probably due to the method by which these
decontamination treatments interact with the parasite
DNA.

One major limitation of dye-exclusion approaches is
that a cell can have an intact membrane but will
nevertheless be non-viable. Thus, parasites that are non-
viable but have an intact membrane will not stain with
those dyes. Hence, dye-exclusion technique leads to the
overestimation of the exposure of humans to infective
parasites and to the underestimation of the efficacy of
control measures.



Table 2. Methods to determine (oo)cyst viability and their application in exposure assessment.

Methods Parasites

Applications

Detection in
naturally

contaminated
samples

Agreement
with

infectivity
assays

Determination of the efficacy of control
measuresa

Agreement
with

infectivity
assays

Excystation
Ability of
trophozoites /
sporozoites to escape
from the cysts /
oocysts after
stimulation

Cp Drinking water [80] NA Simple matrixb:
H2O2-based disinfectants [176] –

Chlorine [29], Chlorine dioxide,
Monochloramine [129]

–

Ozone [29,34,73,129] –

Ammonia [116] –

Liming, alum and ferric sulfate floccing
[183]

NA

UV [77,89,123,154,158] �
Freezing [183] NA
Storage at 4 °C and 10 °C (8w) [142] –

Dessication [183] NA
G NA NA Simple matrix:

Vinegar (acetic acid 4%) à 4 °C et 21 °C [45] NA
UV [84] –

Storage at 4 °C (up to 56 d) [25] NA

Vital dye-exclusion
(propidium iodide)
Ability of cells to
exclude the dye
(membrane intact
cells) & staining of
dead cells

Cp Wastewater [6] NA Simple matrix:
Surface water [190] � x H2O2-based disinfectants [176] –

Marine water [191] NA Chlorine [29] –

Drinking water [6] NA Ozone [29,34] –

Cockles, mussels,
clams [90]

NA Ammonia [116]
Liming, alum and ferric sulfate floccing
[183]

–
NA

Oysters [90,191] NA UV [77,89,154,158] +/�
Freeze-thaw [121] NA
Freezing [183] NA
Storage 4 °C and 20 °C (12w) [166] NA
Dessication [183] NA

G Drinking and
wastewater [6]

NA Simple matrix:
UV [37,84,162] –

Gamma radiation [203] –

Storage 4 °C (up to 56 d) [24] NA

RT-PCR
Ability of cells to
produce mRNA

Cp NA NA Simple matrix:
H2O2 [hsp70] [144] NA
Chlorine, Chlorine dioxide, MOS [hsp70,

b-tubulin] [15,97]
–

Ozone [hsp70] [97] NA
Ammonia [hsp70] [144] NA
Heat 60 °C to 95 °C [hsp70] [97,209] –

Freeze [hsp70] [97] NA
Storage 15 °C (9m) [cpag] [114,115] +/�
Storage 4 °C (48m) [hsp70] [144] NA
Storage RT and 4 °C (20 to 39w)

[b-tubulin] [226]
+

Food matrix:
Storage 4 °C (8 d) � Basil [hsp70] [104] NA

G Wastewater [17,24] NA Simple matrix:
Heat 60 °C to 95 °C [b-giardin] [209] –

Food matrix:
Storage 4 °C (8 d) � Basil [b-giardin] [104] NA
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Table 2. (continued).

Methods Parasites

Applications

Detection in
naturally

contaminated
samples

Agreement
with

infectivity
assays

Determination of the efficacy of control
measuresa

Agreement
with

infectivity
assays

T NA NA Simple matrix:
Chlorine-based disinfectant [sporoSAG,

ACT1] [218]
+

Acidified ethanol and iodophore-based
disinfectant

+

[sporoSAG, ACT1] [218]
Formalin [sporoSAG, ACT1] [218] –

UV [sporoSAG, ACT1] [223] –

Heat 60 °C to 80 °C [sporoSAG, ACT1]
[209,218]

–

Food matrix:
Storage 4 °C (8 d) � Basil [sporoSAG] [104] NA

FISH
Ability of cells to
produce rRNA

Cp Water [138]
Oysters [93]

NA
NA

Simple matrix:
Gamma irradiation [185]

NA

Storage 15 °C (9m) [93] –

G Water [138] NA NA NA

PMA-PCR
Ability of cells to
exclude PMA
(membrane intact
cells) & no
mplification in dead
cells

