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Expression of GABAA a2-, b1- and e-receptors are altered
significantly in the lateral cerebellum of subjects with
schizophrenia, major depression and bipolar disorder
SH Fatemi1,2,3, TD Folsom1, RJ Rooney4 and PD Thuras5

There is abundant evidence that dysfunction of the g-aminobutyric acid (GABA)ergic signaling system is implicated
in the pathology of schizophrenia and mood disorders. Less is known about the alterations in protein expression of GABA receptor
subunits in brains of subjects with schizophrenia and mood disorders. We have previously demonstrated reduced expression of
GABAB receptor subunits 1 and 2 (GABBR1 and GABBR2) in the lateral cerebella of subjects with schizophrenia, bipolar disorder and
major depressive disorder. In the current study, we have expanded these studies to examine the mRNA and protein expression
of 12 GABAA subunit proteins (a1, a2, a3, a5, a6, b1, b2, b3, d, e, g2 and g3) in the lateral cerebella from the same set of
subjects with schizophrenia (N¼ 9–15), bipolar disorder (N¼ 10–15) and major depression (N¼ 12–15) versus healthy controls
(N¼ 10–15). We found significant group effects for protein levels of the a2-, b1- and e-subunits across treatment groups.
We also found a significant group effect for mRNA levels of the a1-subunit across treatment groups. New avenues for treatment,
such as the use of neurosteroids to promote GABA modulation, could potentially ameliorate GABAergic dysfunction in these
disorders.
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INTRODUCTION
g-Aminobutyric acid (GABA) is the main inhibitory neurotransmit-
ter in the brain and regulates multiple processes during
the brain development. Approximately 20% of all central nervous
system neurons are GABAergic.1 Hypofunction of the GABAergic
signaling system has been hypothesized to contribute to
the pathologies of schizophrenia, bipolar disorder and major
depressive disorder.2–5 Multiple laboratories have demonstrated a
number of dysfunctions of the GABAergic signaling system
in these disorders, including: (1) altered expression of glutamic
acid decarboxylase 65 and 67 kDa proteins,6–8 the enzymes
that convert glutamate to GABA; (2) microarray results that
have demonstrated increased mRNA for a number of GABA(A)
(GABAA) receptor subunits in prefrontal cortex (PFC) of subjects
with schizophrenia;9–11 and (3) gene association studies that
link GABA receptor subunits to schizophrenia and mood
disorders.12–14

Structural and functional abnormalities of the cerebellum have
been described for schizophrenia, depression and bipolar
disorder, including reduced cerebellar volumes.15–17 Reduced
cerebellar activation has also been observed in functional
imaging studies of subjects with these disorders.18–23 There is
abundant evidence that the cerebellum has roles in cognition and
emotion.15,20,24 Circuits connecting the cerebellum with other
brain regions, such as the cortico-thalamic-cerebellar-cortical
circuit, which may monitor execution of mental activity, have
also shown disruption in schizophrenia.24–27

There is also evidence of GABAergic hypofunction in the
cerebella of subjects with schizophrenia and mood disorders.6

Glutamic acid decarboxylase 65 and 67 kDa proteins have been
shown to be reduced in the lateral cerebella of subjects
with schizophrenia, bipolar disorder and major depressive
disorder.6 In the granule cell layer of the cerebellum, Bullock
et al.28 found reduced mRNA for glutamic acid decarboxylase
65 and 67 kDa along with increased expression of mRNA for
GABAA receptor a6- and d-subunits. Finally, reduced protein
expression of GABAB receptor subunits 1 and 2 (GABBR1
and GABBR2) has been observed in the lateral cerebella of
subjects with schizophrenia, bipolar disorder and major
depression.29

Although there have been some mRNA studies of GABAA

receptor expression in subjects with schizophrenia,28,30–33 there is
a paucity of data regarding GABAA receptor protein expression in
schizophrenia, bipolar disorder and major depressive disorder.
Here we expand our previous work on the GABAergic signaling
system in these disorders to investigate protein expression of 12
additional GABAA receptor subunits: GABRa1, GABRa2, GABRa3,
GABRa5, GABRa6, GABRb1, GABRb2, GABRb3, GABRd, GABRe,
GABRg2 and GABRg3. On the basis of our finding of significantly
reduced GABAB receptor subunits in the lateral cerebella,29

we hypothesized that we would observe reduced expression
of multiple GABAA receptor subunits in the same brain region
of subjects with schizophrenia, bipolar disorder and major
depression.
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MATERIALS AND METHODS
Brain procurement
The Institutional Review Board of the University of Minnesota School of
Medicine has approved this study. Post-mortem cerebella (lateral posterior
lobe) were obtained from the Stanley Foundation Neuropathology
Consortium under approved ethical guidelines. Diagnostic and Statistical
Manual of Mental Disorders, fourth edition diagnoses were established
before death by neurologists and psychiatrists by using information from
all available medical records and from family interviews. Details regarding
the subject selection, demographics, diagnostic process and tissue
processing were collected by the Stanley Medical Research Foundation.
The collection consisted of 9–15 subjects with schizophrenia, 10–15
subjects with bipolar disorder, 12–15 with major depression without
psychotic features and 10–15 normal controls (Table 1). All groups were
matched for age, sex, race, post-mortem interval and hemispheric side
(Table 1).

