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Background:Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD), but sensitivity and spec-
ificity of hippocampal volumetry are limited. Neuropathological studies have shown that hippocampal subfields
are differentially vulnerable to AD; hippocampal subfield volumetry may thus prove to be more accurate than
global hippocampal volumetry to detect AD.
Methods: CA1, subiculum and other subfields were manually delineated from 40 healthy controls, 18 AD, 17
amnestic Mild Cognitive Impairment (aMCI), and 8 semantic dementia (SD) patients using a previously devel-
oped high resolution MRI procedure. Non-parametric group comparisons and receiver operating characteristic
(ROC) analyseswere conducted. Complementary analyseswere conducted to evaluate differences of hemispher-
ic asymmetry and anterior-predominance between AD and SD patients and to distinguish aMCI patients with or
without β-amyloid deposition as assessed by Florbetapir-TEP.
Results: Global hippocampi were atrophied in all three patient groups and volume decreases were maxi-
mal in the CA1 subfield (22% loss in aMCI, 27% in both AD and SD; all p b 0.001). In aMCI, CA1 volumetry

was more accurate than global hippocampal measurement to distinguish patients from controls (areas
under the ROC curve = 0.88 and 0.76, respectively; p = 0.05) and preliminary analyses suggest that it
was independent from the presence of β-amyloid deposition. In patients with SD, whereas the degree
of CA1 and subiculum atrophy was similar to that found in AD patients, hemispheric and anterior–posterior asym-
metry were significantly more marked than in AD with greater involvement of the left and anterior hippocampal
subfields.
Conclusions: The findings suggest that CA1 measurement is more sensitive than global hippocampal volumetry to
detect structural changes at the pre-dementia stage, although the predominance of CA1 atrophy does not appear
to be specific to AD pathophysiological processes.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Hippocampal atrophy is a major feature of Alzheimer's disease (AD)
(Frisoni et al., 2010) that strongly correlates with AD neuropathology
(Bobinski et al., 1996; Jack et al., 2002). Using MRI, this atrophy is detect-
able prior to the diagnosis of AD, at the stage of amnestic Mild Cognitive
Impairment (aMCI) (Convit et al., 1997; Shi et al., 2009) or even earlier,
in asymptomatic elderly up to 10 years before the diagnosis of dementia
(Smith et al., 2007; Tondelli et al., 2012). Hippocampal volume has thus
been proposed as a neuroimaging biomarker for early AD diagnosis
(Albert et al., 2011; Dubois et al., 2010). Yet, the accuracy of thismeasure-
ment is limited by a moderate sensitivity and a rather low specificity to
AD pathophysiological processes (Frisoni et al., 2010). Indeed, hippocam-
pal atrophy has been highlighted in various neurological and psychiatric
ved.
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conditions (Geuze et al., 2005), and notably in other neurodegenerative
disorders such as semantic dementia (SD) (Chan et al., 2001; Davies
et al., 2004; Desgranges et al., 2007; Galton et al., 2001; Nestor et al.,
2006).

Interestingly, neuropathological studies have shown a differential
vulnerability of hippocampal subfields to AD, with CA1 showing the
earliest and strongest changes in terms of both neurofibrillary tangles
(NFT) (Braak & Braak, 1991; Schönheit et al., 2004) and neuronal loss
(Rössler et al., 2002; West et al., 1994). In vivo measurement of CA1
atrophymay thus constitute a better surrogatemarker for AD pathology
than global hippocampal volumetry. Recently MRI acquisition and
processing techniques have been developed to assess the hippocampus
in more detail, including high-resolution hippocampus scans allowing
visualization and measurement of hippocampal subfields (Mueller
et al., 2010; Pluta et al., 2012; Wisse et al., 2012).

In this study, we aimed at identifying the pattern of hippocampal
subfield atrophy in patients with AD, aMCI and SD using a previously
developed technique based on high-resolution 3-Tesla MRI and
adapted delineation guidelines (La Joie et al., 2010). In addition we
assessed the diagnosis accuracy of these measures, hypothesizing that
specific measurement of the most vulnerable subfield(s), e.g. CA1,
would be more accurate than global hippocampal volumetry to detect
AD-related hippocampal atrophy (Mueller et al., 2010; Pluta et al., 2012).

2. Material and methods

2.1. Participants

Eighty-three right-handed native French-speaking participants from
the IMAP project (La Joie et al., 2010) were included in the present
study: 40 healthy controls (HC), 17 aMCI patients, 18 AD patients, and
eight SD patients (see Table 1). They were all aged over 50 years, had
at least 7 years of education and had no history of alcoholism, drug
abuse, head trauma or psychiatric disorder.