Cp Water [149] NA Simple matrix:
H2O2 [144] NA
Ammonia [144] NA
Heat 70 °C [33] NA
Storage at RT (14m) [33] NA
Storage 4 °C (up to 48m) [hsp70] [144] NA

G Water [149] NA NA NA
a Relevant for water and food industries;
b Simple matrix: water or buffer.
NA: No available data. Cp:C. parvum; G:Giardia duodenalis; T:Toxoplasma gondii.
H2O2: hydrogen peroxide; UV: ultraviolet; RT: room temperature; m: months; w: weeks; d: days.
(�): no agreement with infectivity assays means that: i) viability and infectivity assays are not concordant (i.e. viability (+) and
infectivity (�), and conversely (rarely)); ii) and/or lower inactivation levels or no inactivation are measured by viability assays
compared to infectivity assays.
(+): viability and infectivity assays are concordant.
(+/�): agreement with infectivity varies according to studies
x: 12/15 samples showed no correlation with cell culture assays.
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3.3.2 Dye inclusion/exclusion methods

In order to overcome some of the deficiencies of the dye
exclusion technique, inclusion-exclusion methods have
been developed in which viable cells, as well as excluding
specific dyes, also include specific dyes, and the dyes are
used simultaneously in an inclusion-exclusion assay. One
approach is to incubate cells with a non-fluorescent dye.
These diffuse into living cells and then, following cleavage
by intracellular enzymes present only in live cells, a
fluorescent molecule is produced which is then detected.
One such dye is fluorescein diacetate (FDA), which is
nontoxic for many cell types [189], and is a substrate for a
cell-permanent esterase leading to the production of
fluorescein, which accumulates in live cells only if their
membrane is intact, and exhibits green fluorescence when
excited by blue light, indicating a viable cell. This was
suggested to be used in conjunctionwithPI as an exclusion-
inclusion assay for Giardia muris cysts, as a model for G.
duodenalis [192]. Unfortunately, however, further investi-
gation revealed that G. duodenalis cysts that stained with
PI could also often stain with FDA [199], presumably
because of the enzyme remaining active despite the cyst
itself no longer being viable. A similar approach has also
been followed with the redox dye 5-cyano-2,3-ditolyl
tetrazoliumchloride (CTC), that should only showstaining
when the respiratory electron transport system (ETS)
shows activity (i.e., the parasite is viable). Although initial
studies provided promising results [113], the same type of
problem of activity even in dead cells is likely to limit the
usefulness of this approach. An alternative approach to
these non-fluorescent dyes is the use of dyes that
are nuclear intercalates such as SYTO-9, SYTO-17,
SYTO-59-64 and hexidium, and DAPI. SYTO-dyes seem



Table 3. Advantages and limitations of the techniques used to assess infectivity and viability.

Methods Parasites Advantages Limitations
Bioassays

[I]
Cp & Ch / G / T - Requires a single (oo)cyst

- Application on complex food matrices
- Reliable exposure assessment of humans
to infective protozoa.
� Reliable assessment of inactivation
efficacy

- Ethical concerns
- Expensive method and labor intensive
- Lack of reliability with low numbers of (oo)cysts
- Discrimination of large but not fine differences
between treatments
- Long time-to-results (one week minimum)

Cell Culture
[I]

Cp & Ch / T - Correlation with bioassays
- Requires a single (oo)cyst
- Reliable exposure assessment of humans
to infective protozoa
- Reliable assessment of inactivation
efficacy

- Lack of standardized assays
- Medium (48/72h) to long (10 days) time to
results
- Not applicable to Giardia
- No application on complex food matrices

Methods based on
morphology and

physical properties
[V]

C / G - Correlation between electrorotation and
PI exclusion method
- Rapid
- Require a single (oo)cyst

- Require purified (oo)cysts
- No data on viability relative to infectivity
measure
- No application in exposure assessment in food

Excystation
[V]

C / G / T - Correlation with PI exclusion method
- Rapid
- Non-expensive

- Requires large numbers of purified (oo)cysts
- Variable excystation rate
- Over/underestimation of the exposure of
humans to infective protozoa*

- Over/underestimation of inactivation efficacy*

- No application on complex food matrices

Vital dye exclusion
[V]