SDS-polyacrylamide gel electrophoresis and western blotting
Brain tissue was prepared as previously described.29,34–38 Thirty
micrograms of the lateral cerebellum was used per lane. For all
experiments, we used 10% resolving gels and 5% stacking gels. To
minimize interblot variability, we included samples from subjects with
schizophrenia, bipolar disorder, major depression and healthy controls on
each gel, and all samples were run in duplicate. Samples were
electrophoresed for 15 min at 75 V, followed by 60 min at 150 V. Samples
were then electroblotted onto nitrocellulose membranes for 2 h at
300 mAmp at 4 1C. Blots were blocked with 0.2% I-Block (Tropix, Bedford,
MA, USA) in phosphate-buffered saline supplemented with 0.3% Tween 20
for 1 h at room temperature followed by an overnight incubation in
primary antibodies at 4 1C. The primary antibodies used were anti-GABRa1
(06–868; Millipore, Temecula, CA, USA; 1:1000), anti-GABRa2 (GAA21; Alpha
Diagnostic International, San Antonio, TX, USA; 1:500), anti-GABRa3
(GAA31; Alpha Diagnostic International; 1:1000), anti-GABRa5
(AB10098; Abcam, Cambridge, MA, USA; 1:500), anti-GABRa6 (AB5610;
Millipore; 1:250), anti-GABRb1 (AB9680; Millipore; 1:500), anti-GABRb2
(AB5561; Millipore; 1:500), anti-GABRb3 (ab98968; Abcam; 1:5000), anti-
GABRd (AB37396; Abcam; 1:500), anti-GABRe (ab35971; Abcam; 1:1000),
anti-GABRg2 (NB-300-192; Novus Biologicals, Littleton, CO, USA; 1:500),
anti-GABRg3 (NB100-56662; Novus Biologicals; 1:500), anti-neuronal
specific enolase (NSE) (ab16808; Abcam; 1:2000) and anti-b actin (A5441;
Sigma Aldrich, St Louis, MO, USA; 1:5000). Following primary antibody
incubation, blots were washed for 30 min in phosphate-buffered saline

supplemented with 0.3% Tween 20 for 30 min at room temperature, and
were subsequently incubated in the proper secondary antibodies.
Secondary antibodies were goat anti-rabbit IgG (A9169; Sigma Aldrich;
1:80 000) or goat anti-mouse IgG (A9044; Sigma Aldrich; 1:80 000). Blots
were probed together (three to four gels per experiment). Following
secondary antibody incubation, blots were washed twice in phosphate-
buffered saline supplemented with 0.3% Tween 20 for 15 min each. The
immune complexes were then visualized using the ECL Plus detection
system (GE Healthcare, Buckinghamshire, UK) and exposed to CL-Xposure
film (Thermo Scientific, Rockford, IL, USA). The molecular weights of
B58 kDa (GABRb3, upper band), 56 kDa (GABRb3 lower
band), 55 kDa (GABRa3, GABRb1), 52 kDa (GABRa5, GABRb2), 51 kDa
(GABRa1, GABRa2, GABRd, GABRg3), 50 kDa (GABRa6), 46 kDa (NSE),
45 kDa (GABRe, GABRg2) and 42 kDa (b-actin) immunoreactive bands
were quantified with background subtraction using a Bio-Rad (Hercules, CA,
USA) densitometer and Quantity One software (Bio-Rad). The molecular
weight of GABRb3 has been reported previously as anywhere from 52 kDa
to 58 kDa.34,35,39–43 Using Abcam antibody ab98968, we obtained a doublet
of 56 kDa and 58 kDa, similar to results obtained by Bureau and Olsen40

who identified a doublet of 55 kDa and 58 kDa. For this study, we decided
to measure both bands. Sample densities were analyzed, blind to nature of
diagnosis. Results obtained are based on at least two independent
experiments.

Quantitative real-time PCR
Quantitative real-time PCR analysis was performed as previously
described.37 Raw data were analyzed as previously described,37 using
the Sequence Detection Software RQ Manager (ABI, Foster City, CA, USA),
whereas relative quantitation using the comparative threshold cycle
(CT method) was performed in a Bioconductor using the ABqPCR package
in Microsoft Excel (ABI Technote#2: Relative Gene Expression Quantitation).
Calculations were done assuming that 1 delta Ct equals a twofold
difference in expression. Significance values were determined using
unpaired Student’s t-tests. The probe IDs used were as follows: (1)
GABRA1 (GABRa1): Hs0068058-m1; (2) GABRA2 (GABRa2): Hs00168069-m1;
(3) GABRA3 (GABRa3): Hs00968132_m1; (4) GABRA5 (GABRa5):
Hs00181291-m1; (5) GABRA6 (GABRa6): Hs00181301_m1; (6) GABRB1
(GABRb1): Hs00181306_m1; (7) GABRB2 (GABRb2): Hs00241451_m1; (8)
GABRB3 (GABRb3): Hs00241459-m1; (9) GABRD (GABRd): Hs00181309_m1;
(10) GABRE (GABRe): Hs00608332_m1; (11) GABRG2 (GABRg2):
Hs00168093_m1; (12) GABRG3 (GABRg3): Hs00264276-m1; (13)
b-actin: Hs99999903_m1; and (14) glyceraldehyde 3-phosphate
dehydrogenase: Hs99999905_m1.

Table 1. Demographic information for the four diagnostic groups

Bipolar Depression Control Schizophrenia F or w2-test P-value

Age 42.33 (11.72) 46.53 (9.31) 48.07 (10.66) 44.53 (13.11) 0.73 0.54
Sex 6 F, 9 M 6 F, 9 M 6 F, 9 M 6 F, 9 M 0 1.0
Race 14 W, 1 B 15 W 14 W, 1 B 12 W, 3 A 14.7 0.10
PMI 32.53 (16.12) 27.47 (10.73) 23.73 (9.95) 33.67 (14.62) 1.85 0.15
pH 6.18 (0.23) 6.18 (0.22) 6.27 (0.24) 6.16 (0.26) 0.60 0.62
Side of brain 7 L, 8 R 9 L, 6 R 7 L, 8 R 9 L, 6 R 0.85 0.84
Brain weight 1441.2 (171.5) 1462 (142.1) 1501 (164.1) 1471.7 (108.2) 0.42 0.74
Family history 0.93 (0.8) 0.73 (0.46) 0.13 (0.52) 1.13 (0.83) 29.84 0.0001
Suicidal death 9 (5 Violent) 9 (4 Violent) 0 6 (2 Violent) 15.9 0.014
Drug/alcohol history 0.8 (0.77) 0.4 (0.63) 0.33 (0.72) 0.53 (0.74) 6.42 0.38
Age of onset 21.47 (8.35) 33.93 (13.29) — 23.2 (7.96) 3.61 0.001
Duration 20.13 (9.67) 12.67 (11.06) — 21.67 (11.24) 0.034 0.86
Severity of substance abuse 1.93 (1.98) 1.07 (1.98) 0.13 (0.52) 1.20 (1.86) 2.82 0.046
Severity of alcohol abuse 2.27 (1.98) 1.8 (2.01) 1.07 (1.03) 1.47 (1.59) 1.34 0.27
Fluphenazine (lifetime) 20,826.67 (24,015.96) — — 52,266.67 (62,061.57) 3.35 0.078
Alcohol dependence 13.3% 13.3% 0% 0% 4.29 0.23
Alcohol abuse 6.7% 6.7% 0% 0% 1.05 0.79
Substance dependence 6.7% 0% 0% 6.7% 2.07 0.56
Substance abuse 20.0% 6.7% 0% 6.7% 4.15 0.25
Antidepressant use 53.3% 60.0% 0% 33.3% 14.1 0.003