All patients were recruited from local memory clinics and selected
according to corresponding internationally agreed criteria: Petersen's
criteria for aMCI (Petersen & Morris, 2005), NINCDS-ADRDA criteria
for probable Alzheimer's disease (McKhann et al., 1984) and Neary
et al. criteria for SD (Neary et al., 1998).

HCwere recruited from the community and performed in the normal
range on a neuropsychological examination assessing multiple domains
of cognition including episodic and semantic memory, executive and
visuo-spatial functions, language and praxis.

In addition to this clinically based selection, themajority of aMCI and
AD patients underwent a Florbetapir PET scan allowing to classify them
asβ-amyloid (Aβ)-positive or Aβ-negative as recommended in the new
research criteria for AD (Albert et al., 2011; Dubois et al., 2010) (see
Sections 2.3.3 and 2.4 below).
Table 1
Demographic characteristics of participants.
Abbreviations: HC = healthy controls; aMCI = amnestic Mild Cognitive Impairment; AD = A
mental state examination; ANOVA = Analysis of variance.
All variables were compared using non-parametric tests.
a: Mattis scores were lower in AD and SD groups as compared to HC and aMCI but no differen

HC (n = 40) aMCI (n = 17)

Age
median (IQR)

66 (56, 72) 72 (69, 75)

Gender
females: n (%)

23 (58%) 9 (53%)

Years of education
median (IQR)

12 (9.5, 15) 10 (8, 12)

MMSE
median (IQR)

30 (29, 30) 27 (26, 28)

Mattis
median (IQR)

143 (142, 144) 137 (134, 138)
The IMAP Study was approved by regional ethics committee (Comité
de Protection des Personnes Nord-Ouest III) and is registered with
ClinicalTrials.gov (number NCT01638949). All participants gave written
informed consent to the study prior to the investigation.

2.2. Neuroimaging data acquisition

All participants were scanned on the same MRI and PET cameras at
the Cyceron center (Caen, France).

2.2.1. MRI data
A high-resolution proton density-weighted MR sequence, perpen-

dicular to the long axis of the hippocampus (repetition time/echo
time = 3500/19 ms; flip angle = 90°; 13 slices with 2 mm gap; slice
thickness = 2 mm; in-plane resolution = 0.375 × 0.375 mm) was ac-
quired on a Philips (Eindhoven, TheNetherlands) Achieva 3 T scanner. A
sagittal T1-weighted anatomical image was obtained beforehand using
a 3D fast field echo sequence (repetition time/echo time = 20/4.6 ms;
flip angle = 20°; 180 slices with no gap; slice thickness =1 mm in-
plane resolution = 1 × 1 mm) for the purpose of PET data preprocessing
and total intracranial volume (TIV) measurement (see below).

2.2.2. PET data
Florbetapir PET scans were acquired on a Discovery RX VCT 64

PET-CT device (General Electric Healthcare) with a resolution of
3.76 × 3.76 × 4.9 mm (field of view = 157 mm). Forty-seven
planes were obtained with a voxel size of 2.7 × 2.7 × 3.27 mm. A trans-
mission scanwas performed for attenuation correction before the PET ac-
quisition. Participants underwent a 20-min PET scan, starting 50 min
after the intravenous injection of≈4 MBq/kg of Florbetapir.

2.3. Neuroimaging data processing

2.3.1. Hippocampal subfield delineation
Three regions of interest (subiculum, CA1 and “other” subfields —

encompassing CA2–CA3–CA4 and the dentate gyrus) were delineated
on both hippocampi of all individual high-resolutionMRI images, follow-
ing guidelines developed in the lab anddescribed in full details elsewhere
(La Joie et al., 2010). These guidelines were based on the anatomical
description from an atlas of the human hippocampus (Harding et al.,
1998). Delineations were performed on slices perpendicular to the long
axis of the hippocampus by a single rater, blind to the identity (age,
gender, clinical status) of the participants. Illustrations are provided in
Fig. 1 (see also Supplementary Fig. 1 for further details and additional
examples).

Unlike other groups with comparable high-resolution anisotropic
images (Mueller et al., 2010; Pluta et al., 2012) we delineated subfields
along the head and body of the hippocampus (versus in the body only
lzheimer's disease; SD = semantic dementia; IQR = interquartile range; MMSE = mini-

ce was found between AD and SD.