C / G / T - Correlation with excystation for PI
dye (C)
- Rapid and relatively simple
- Non-expensive
- Requires a single (oo)cysts
- Application on complex food matrices

- Requires purified (oo)cysts
- Few applications for T. gondii
- Overestimation of the exposure of humans to
infective protozoa*

- Underestimation of inactivation efficacy*

RT-PCR
[V]

C / G / T - Rapid
- Identification of (oo)cysts of human
health significance
- Easy to standardize
- Requires low numbers of (oo)cysts
- Application on complex food matrices

- Limit of detection variable depending on
matrices
- Overestimation of the exposure of humans to
infective protozoa*

- Underestimation of inactivation efficacy*

FISH
[V]

C - Rapid
- Non-expensive
- Requires a single (oo)cysts

- Requires purified (oo)cysts
- Overestimation of the exposure of humans to
infective protozoa*

- Underestimation of inactivation efficacy*

- No application on complex food matrices

NASBA
[V]

C - Correlation with PI exclusion method
- Rapid
- Non-expensive
- Requires low numbers of (oo)cysts

- Overestimation of the viable population
- Non-quantitative
- No data on viability relative to infectivity
measure
- No application in exposure assessment in food

PMA-PCR
[V]

C - Rapid
- Requires low numbers of (oo)cysts
- Can be coupled to genotyping
- Easy to standardize

- Overestimation of the viable population
- No data on viability relative to infectivity
measure
- No application in exposure assessment in food

[I]: infectivity. [V]: viability. C: Cryptosporidium spp.; Cp: C. parvum; Ch: C. hominis; G:Giardia duodenalis; T: Toxoplasma gondii.
* Based on the comparison of viability relative to infectivity.
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to provide viability assay results that correlate with the
infectivity of C. parvum oocysts to CD-1 mice but not to
excystation assays [19,20,165] assessing the efficacy of
oxidants, UV and thermal treatments. That said, recent
experiments have shown that of seven SYTO dyes
investigated, all were more likely to stain dead Cryptospo-
ridium oocysts than live oocysts [208], indicating some
degree of confusion around use of vital dye stains.
In conclusion, there is considerable confusion and
potential for subjectivity regarding dyes used for inclu-
sion. Vital dye exclusion overestimates the exposure of
humans to infective protozoa, suggesting that this
technique may not be appropriate for exposure assess-
ment. However, given its applicability to foods, its
suitability for low numbers of parasites, and its cost-
effectiveness, among others advantages (Table 3), it may
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provide initial results, particularly when investigating
whether individual parasites identified on fresh produce
are potentially infectious or whether a treatment is
efficient to kill (oo)cysts.

3.4 Molecular methods
3.4.1 RNA-based methods

3.4.1.1 Reverse Transcriptase-PCR (RT-PCR)

RT-PCR techniques are emerging as alternatives to
the use of vital dyes for evaluating viability. These
methods are based on the production of mRNA in cells
that are metabolically functional and active, and hence
considered as viable.

3.4.1.1.1 Cryptosporidium parvum

For Cryptosporidium oocysts, RT-PCR assays target-
ing the hsp70 gene have been described as being highly
sensitive. Indeed, the level of hsp70 mRNA can be
enhanced by heating. This allows increasing the sensitivity
especially when working on initial low levels of mRNA or
in complex matrices [81]. Other targets have also been
described, such as genes encoding b-tubulin [226],
amylogluconidase [114], COWP, CP2 or 18S rDNA
[135]. However, 18S rRNA remains stable for a prolonged
period (up to at least 48 h) in heat-killed oocysts, and
hence is not a good marker of viability [76,135]. RT-PCR
was used to assess the efficacy of temperature and
chemicals on Cryptosporidium oocysts in simple and
complex matrices (Table 2). However, correlation with
infectivity seems to depend on the applied treatments and
the targeted mRNA: b-tubulin mRNA production was
reported to correlate with oocyst infectivity after long-
term storage at cold and room temperatures but not
following oxidant treatments, while hsp70mRNA produc-
tion correlated with cell culture assays in oocysts
submitted to oxidants, but not to heat treatment
(Table 2).