Abbreviations: A, Asian; B, Black; F, female; L, left; M, male; PMI, postmortem interval; R, right; W, Whites.
Rating scale for drug/alcohol history: 0, never; 1, current; 2, past. Rating scale for severity of substance abuse: 0, little/none; 1, social; 2, moderate use/past; 3,
moderate use/present; 4, heavy use/past; 5, heavy use/present. Rating scale for severity of alcohol abuse: 0, little/none; 1, social (one to two drinks per day); 2,
moderate use/past; 3, moderate use/present; 4, heavy use/past; 5, heavy use/present.

GABAA dysregulation in schizophrenia
SH Fatemi et al

2

Translational Psychiatry (2013), 1 – 13 & 2013 Macmillan Publishers Limited



Statistical analysis
All protein measurements for each group were normalized against b-actin
and NSE (Tables 2 and 3) and were expressed as ratios. Statistical analysis
was performed as previously described,29,36,38 with Po0.05 considered
significant. Group comparisons were conducted using analysis of variance
(ANOVA). Follow-up independent Student’s t-tests were then conducted
as well. Group differences on possible confounding factors were
explored using w2-tests for categorical variables and ANOVA for
continuous variables. Where group differences were found, analysis of
covariance was used to explore these effects on group differences for
continuous variables and factorial ANOVA with interaction terms for
categorical variables. All analyses were conducted using SPSS v.17 (SPSS,
Chicago, IL, USA).

RESULTS
All protein measurements were normalized against b-actin and
NSE (Figure 1). ANOVA identified group differences for GABRa2/b-
actin (F(3,52)¼ 3.35, Po0.027), GABRa2/NSE (F(3,52)¼ 3.49,
Po0.022), GABRb1/b-actin (F(3,54)¼ 6.03, Po0.001), GABRb1/NSE
(F(3,54)¼ 4.53, Po0.007), GABRe/b-actin (F(3,37)¼ 8.88, Po0.0001)
and GABRe/NSE (F(3,37)¼ 7.26, Po0.001) (Tables 2 and 3; Figures
1–4). In subjects with schizophrenia, follow-up Student’s t-tests
found significantly increased expression of GABRa2/b-actin
(Po0.0046), GABRa2/NSE (Po0.0042) and GABRe/b-actin
(Po0.044) (Tables 2 and 3; Figures 1, 2 and 4), and significantly
reduced expression of GABRb1/b-actin (Po0.0001) and GABRb1/
NSE (Po0.001) (Tables 2 and 3; Figures 1 and 3).

In subjects with bipolar disorder, follow-up Student’s t-test
found significantly increased expression of GABRa2/b-actin
(Po0.017), GABRa2/NSE (Po0.011), GABRe/b-actin (Po0.0006)
and GABRe/NSE (Po0.0013) (Tables 2 and 3; Figures 1 and 4), and
significantly reduced expression of GABRb1/b-actin (Po0.026) and
GABRb1/NSE (Po0.034) (Tables 2 and 3; Figures 1 and 3). We also
observed significantly reduced expression of GABRb2/b-actin
(Po0.025) and GABRb2/NSE (Po0.022) in the cerebella of subjects
with bipolar disorder (Tables 2 and 3; Figures 1 and 3).

In subjects with major depressive disorder, follow-up Student’s
t-tests found significantly upregulated expression of GABRa2/b-
actin (Po0.0047), GABRa2/NSE (Po0.0063), GABRe/b-actin
(Po0.0003) and GABRe/NSE (Po0.0012) (Tables 2 and 3; Figures
1, 2, and 4), and significantly reduced expression of GABRb1/b-
actin (Po0.023) and GABRb1/NSE (Po0.03) (Tables 2 and 3;
Figures 1 and 3). We found that GABRa1/b-actin expression was

significantly increased in the cerebella of subjects with major
depression (Po0.049) (Table 2; Figures 1 and 2). In addition, there
were significantly increased expression for GABRg3/b-actin
(Po0.047; Table 2; Figures 1 and 5), GABRa6/b-actin (Po0.001)
and GABRa6/NSE (Po0.0023) (Tables 2 and 3; Figures 1 and 2).

No significant differences were found between diagnostic
groups on hemisphere side, ethnicity, history of substance abuse,
gender, severity of alcohol abuse, brain weight, post-mortem
interval, age, or pH. We did find that subjects with bipolar disorder
had significantly higher levels of severity of substance use than
did normal controls (Po0.046). We also compared the three
diagnostic groups on family history and suicide, and found a
significant increased rate of suicide among the psychiatric groups
when compared with controls (Po0.0001 and Po0.014, respec-
tively). Age of onset was significantly later (33.9 years) for depres-
sed subjects when compared with schizophrenics (23.2) and
bipolar subjects (21.5), (Po0.001). Finally, antidepressant use was
significantly different between the four groups (Po0.003). ANOVAs
controlling for hemisphere side, ethnicity, history of substance
abuse, severity of substance abuse, gender, severity of alcohol
abuse, brain weight, post-mortem interval, age or pH found no
meaningful or significant impact on the results reported above.