AD (n = 18) SD (n = 8) Group comparison

66 (58, 76) 62.5 (59.5, 65.5) pANOVA = 0.027
aMCI N HC; aMCI N SD

12 (67%) 5 (63%) pChi-squared = 0.86

10 (7, 14) 12 (5.8, 15.5) pANOVA = 0.19

20.5 (20, 24) – pANOVA b 0.001
HC N aMCI N AD

123 (114, 128) 118 (111, 125.5) pANOVA b 0.001
HC N aMCI N AD, SDa



Fig. 1. Illustration of hippocampal subfield delineation. Three regionsweremanually delineatedwithin each hippocampus: CA1 (blue), subiculum(green) and other (pink). Subfieldswere
delineated on 9 slices on average; for the purpose of illustration, examples are displayed on three slices along the anterior–posterior axis of the hippocampus. Images correspond to a
healthy control (left), a patient with Alzheimer's disease (middle) and a patient with semantic dementia (right). Images are in the neurological convention (right is right). Additional
examples are available in Supplementary Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for these previous articles). Yet, because of the difficulty of distinguishing
landmarks for subfields delineation in the hippocampal head, we only
considered 3 regions of interest (therefore combining CA2–3–4 and the
dentate gyrus in the same “subfield”) to ensure sufficient reliability and
reproducibility (versus 4 or 5 subfields in previous studies (Mueller
et al., 2010; Pluta et al., 2012)). As previously mentioned (Mueller et al.,
2010; Wisse et al., 2012), measurements of hippocampal subfields not
only rely on landmarks derived from anatomical atlases, but also on
arbitrary rules that are fixed by the investigators to reach a compromise
between reliability/reproducibility and validity. We acknowledge that
existing protocols show differences in their definition of hippocampal
subfields but, in the absence of direct comparison between in vivo
imagingmethods (ideally including a confrontation to neuropathological
gold standard), the importance of these variations and their influ-
ence on results remains unknown. However, a recently formed ini-
tiative led by experts in the field is specifically meant to address
this issue and to potentially develop a unified hippocampal subfield seg-
mentation protocol (to know more about this group, visit http://www.
hippocampalsubfields.com/).

Moreover, it is to note that high-resolution scans such as those used
here are particularly prone to motion artifacts. To prevent the rejection
of a large proportion of individuals from analyses, a procedure was set-
tled to obtain high quality data from all individuals participating to im-
aging studies in our lab (including, but not restricted to the controls and
patients from the present article). Indeed, a visual quality check was
performed immediately after orwithin a fewdays of theMRI acquisition
and was carried out by the same person who analyzes the data (RLJ). If
image quality was considered insufficient for subfield delineation, the
scan was repeated within a few weeks during a second MRI session
(this occurred for about 15–20% of healthy controls and 30–40% of the
patients included in our total imaging cohort). Rarely, a third scan was
proposed. In the end, we failed to obtain an image of sufficient quality
in some participants (roughly 5–10% of the controls and 15–20% of the
patients) as they could not come back for a repeated scan or because
the repeated scan(s) was/were still of insufficient quality; in this case,
data were disregarded and excluded from all analyses. The 83 partici-
pants included in the present study had high quality data.
2.3.2. Total intracranial volume (TIV)
Individual TIV values were obtained from the T1-weighted images

using theVBM5 toolbox implemented in the Statistical ParametricMap-
ping software (SPM5; Wellcome Trust Center for Neuroimaging, Insti-
tute of Neurology, London, England).
2.3.3. Florbetapir PET
PET data were processed as described in reference (La Joie et al.,

2012). Briefly, each individual T1-weighted MRI was segmented into
gray and white matter using the VBM5 toolbox (http://dbm.neuro.uni-
jena.de/vbm/vbm5-for-spm5/). These segments were used for partial
volume effect correction of raw PET data using the PMOD software.
Using the Statistical Parametric Mapping (SPM) software, resulting
images were coregistered onto corresponding MRI and normalized into
Montreal Neurological Institute (MNI) space using the deformation
parameters defined from the VBM procedure. The mean Florbetapir
value in the cerebellum GM was extracted for each subject from the
normalized TEP images. Each Florbetapir image was then divided by its
corresponding mean cerebellar value, resulting in Florbetapir-PET SUVr
data. The global neocortical Florbetapir-PET SUVr value was then
computed for each subject from the Florbetapir-PET SUVr data using a
neocortex mask (including all regions but the cerebellum, hippocampus,
amygdala and subcortical gray nuclei).