3.4.1.1.2 Giardia duodenalis

The hsp70 gene has also been described for the
detection of viable Giardia cysts in simplex assays
[1,134], but also in duplex RT-PCR with C. parvum
[163]. Other targets such as ef1a, adhe and b-giardin
mRNAs have been used, the latter being the most suitable
to study the viability of Giardia cysts in environmental
samples (Table 2). However, b-giardin mRNA RT-PCR
assays have been shown to detect viable but non-infectious
cysts following heat treatments, indicating that this
method underestimates the efficacy of these treatments
(Tables 2 and 3).

3.4.1.1.3 Toxoplasma gondii

To estimate the viability of T. gondii oocysts, RT-
PCR assays targeting two genes have been described:
SporoSAG, which is highly expressed in the sporulated
oocyst, and act1 expressed in both sporulated and
unsporulated oocysts [218]. As previously described for
Cryptosporidium, correlation of RT-PCR with infectivity
assays appears variable according to the applied treat-
ments, with good agreement following chlorine- and
iodine-based disinfectants, and acidified-ethanol, but
not after heating or exposure to formalin or UV (Table 2).

To summarize, the RT-qPCR technique is rapid,
sensitive, and can directly assess the likelihood for a
human to be infected by detected protozoa. However,
although mRNA is the least stable nucleic acid, compared
with rDNA, tRNA and rRNA, it can nevertheless persist
for a long time after the death of the parasites, even in non-
favorable conditions. This has recently been described for
mRNA from dead Plasmodium ookinetes that remained
detectablemore than 24 h inside themosquitomidgut [96].
Hence, RT-qPCR assays can overestimate the number of
viable and potentially infectious (oo)cysts, and conse-
quently will overestimate the exposure of humans to
infective parasites andunderestimate the efficacy of control
measures (Table 3).However, thismethodcanbeuseful as a
first step of screening of different treatments applied to
complex matrices to benchmark inactivation potential.

3.4.1.2 Fluorescence in situ hybridization (FISH)

The fluorescence in situ hybridization (FISH) method
consists in targeting a nucleic acid sequence using a
specific synthetic fluorescent oligonucleotide probe. rRNA
is considered to be the ideal viability target for several
reasons: (i) high sensitivity; (ii) short half-life (although as
described in 3.4.1.1, in parasites the half-life is longer); (iii)
present in high copy number in viable cells [9]. Hence, a
FISH ’positive’ signal depends on the amount of target
rRNAs present in a cell, the longevity of that target within
the cell and accessibility for probing, the fluorescence
intensity of bound probe and the presence of RNases.
Probes targeting different regions of the 18S rRNA specific
to C. parvum, C. hominis and G. duodenalis have been
described for the detection of viable (oo)cyst [5,48,92,217].
The FISH technique is described as a rapid and cheap
method, with a fast time-to-result (3 hours), enabling the
specific simultaneous visualization of one or more viable
(oo)cyst species [92,138]. Nevertheless, it remains scarcely
used in surveys (Table 2). Although in some studies FISH
assays have shown correlation with in vitro excystation of
C. parvum oocysts [217], this is not always the case and no
agreement with infectivity assays has been observed [115].
Furthermore, rRNA is able to persist for 6 days after C.
parvum oocyst heat treatment, presumably because it is
protected within the oocyst [200], and consistent with this,
gamma-irradiated oocysts of Cryptosporidium have been
shown to give a positive FISH signal while being dead
(Table 2). Thus, this method cannot be considered as a
reliable measure to assess the exposure of humans to
infective (oo)cysts and the inactivation efficacy of treat-
ments (Table 3).
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3.4.1.3 Nucleic Acid Sequence-Based Amplification
(NASBA)