When we controlled for antidepressant use, we lost signifi-
cance for GABRa2/b-actin in subjects with major depression
(Po0.068); GABRb1/b-actin in subjects with bipolar disorder
(Po0.46); GABRb2/b-actin in subjects with bipolar disorder
(Po0.061); GABRg3/b-actin in subjects with major depression
(Po0.25); and GABRb1/NSE in subjects with major depression
(Po0.15) (Supplementary Table 1). However, we found no
significant differences between values for individuals taking
antidepressants versus those not taking antidepressants within
each diagnostic group for GABRa2/b-actin, GABRb2/b-actin,
GABRg3/b-actin and GABRb1/NSE (Po0.74, Po0.98, Po0.68; and
Po0.76, respectively), suggesting that antidepressant use had no
real impact on these measures (Supplementary Table 2). Subjects
with bipolar disorder, who took antidepressants, had significantly
lower protein levels of GABRb1/b-actin when compared with
subjects with bipolar disorder, who did not take antidepressants
(t(12)¼ 2.47, Po0.030), suggesting that in this case antidepressant
use was partially responsible for the reduction in GABRb1/b-actin
(Supplementary Table 2). However, the GABRb1/NSE ratio
continued to be significantly lower in the bipolar group
(Po0.034) and was not affected by the antidepressant confound.

Table 2. Western blotting results for GABAA receptor subunits expressed as a ratio of b-actin in the lateral cerebella

ANOVA Control Schizophrenia Bipolar disorder Major depression

Lateral cerebellum F-test P-value Protein P-value Protein P-value Protein P-value Protein P-value

GABRa1/b-actin 1.46 NC 0.331±0.127 RG 0.507±0.311 NC 0.474±0.266 NC 0.486±0.252 0.049
GABRa2/b-actin 3.35 0.027 0.126±0.083 RG 0.370±0.282 0.0046 0.321±0.273 0.017 0.271±0.154 0.0047
GABRa3/b-actin 0.46 NC 0.196±0.076 RG 0.239±0.159 NC 0.236±0.161 NC 0.193±0.14 NC
GABRa5/b-actin 2.02 NC 0.031±0.02 RG 0.063±0.067 NC 0.04±0.03 NC 0.033±0.018 NC
GABRa6/b-actin 1.76 NC 0.013±0.003 RG 0.015±0.007 0.23 0.016±0.009 NC 0.019±0.005 0.001
GABRb1/b-actin 6.03 0.001 0.135±0.049 RG 0.066±0.031 0.0001 0.092±0.048 0.026 0.092±0.047 0.023
GABRb2/b-actin 1.56 NC 0.035±0.013 RG 0.030±0.016 NC 0.025±0.008 0.025 0.034±0.016 NC
GABRb3 (upper)
/b-actin

2.01 NC 0.114±0.136 RG 0.058±0.063 NC 0.152±0.084 NC 0.109±0.103 NC

GABRb3 (lower)
/b-actin

0.77 NC 0.57±0.16 RG 0.59±0.14 NC 0.60±0.19 NC 0.50±0.21 NC

GABRd/b-actin 0.46 NC 0.032±0.017 RG 0.034±0.015 NC 0.027±0.021 NC 0.034±0.017 NC
GABRe/b-actin 8.88 0.0001 0.015±0.007 RG 0.035±0.029 0.044 0.041±0.018 0.0006 0.079±0.046 0.0003
GABRg2/b-actin 0.74 NC 0.016±0.008 RG 0.015±0.009 NC 0.012±0.005 NC 0.012±0.006 NC
GABRg3/b-actin 1.53 NC 0.099±0.052 RG 0.114±0.059 NC 0.137±0.072 NC 0.141±0.055 0.047
b-actin 0.83 NC 25.8±2.07 RG 25.2±2.07 NC 26.9±2.91 NC 26.1±4.38 NC

Abbreviations: ANOVA, analysis of variance; GABAA, g-aminobutyric acid (A); NC, no change; RG, reference group.
Bold entries are significant P values.
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We found that alcohol dependence, alcohol abuse, substance
dependence and substance abuse did not impact any of our data
(Table 1). However, as an additional analysis, we removed subjects
with alcohol dependence/abuse or subjects with substance
dependence/abuse, and reanalyzed the data. When individuals
with substance abuse were removed, significance was lost for
GABRg3/b-actin (Po0.072) in subjects with major depression and
GABRb1/NSE (Po0.063) in subjects with bipolar disorder
(Supplementary Table 3). When individuals with substance
dependence were removed, none of the values lost significance
(Supplementary Table 4). When individuals with alcohol abuse
were removed, significance was lost for GABRa1/b-actin (Po0.076)
and GABRg3/b-actin (Po0.072) in subjects with major depression
and GABRb1/NSE (Po0.061) in subjects with bipolar disorder
(Supplementary Table 5). Finally, when individuals with alcohol
dependence were removed, all values for individuals with
schizophrenia and bipolar disorder remained significant, whereas
in subjects with major depression significance was lost for

GABRa1/b-actin (Po0.063), GABRb1/b-actin (Po0.061), GABRb1/
NSE (Po0.063) and GABRg3/b-actin (Po0.061) (Supplementary
Table 6). However, as none of the above confound effects were
significant, the above changes are not deemed meaningful.

We performed quantitative real-time PCR to investigate
changes in mRNA for the 12 GABAA receptor subunits (Table 4).
ANOVA found a significant group difference for GABRA1 (GABRa1;
Po0.012) with significantly reduced mRNA for GABRA1 in the
lateral cerebella of subjects with schizophrenia (Po0.011) and
major depression (Po0.009; Table 4). In subjects with schizo-
phrenia, we also observed a significant reduction in mRNA for
GABRA2 (GABRa2) (Po0.017) and a significant increase in mRNA
for GABRB3 (GABRb3; Table 4) (Po0.044).