2.4. Statistical analyses

Raw volumes of each hippocampal subfield and of the whole hip-
pocampus (corresponding to the sum of the three subfields) were
first normalized by the TIV to account for inter-individual variability
in head size (normalized volume = 1000 × raw volume / TIV) and then
transformed into W-scores, i.e. age and gender-adjusted Z-scores (Jack
et al., 2002).W-scores provide information about the difference between
a patient's value and the value that would be expected in the control
group for his/her age and gender. In the present study, the use of W-
score is of particular interest because of the rather wide age range of
the participants and significant age difference between aMCI and
both HC and SD groups (see Table 1). Due to the relative limited
size of the patient groups, Kruskal–Wallis non-parametric analyses
of variance (ANOVAs) were then performed on hippocampal subfield
and whole hippocampus W-scores, and when a significant effect of
group was found (p b 0.05), Mann–Whitney U tests were used for
pairwise comparisons.

As previous studies reported a stronger hemispheric asymmetry
and an anterior predominance of hippocampal atrophy in SD com-
pared with AD (Chan et al., 2001; Nestor et al., 2006), complementa-
ry indices were calculated to characterize these gradients within
each subfield. First, hemispheric asymmetry was measured as the
absolute difference between left and right hippocampal volumes
expressed as a percentage of the total volume (100 x | right
volume – left volume | / bilateral hippocampal volume). Second,

http://www.hippocampalsubfields.com/
http://www.hippocampalsubfields.com/
http://dbm.neuro.uni-jena.de/vbm/vbm5-for-spm5/
http://dbm.neuro.uni-jena.de/vbm/vbm5-for-spm5/
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an index of anterior–posterior gradient was calculated as the per-
centage of each subfield volume located in the anterior hippocam-
pus (100 x anterior volume / total hippocampal volume), with
the anterior portion corresponding to the hippocampal head (Jack
et al., 1997; Malykhin et al., 2007; Pruessner & Li, 2000). These in-
dices were compared between HC, AD and SD using Kruskal–Wallis
ANOVA and Mann–Whitney U tests.

Discriminant analyses were performed to assess the ability of
each hippocampal subfield and of the whole hippocampus volume
to distinguish i) AD patients from HC, ii) aMCI patients from HC,
and iii) SD patients from AD. Areas Under the receiver operating
characteristic Curve (AUC) of global hippocampus versus subfield
volumes were then compared to test the hypothesis that subfield is
more accurate than global hippocampal volumetry to discriminate
between the groups.

Finally, preliminary analyses were conducted to assess the impact
of the presence of Aβ on the different hippocampal volumes. All AD
patients (n = 18) and 15 patients with aMCI (out of 17) underwent
a Florbetapir PET scan and were classified using a previously deter-
mined Florbetapir neocortical SUVr of 1.1 (see reference (La Joie
et al., 2012)). All AD patients were classified as Aβ-positive and 9
aMCI patients (60% of aMCI patients who underwent Florbetapir-
PET) were classified as Aβ-positive. Aβ-positive and Aβ-negative
aMCI did not differ in age, gender or education (all p-values N 0.8). Statis-
tical analyses on hippocampal volumes included both Spearman's corre-
lation between Aβ load and hippocampal atrophy within the 15 aMCI
patients, and comparisons between Aβ-positive versus Aβ-negative
aMCI, andbetween each subgroup andHC. For the latter analysis, because
aMCI was significantly older than the whole HC group (see Table 1), a
subgroup of age, gender and education-matched HC (n = 28) was used.
Fig. 2. Between-group comparisons of hippocampal measurements. Abbreviations: HC = hea
SD = semantic dementia. Volumes are expressed as W-scores (i.e. age- and gender-adjusted
regions and post-hoc tests were performed with the Mann–Whitney test (t: p b 0.10; *: p b 0
3. Results

3.1. Atrophy of hippocampal subfields in patients

Comparisons ofW-scores are illustrated in Fig. 2. Briefly, the volume
of the whole hippocampus was significantly decreased in all three
patient groups as compared to HC (mean volume loss = −12% for
aMCI, −22% for AD and −17% for SD). In aMCI, atrophy was highly
significant in CA1 (−22%, p b 0.001) and to a lesser extent in the
subiculum (−17%, p = 0.01). In AD, volume decreases were highly
significant (p b 0.001) for all three subfields, but atrophy in the other
region (−17%) was significantly lower (p b 0.005 using Wilcoxon
rank-sum test) than in both CA1 and subiculum (both −27%). In the
SD group, both CA1 and subiculum volumes were significantly reduced
relative to HC (−27% and−24% respectively, both p b 0.001). Sim-
ilarly to the findings in the AD group, comparing degrees of atrophy
(expressed as W-scores) between the three subfields in SD showed
that both CA1 and subiculum were significantly more affected than
the other subfield (both p b 0.05 Wilcoxon rank-sum test). None of
the volumes differed between AD and SD patients (all p values N 0.15).
Note that the main results were unchanged when performing compari-
sons on raw volumes or TIV-normalized volumes instead of age- and
gender-adjustedW-scores as presented here (see Supplementary Fig. 2).