Nucleic acid sequence-based amplification (NASBA) is
an isothermal and sensitive technique for amplification of
RNA targets that has been described for many micro-
organisms and has recently been reviewed [106]. This
method can detect viable cells through selective amplifi-
cation of mRNA, even in a background of genomic DNA.
Compared with RT-qPCR techniques, amplification is
performed at a single temperature (41 °C), and conse-
quently does not need thermal cycling equipment. The
detection of products of NASBA reaction is quite labor-
intensive including ethidium bromide-stained agarose gel
electrophoresis, which requires a confirmatory step by
probe hybridization, enzyme-linked gel assays, electro-
chemiluminescence (ECL) detection and fluorescence
correlation spectroscopy. MIC1 and hsp70mRNAs have
been described as target molecules for Cryptosporidium
oocysts [13,107]. This method has been shown to correlate
with the PI exclusion method [44] and to be suitable to
detect viable C. parvum oocysts in spiked environmental
waters, in the presence of organic, inorganic and biological
contaminants, and with detection limit below ten viable
oocysts per analyzed sample [13]. However, oocysts that
had been killed by exposure to sodium hypochlorite,
freeze-thawing or boiling were also detected, indicating
again the stability of the RNA and the lack of suitability of
this method for detecting only viable oocysts; indeed,
freeze-thawing seemed to give an even stronger NASBA
signal [107]. To date, no study describes the use of this
method to evaluate the occurrence of parasites in naturally
contaminated samples and to assess the efficacy of
industrial processes on the protozoan parasites, and no
such assays have been proposed for T. gondii or G.
duodenalis.

In conclusion, because of the stability of mRNA for
extended periods in oocysts that have been experimentally
inactivated (e.g., after heating, freeze-thawing or chemical
treatments), it is clear that this technique detects both live
and dead oocysts. Moreover, although quantitative
NASBA has been described, the cell concentration seems
not to be reliable, and thus this method is unsuitable for
inactivation studies. Therefore, this technique appears not
to be appropriate for exposure assessment in food
(Table 3).

3.4.2 DNA-based methods: EMA/PMA PCR

Combination of viability dyes like EMA and PMA
with PCR has been developed to study the viability of
different foodborne pathogens [231]. As described in the
“dyes” section (3.3.1), the use of EMA and PMA in
viability assessment is based on the impermeability of live
cells to both dyes that penetrate damaged and permeable
cell (considered as non-viable) only. Once inside the
nucleus, EMA and PMA can be photoactivated, which
leads to their covalent binding to DNA and prevents PCR
amplification in non-viable cells [30,75]. Thus, a PCR
signal should be obtained only for viable cells (i.e. non-
damaged and non-permeable cells). However, in contrast
with PMA, EMA has been described as able to penetrate
into viable cells due to the variability of cell membrane
structure and of active membrane transport efficacy
[75,168]. EMA is also considered more toxic than PMA
and this toxicity is time and temperature dependent [75].
Hence, PMA should lead to better discrimination of viable
cells than EMA.

PMA-PCR and PMA-qPCR targeting the hsp70,
COWP and 18S rRNAencoding genes have been described
for Cryptosporidium oocysts [3,7,33,144]. For Giardia,
PMA-qPCR based on the detection of the b-giardin gene
has been shown to be able to quantify viable cysts in
artificially contaminated wastewater samples accurately.
This target has appeared as more effective than the
triosephosphate isomerase (tpi) and glutamate dehydro-
genase (GDH) genes [7]. In this study, the authors have
also shown that the longer the amplicon, themore effective
the exclusion of dead cysts. Comparison with infectivity
assays has not been performed, and PMA-qPCR appears
not to correlate with RT-qPCR data (unpublished data).
Only a few studies have described the use of PMA-PCR to
identify viable parasites in naturally contaminated water
samples, and to assess the efficacy of chemicals and
temperature on Cryptosporidium oocysts and Giardia
cysts (Table 2). Up to now, no study has described PMA-
qPCR applied to T. gondii. However, the ability to
specifically detect viable protozoa seems to depend on the
applied treatment and is impaired in complex samples
(unpublished data). Thus, this technique may overesti-
mate the exposure to infective protozoa.
4 Conclusion