DISCUSSION
The salient, significant findings for this work include the following:
(1) novel significant increases in protein levels for e- and
a2-receptors in schizophrenia, bipolar disorder and major depres-
sion; (2) novel significant decreases in protein levels for
b1-receptor in all three disorders; (3) significant increases in
protein levels for a1-, a6- and g3-receptors in major depression;
(4) significant decrease in protein level for b2-receptor in bipolar
disorder; (5) significant decrease in mRNA for a2 and increase
in b3 in schizophrenia; (6) significant decrease in mRNA for a1 in
subjects with schizophrenia and major depression; and
(7) absence of any major confound effects on obtained protein
and mRNA results, with the exception of antidepressant use on
protein levels of GABRb1/b-actin in subjects with bipolar disorder.

In rat brain, GABRa2 mRNA is distributed in multiple regions,
including the neocortex, hippocampus, hypothalamus and cere-
bellum.44,45 In the cerebellum, GABRa2 mRNA was identified on
Bergman glial cells.44–46 We identified significantly increased
expression of GABRa2 protein in all three groups, whereas
subjects with schizophrenia displayed decreased expression of
GABRa2 mRNA. The decreased expression of GABRa2 mRNA may
indicate a potential feedback loop effect. Consistent with our
findings, GABRa2 mRNA and protein has been observed to be
upregulated in postsynaptic pyramidal cell membranes in
the dorsolateral PFC (DLPFC) of subjects with schizophrenia.47 It
has been hypothesized that this increased expression is a
compensatory response to deficits in GABA synthesis in
presynaptic chandelier subclass of GABAergic neurons.48 In a
recent study of cross-frequency modulation in subjects with

Table 3. Western Blotting Results for GABAA receptor subunits expressed as a ratio of NSE in lateral cerebella

ANOVA Control Schizophrenia Bipolar disorder Major depression

Lateral cerebellum F-test P-value Protein P-value Protein P-value Protein P-value Protein P-value

GABRa1/NSE 1.19 NC 0.45±0.19 RG 0.60±0.28 NC 0.60±0.28 NC 0.56±0.21 NC
GABRa2/NSE 3.49 0.022 0.14±0.09 RG 0.32±0.19 0.0042 0.28±0.17 0.011 0.31±0.19 0.0063
GABRa3/NSE 0.81 NC 0.25±0.11 RG 0.25±0.17 NC 0.29±0.16 NC 0.21±0.10 NC
GABRa5/NE 2.00 NC 0.036±0.023 RG 0.071±0.076 NC 0.043±0.029 NC 0.037±0.020 NC
GABRa6/NSE 1.79 NC 0.026±0.007 RG 0.037±0.023 NC 0.031±0.018 NC 0.040±0.011 0.0023
GABRb1/NSE 4.53 0.007 0.17±0.07 RG 0.084±0.048 0.001 0.11±0.064 0.034 0.11±0.066 0.03
GABRb2/NSE 1.35 NC 0.039±0.015 RG 0.036±0.020 NC 0.028±0.007 0.022 0.035±0.013 NC
GABRb3 (upper) /NSE 1.97 NC 0.11±0.13 RG 0.063±0.069 NC 0.16±0.10 NC 0.11±0.098 NC
GABRb3 (lower) /NSE 1.80 NC 0.63±0.13 RG 0.65±0.13 NC 0.57±0.11 NC 0.55±0.13 NC
GABRd/NSE 1.46 NC 0.038±0.022 RG 0.046±0.026 NC 0.028±0.016 NC 0.038±0.019 NC
GABRe/NSE 7.26 0.001 0.017±0.009 RG 0.037±0.032 NC 0.041±0.017 0.0013 0.084±0.056 0.0012
GABRg2/NSE 0.40 NC 0.03±0.014 RG 0.029±0.018 NC 0.024±0.010 NC 0.029±0.021 NC
GABRg3/NSE 1.33 NC 0.12±0.06 RG 0.13±0.08 NC 0.17±0.11 NC 0.16±0.07 NC
NSE 0.93 NC 20.2±2.34 RG 20.1±1.67 NC 20.2±3.34 NC 21.6±2.87 NC

Abbreviations: ANOVA, analysis of variance; GABAA, g-aminobutyric acid (A); NC, no change; NSE, neuronal specific enolase; RG, reference group.
Bold entries represent significant P values.

Figure 1. Representative bands for GABRa1, GABRa2, GABRa3,
GABRa5, GABRa6, GABRb1, GABRb2, GABRb3, GABRd, GABRe,
GABRg2, GABRg3, NSE and b-actin in the lateral cerebellum of
subjects with schizophrenia and mood disorders.
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schizophrenia versus matched controls, greater ‘aberrant’ fronto-
temporal modulation observed in patients with schizophrenia was
correlated with polymorphisms of the GABRA2 (a2) gene.49

Moreover, recent studies have shown that positive modulators
of GABRa2 can improve working memory in a monkey model of
schizophrenia50 and in humans.51 However, a separate study
found no benefit of the GABRa2-positive modulator MK-0777 for
patients with schizophrenia on tests of working memory.52

The GABRa2 gene (GABRA2), which is localized to 4q13–p12,53

has been associated with risk for alcohol dependence54,55 and
drug abuse.56–58 Although we did not find a significant effect of
severity of alcohol abuse, or history of alcohol or substance abuse,
we did observe a significant difference for severity of substance
abuse in subjects with bipolar disorder. Others have suggested
that altered expression of GABRa2 may help explain comorbid

substance abuse in subjects with schizophrenia.2 To date, there
are no reports of an association between GABRA2 with bipolar
disorder or major depression. However, a recent set of
experiments comparing GABRA2 heterozygous and homozygous
knockout mice with wild–type mice have found that males lacking
the a2-subunit displayed depressive symptoms during the forced
swimming test, the novelty suppressed-feeding test and the tail
suspension test.59 These results have led the authors to conclude
that GABAergic inhibition acting through receptors that include
the a2-subunit has a potential antidepressant-like effect.59

The gene for GABRe clusters at Xq28 (Table 5) with genes for the
a3- and y-subunits.60 mRNA for the e-subunit has been identified
in the septum, thalamus, hypothalamus and amygdala in rat brain
and was often coexpressed with mRNA for the y-subunit;61

however, it was not found in the cerebellum.62 GABAA receptors

Figure 2. Expression of GABRa1/b-actin (a), GABRa1/NSE (b), GABRa2/b-actin (c), GABRa2/NSE (d), GABRa3/b-actin (e), GABRa3/NSE (f ),
GABRa5/b-actin (g) and GABRa5/NSE (h) in the lateral cerebella of healthy control subjects versus subjects with bipolar disorder, major
depressive disorder and schizophrenia. Histogram bars shown as mean±s.e., *Po0.05.
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that include GABRe have been shown to be insensitive to
benzodiazepines63,64 and overexpression of GABRe has shown to
result in insensitivity to anesthetics.65 Our finding of increased
expression of GABRe in the lateral cerebella of subjects with
schizophrenia, bipolar disorder and major depressive disorder
represents the first such protein data on this subunit in these
disorders. In addition, the absence of any mRNA changes indicate
that the altered receptor protein expression is likely secondary
to posttranslation deficits in processing of e-receptors in all
three disorders. The altered expression may change the
pharmacological properties of GABAA receptors in this region,
leading to altered neurotransmission.

To the best of our knowledge, we are the first laboratory to
observe significant reduction of GABRb1 protein in brains of
subjects diagnosed with schizophrenia, bipolar disorder or major

depression. GABRb1 mRNA localizes to multiple brain regions,
with strong expression in the hippocampus of rat, as well as in the
amygdala and cerebellar granular cells.45 Previous studies have
found no changes in mRNA for GABRb1 in PFC of subjects with
schizophrenia when compared with controls.30,66 Our observed
reduction may signify regional changes in the b1-subunit
expression. Moreover, recent genetic studies have implicated
GABRB1 (b1) in bipolar disorder, schizoaffective disorder and major
depression.67–72 Finally, GABRB1 has been associated with the risk
of alcohol dependence.73,74 Again, as no mRNA effects were seen,
all b1 protein changes may be due to posttranslational processing
deficits intracellularly.

GABRA6, the gene that codes for the GABRa6 subunit is
localized to 5q31.1–q35.75 In studies from the rat brain, GABRa6
mRNA was found to localize exclusively to the cerebellar granule

Figure 3. Expression of GABRa6/b-actin (a), GABRa6/NSE (b), GABRb1/b-actin (c), GABRb1/NSE (d), GABRb2/b-actin (e), GABRb2/NSE (f ),
GABRb3 upper band/b-actin (g) and GABRb3 upper band/NSE (h) in the lateral cerebella of healthy control subjects versus subjects with
bipolar disorder, major depressive disorder and schizophrenia. Histogram bars shown as mean±s.e., *Po0.05.
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neurons.44,76 We observed increased expression of GABRa6/b-
actin and GABRa6/NSE protein in the lateral cerebella of subjects
with major depression only, with no changes in either schizo-
phrenia or bipolar disorder. Polymorphisms of GABRA6 have been
shown to have significant associations with mood disorders in
females.77 Moreover, a single-nucleotide polymorphism of
GABRA6 (rs1992647) has been associated with antidepressant
response in a Chinese population sample.78 A study by Petryshen
et al.14 associated a variant of GABRA6 with schizophrenia,
whereas a separate study found no association.79 Interestingly,
a recent study identified a single-nucleotide polymorphism of
GABRA6 (rs3219151) that is associated with decreased risk of
schizophrenia.80 Thus, significant a6 protein expression in major
depression may signify a specific marker for this disorder.

The gene for GABRa1 is located at 5q34–q35.53 The a1-subunit
is expressed in a majority of GABAA receptors and has a wide
distribution, including the neocortex, hippocampus, globus
pallidus, medial septum, thalamus and cerebellum.45 Within the
cerebellum, mRNA for the a1-subunit is localized to the stellate/
basket cells, Purkinje cells and granule cells.44–46 We observed a
significant decrease in mRNA levels for GABRa1 in the cerebella of
subjects with schizophrenia and major depression, whereas we
found a significant increase in the GABRa1/b-actin protein in
subjects with major depression. Several groups have identified
reduced expression of GABRa1 in PFC from subjects with
schizophrenia,30,31,66 whereas a separate study found no
change.81 Glausier and Lewis82 further identified selective
reduction of GABRa1 mRNA in pyramidal cells located in layer 3

Figure 4. Expression of GABRb3 lower band/b-actin (a), GABRb3 lower band/NSE (b), GABRd/b-actin (c), GABRd/NSE (d), GABRe/b-actin (e),
GABRe/NSE (f ), GABRg2/b-actin (g) and GABRg2/NSE (h) in the lateral cerebella of healthy control subjects versus subjects with bipolar
disorder, major depressive disorder and schizophrenia. Histogram bars shown as mean±s.e., *Po0.05.
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of the PFC, whereas there was no change in GABRa1 mRNA levels
in interneurons in the same layer. Our results are the first to show
a similar reduction in the cerebella from subjects with
schizophrenia or major depression. A previous study has failed
to find a linkage between GABRA1 variants and major
depression;83 however, other studies have associated this gene
with bipolar disorder84 and schizophrenia.33

The gene that codes for GABRg3 (GABRG3) localizes to the
15q11.2–q13 site, where it clusters with the genes for GABRa5
(GABRA5) and GABRb3 (GABRB3).85 mRNA for the g3-subunit
localizes to the cerebellar granule cells, as well as the neocortex,
caudate putamen and nucleus accumbens among other
regions.44,45 Although no genetic associations between GABRG3
and schizophrenia and bipolar disorders have been identified, a
single-nucleotide polymorphism of GABRG3 (rs2376481) has been
linked to female suicide attempters.86 Similar to GABRA2 and
GABRB1, GABRG3 may be associated with alcohol dependence.87

Our finding of a significant increase in expression of GABRg3/b-
actin in the lateral cerebella of subjects with major depression is
thus novel and potentially interesting in light of g3 being a
potential risk gene for suicide.