To date, only techniques allowing infectivity evalua-
tion are able to provide a reliable assessment of the
exposure of humans to protozoa in food (Table 3). They
can even be sufficiently sensitive to detect low levels of
contamination and directly address the likelihood that
individuals will be infected by consumption of contami-
nated food. On the one hand, bioassays can be directly
applied to food samples but they suffer from major ethical
concerns; additionally they are restrictive, expensive, and
implementation is complex, with prolonged time-to-
results. Hence, bioassays are not suitable for routine
analysis for control measure verifications or any surveys
intended to assess the global exposure of consumers. On
the other hand, cell cultures can produce results more
rapidly (but still 2 to 10 days), and this method could be
more available and appropriate for routine laboratories
(but still requiring specific skills, including long-term cell
culture). However, it requires purified (oo)cysts, which
can be challenging to obtain when working on food
matrices. Both methods produce reliable inactivation
data, but some authors have suggested that bioassays and
cell culture may be able to highlight only substantial
inactivation.
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Most techniques assessing (oo)cyst viability appear to
overestimate the occurrence of infective parasites and
subsequent exposure of humans along the food chain.
When used for investigating the efficacy of control
measures, they tend to underestimate their inactivation
efficacy (Table 3). RNA-amplification based assays (RT-
PCR, NASBA) are interesting alternative techniques
because they can be standardized and may be suitable for
routine analyses of food samples (implementation and
results interpretation). Moreover, being a quantitative
approach, RT-qPCR allows the definition of viability
reduction levels. However, these positive aspects are
undermined by the apparent and clear stability of RNA
within parasites, such that dead parasites are likely to be
considered viable, overestimating exposure of humans to
infective parasites and underestimating the efficacy of
control measures. Although PMA-PCR seems to be an
exciting and relevant technique, unfortunately it is only
limited to simple matrices and to the evaluation of control
measures that would permeabilize the (oo)cysts and allow
the dye to penetrate. Excystation assays provide an active
measure of activity and the effect of an intervention, but
require clean suspensions and high numbers of parasites to
be of any use. Their application beyond experimental
studies of Cryptosporidium oocysts seems limited, and
they are not easy to standardize in routine laboratory
analyses. Although vital dye assays have considerable
limitations, particularly with respect to overestimation of
viability due to membrane impermeability not necessarily
correlating with viability, and the subjectivity of any
microscopy-based technique, their simplicity, cost-effec-
tiveness, and potential for application to low parasite
numbers may make them useful for initial screening
purposes � both with regard to assessing infection
potential of contaminant parasites and investigating
treatment effects. However, results should always be
backed up with another technique, and their disadvan-
tages should not be overlooked.

To conclude, none of the techniques currently
available appear to be entirely suitable for reliable
assessment of the exposure of humans to infective
protozoa in food or for routine verifications of control
measures. In order to be able to produce data to refine
exposure and subsequently better characterize the risk, we
suggest that two actions should be carried out in parallel:

–
 i) Determine initial levels of contamination using DNA-
based assays: these are known to be sensitive enough for
detecting low quantities of parasites, are easy to
standardize, and are accessible for routine analyses.
Although false positives are not expected, their potential
should not be overlooked due to the occurrence of “loose”
target DNA, without the actual organism being present.
These methods overestimate the exposure to infective
parasites by detecting all populations of (oo)cysts (i.e.
live and infectious, live and non-infectious, dead), and
therefore will give the maximum occurrence and level of
contamination for a given matrix. For Cryptosporidium
and Giardia, determination of the species and the
genetic assemblages respectively, is part of the exposure
assessment. These important taxonomic details can be
determined by DNA-based assays and directly address
the infectious potential for humans.
–
 ii) Characterize the efficacy of treatments in place to
control parasites using a combination of techniques.
Simple vital dye inclusion/exclusion methods may be
the preliminary approach, providing initial data on the
inactivation potential of different treatments. To
determine inactivation levels, which are the reference
measure for food operators (log10 viability reduction),
RT-qPCR-based assays could be applied. They will
overestimate the level of infective protozoa (quantifica-
tion of live and infectious, live and non-infectious, and
possibly dead (oo)cysts), leading to an underestimation
of the efficacy of the treatments. But this action will
allow the determination of the “worst case scenario” for a
specific combination food/process, providing at the
same time, confidence that when a target inactivation is
reached, higher inactivation occurs in reality. Cell
culture methods are improving in applicability, and, as
imaging techniques become more accessible and cheap,
will be of value in assessing invasion of cell cultures.
Appropriate infectivity assays (bioassays), should be
minimized for ethical and operational reasons, but can be
used to confirm results obtained by in vitro assays.

All viability assays are based on evaluation of distinct
physiological parameters that could vary depending on the
applied treatments, the protozoa in question, and their
original physiological state. Hence, future research should
focus on the characterization of the effect of inactivation
methods on the structure and the metabolism of (oo)cysts
to be able to select and develop suitable techniques for
infectivity measurement.
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