The gene for GABRb2 (GABRB2) is located at 5q34–q35, where it
clusters with the genes for GABRa1 (GABRA1) and GABRg2
(GABRG2).88 The b2-subunit mRNA has been found in the
olfactory bulb, neocortex, globus pallidus, thalamus and
cerebellar granule cells.44,45 Recently, GABRB2 has been
associated with both bipolar disorder and schizophrenia.89–91

Two novel isoforms of GABRB2, b(2S1) and b(2S2) have also been
associated with male subjects with bipolar disorder.89 Moreover,
Zhao et al.,89 by using quantitative real-time PCR, found that in
post-mortem brain, there was significantly increased mRNA for
b(2S1) in the DLPFC of subjects with bipolar disorder and
significantly reduced mRNA for b(2S2) in DLPFC of subjects with
bipolar disorder and schizophrenia. A separate group has also

Figure 5. Expression of GABRg3/b-actin (a), GABRg3/NSE (b), b-actin (c) and NSE (d) in the lateral cerebella of healthy control subjects versus
subjects with bipolar disorder, major depressive disorder and schizophrenia. Histogram bars shown as mean±s.e., *Po0.05.

Table 4. mRNA expression for 12 GABAA receptor subunits in the lateral cerebella of subjects with schizophrenia and mood disorders

Schizophrenia Bipolar disorder Major depression

ANOVA Fold change P-value Fold change P-value Fold change P-value

GABRA1 0.012 0.713 0.011 0.949 0.707 0.618 0.009
GABRA2 0.126 0.563 0.017 0.688 0.111 0.688 0.099
GABRA3 0.505 0.531 0.139 0.589 0.289 0.865 0.599
GABRA5 0.118 0.754 0.127 1.094 0.621 0.735 0.206
GABRA6 0.385 0.994 0.967 0.674 0.210 0.789 0.217
GABRB1 0.684 0.997 0.989 0.781 0.319 0.937 0.743
GABRB2 0.866 1.113 0.644 0.915 0.784 1.128 0.583
GABRB3 0.232 1.473 0.044 1.317 0.115 1.375 0.071
GABRD 0.233 0.678 0.051 0.602 0.101 0.887 0.632
GABRE 0.400 1.046 0.859 1.320 0.196 0.905 0.639
GABRG2 0.238 1.118 0.419 0.758 0.168 0.888 0.461
GABRG3 0.188 0.785 0.373 0.877 0.625 0.450 0.081

Abbreviations: ANOVA, analysis of variance; C, control; GABAA, g-aminobutyric acid (A); S, schizophrenia; B, bipolar disorder; D, major depression.
Note: ANOVA based on six comparisons: C versus S, C versus B, C versus D, S versus B, S versus D and B versus D.
Bold entries represent significant fold changes and P values.
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recently observed a reduction in mRNA for the b2-subunit in
DLPFC of subjects with schizophrenia.30

As previously mentioned, the gene that codes GABRb3
(GABRB3) clusters at 15q11.2–q13, with GABRA5 and GABRG3.
GABRb3 mRNA has been found in multiple brain areas, including
the olfactory bulb, neocortex, hippocampus, hypothalamus and
cerebellum.44,45 In the cerebellum, mRNA for the b3-subunit has
been found in both Purkinje cells and granule cells.44,46 An
association between GABRB3 and schizophrenia has been
documented in two recent studies.92,93 A previous study has
shown that mRNA for GABRb3 is not changed in DLPFC of subjects
with schizophrenia.30 However, we found increased mRNA for
GABRb3 in the lateral cerebella from subjects with schizophrenia,
suggesting regional differences. Although we did not find any
changes in GABRb3 protein expression, we have previously found
reduction of GABRb3 protein levels in the cerebella of subjects
with autism.34,94

Overall, we observed significant increased expression of a2- and
e-subunit protein levels in all three disorders. In addition, we
observed decreased protein expression for b1 in all three
disorders and a1 mRNA in schizophrenia and major depression.
(Figures 6–9; Table 5). We have previously shown reduced
expression of GABBR1 and GABBR2 in the lateral cerebella of
subjects with schizophrenia, bipolar disorder and major depres-
sion (Table 5; Figures 6–10).29 With regard to mRNA expression, a-
and b-subunits showed reduced expression, whereas GABBR2
displayed increased expression (Figures 6–8 and 10; Table 5).
These changes may result in improper GABAergic transmission,
both within the cerebellum and in circuits connecting the
cerebellum with other parts of the brain, including the PFC.
Functional consequences of impaired GABAergic transmission are
likely to include dysregulated states of anxiety, panic and deficits
in learning.95–97 Deficits in GABAB receptor expression may
contribute to deficits in information processing in schizophrenia,
including abnormalities in prepulse inhibition and P50
suppression.98–101 Moreover, altered expression of GABAA and
GABAB subunits may affect the pharmacological properties of the
receptors, altering their ability to respond to drugs, such as
anesthetics, benzodiazepines and neurosteroids. Taken together,
the changes that were consistent across the three diagnostic

groups—GABRa2, GABRb1, GABRe, GABBR1 and GABBR2—may
help explain similarities between these disorders.

Our findings build upon previous work to examine GABA
receptor subunit expression in brains of subjects with psychiatric
disorders. Although most of the previously discussed findings are
from the PFC,30,31,47,66,89 less is known of the cerebellum.28,29 We
found no change in mRNA expression for GABRa6 and GABRd in
the cerebella of subjects with schizophrenia, which are in contrast
to the findings of Bullock et al.28 who found increased mRNA
expression for both subunits. A potential explanation for this
discrepancy may be due to the anatomic location of the cerebellar

Figure 6. Summary of significant mRNA and protein expression for
g-aminobutyric acid A and B (GABAA and GABAB) receptors in the
lateral cerebella of subjects with schizophrenia. Increased expres-
sion of GABRa2 protein may lead to a negative feedback loop
decreasing the mRNA expression. m, increased expression; k,
reduced expression, --, no change. GABAB receptor subunits 1 and
2 (GABBR1 and GABBR2) data reprinted from Fatemi et al.,29 with
permission from Elsevier.

Figure 7. Summary of significant mRNA and protein expression for
g-aminobutyric acid A and B (GABAA and GABAB) receptors in the
lateral cerebella of subjects with bipolar disorder. Decreased
expression of GABAB receptor subunit 2 (GABRR2) protein may lead
to a positive feedback loop increasing the mRNA expression.
m, increased expression; k, reduced expression, --, no change.
GABAB receptor subunit 1 (GABBR1) and GABBR2 data reprinted
from Fatemi et al.,29 with permission from Elsevier.

Table 5. Summary of mRNA and protein levels for selected GABAA

and GABAB receptor subunits in cerebella from subjects with three
major psychiatric disorders

Schizophrenia
Bipolar

disorder
Major

depression

Subunit
Chromosomal

location M P M P M P

GABRa1 5q34–q35 k NC NC NC k m
GABRa2 4q13–p12 k m NC m NC m
GABRa3 Xq28 NC NC NC NC NC NC
GABRa5 15q11.2–q13 NC NC NC NC NC NC
GABRa6 5q31.1–q35 NC NC NC NC NC m
GABRb1 4q13–p12 NC k NC k NC k
GABRb2 5q34–q35 NC NC NC k NC NC
GABRb3 15q11.2–q13 k NC NC NC NC NC
GABRd 1p36.3 NC NC NC NC NC NC
GABRe Xq28 NC m NC m NC m
GABRg2 15q31.1–q33.1 NC NC NC NC NC NC
GABRg3 15q11.2–q13 NC NC NC NC NC m
GABBR11 6p21.3 NC k NC k NC k
GABBR21 6q12–q21 NC k m k NC k

Abbreviations: GABBR1, GABAB receptor subunit 1; GABBR2, GABAB

receptor subunit 2; M, mRNA; NC, no change; P, protein. GABBR1 and
GABBR2 data reprinted from Fatemi et al.,29 with permission from Elsevier.
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tissue used for both sets of experiments. Bullock et al.28 describe
their tissue as being from the lateral cerebellar hemisphere
corresponding to crus I of lobule VIIa, whereas ours is described as
a ‘lateral posterior lobe’. Just as each subunit has a unique
distribution among the cell types in the cerebellum (Figures 9 and

10),44,45 there may be regional differences in GABA subunit
expression throughout the cerebellum.

As targets of several psychotropic agents including benzodia-
zepines and neurosteroids, GABAA receptors are sites of potential
therapeutic intervention. Experiments in rodents have shown that
chronic treatment with atypical antipsychotic drugs clozapine and
olanzapine result in increased levels of the neurosteroid
allopregnanolone to a concentration large enough to stimulate
GABAA receptors.102 In a rat model, injection of allopregnanolone
into the hippocampus improved prepulse inhibition.103 Pregne-
nolone, the biosynthetic precursor of allopregnanolone has also
been shown to increase concentrations of allopregnanolone in
patients with schizophrenia.104 Schizophrenic patients with higher
levels of allopregnanolone displayed significantly improved
cognition as measured by the Brief Assessment of Cognition in
Schizophrenia and significantly improved negative symptoms as
measured by Scale for the Assessment of Negative Symptoms.104

Treatment with antidepressants fluoxetine and fluvoxamine has
also been shown to increase levels of allopregnanolone in the
cerebrospinal fluid of patients diagnosed with major depres-
sion.105 Neurosteroid treatment may provide new means of
treating GABA deficits in these disorders.

CONCLUSION
The examination of mRNA and protein levels for 12 GABAA

receptor gene families in the lateral cerebella of subjects with
schizophrenia and mood disorders showed significant increases in
a2-and e-, and decreases in b1-receptor protein expression in
schizophrenia, bipolar disorder and major depression. In addition,
several important alterations were observed in mRNA or protein
levels for a1-, a6-, b2-, b3- and g3-receptor subtypes in some of
these disorders. These results, combined with our previous
findings of reductions in GABAB receptor subunits, provide further

Figure 8. Summary of significant mRNA and protein expression for
g-aminobutyric acid A and B (GABAA and GABAB) receptors in the
lateral cerebella of subjects with major depression. Increased
expression of GABRa1 protein may lead to a negative feedback
loop decreasing the mRNA expression. m, increased expression; k,
reduced expression, --, no change. GABAB receptor subunits 1 and 2
(GABBR1 and GABBR2) data reprinted from Fatemi et al.,29 with
permission from Elsevier.

Figure 9. Altered protein expression of g-aminobutyric acid A and B
(GABAA and GABAB) receptor subunits in various cells of the
cerebellar circuitry of subjects with schizophrenia (S), bipolar
disorder (B) or major depression (D). R1, GABAB receptor 1; R2,
GABAB receptor 2. GABAB receptor subunits 1 and 2 (GABBR1 and
GABBR2) data reprinted from Fatemi et al.,29 with permission from
Elsevier.

Figure 10. Altered mRNA expression of g-aminobutyric acid A
(GABAA) receptor subunits in various cells of the cerebellar circuitry
of subjects with schizophrenia (S), bipolar disorder (B) or major
depression (D). R2, GABAB receptor 2. GABAB receptor subunits 1
and 2 (GABBR1 and GABBR2) data reprinted from Fatemi et al.,29

with permission from Elsevier.
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evidence of GABAergic dysfunction in schizophrenia and mood
disorders, which could ultimately underlie some of the cognitive,
psychotic and mood dysfunctions associated with these disorders.
Our findings may also open the door to new, targeted, therapeutic
treatments, such as the use of neurosteroids.
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