3.2. Hemispheric asymmetry and anterior–posterior gradient in AD and SD

The results of the between-group comparisons of the hippocam-
pal indices are reported in Table 2. Greater hemispheric asymmetry
was found in SD patients compared to HC for all volumes (all p
values b 0.03). Asymmetry was significantly stronger in SD than in
lthy controls; aMCI = amnestic Mild Cognitive Impairment; AD = Alzheimer's disease;
Z-scores as compared to the control group). Kruskal–Wallis ANOVA was significant for all
.05; **: p b 0.01; ***: p b 0.001).



Table 2
Hemispheric asymmetry and anterior–posterior gradients of subfield atrophy in AD and SD patients. Abbreviations: HC = healthy controls; AD = Alzheimer's disease; SD = semantic
dementia; IQR = interquartile range. ANOVA were conducted with the Kruskal & Wallis H test and when significant (p b 0.05), two-by-two comparisons were assessed with the
Mann–Whitney test. Significant (p b 0.05) results are shown in bold. Increased hemispheric asymmetry indicates a stronger left/right volume difference but not the direction of this
difference. Increased anterior–posterior gradient index indicates an increase in the volume of the anterior hippocampal compared to that of the total hippocampal volume. See main
text (Section 2.4) for further information.

Values: median (IQR) Statistical comparisons

HC AD SD ANOVA HC/AD HC/SD AD/SD

Hemispheric asymmetry
CA1 5.4

(1.8, 8.5)
7.8
(4.2, 17.0)

15.3
(13.1, 18.5)

H = 14.7
p b 10−3

Z = 1.94
p = 0.05

Z = 3.67
p b 10−3

Z = 1.86
p = 0.06

Subiculum 3.8
(1.6, 6.5)

6.6
(1.8, 8.1)

17.7
(12.7, 23.8)

H = 16.1
p b 10−3

Z = 1.64
p = 0.10

Z = 3.91
p b 10−3

Z = 2.42
p = 0.02

Other 5.2
(2.8, 9.8)

5.1
(1.9, 8.1)

11.4
(7.2, 14.4)

H = 7.2
p = 0.03

Z = −0.82
p = 0.42

Z = 2.31
p = 0.021

Z = 2.53
p = 0.01

Global hippocampus 2.1
(1.2, 4.0)

4.7
(2.8, 7.1)

14.2
(11.2, 16.1)

H = 27.1
p b 10−3

Z = 3.17
p = 0.002

Z = 4.41
p b 10−3

Z = 3.25
p = 0.001

Anterior–posterior gradient
CA1 66.2

(63.4, 70.0)
66.6
(59.7, 70.1)

56.5
(52.9, 57.6)

H = 14.7
p b 10−3

Z = −0.33
p = 0.74

Z = −3.80
p b 10−3

Z = 3.08
p = 0.002

Subiculum 57.2
(53.2, 61.5)

60.1
(53.3, 65.6)

52.4
(44.8, 54.9)

H = 8.3
p = 0.02

Z = 1.02
p = 0.31

Z = 2.59
p = 0.01

Z = 2.47
p = 0.01

Other 62.8
(57.5, 66.7)

65.8
(57.1, 70.4)

59.7
(55.5, 61.9)

H = 3.03
p = 0.22

– – –

Global hippocampus 62.4
(59.0, 65.1)

64.6
(58.2, 68.5)

55.6
(52.0, 59.0)

H = 9.3
p = 0.009

Z = 0.60
p = 0.55

Z = 2.95
p = 0.003

Z = 2.53
p = 0.01
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AD for the whole hippocampus (p = 0.001), subiculum (p = 0.02),
other (p = 0.01) and a trend was found for CA1 (p = 0.06).

Finally, the anterior–posterior index was significantly lower in SD
compared to both HC and AD for the whole hippocampus, CA1 and
subiculum, indicating a predominance of atrophy in the anterior hippo-
campus in SD.
3.3. Evaluation of diagnostic accuracy

For the AD versus HC discrimination, the AUC of all subfields was
significantly higher than 0.5 (mean [95% CI] = 0.92 [0.85–0.99] for
CA1, 0.88 [0.76–1] for subiculum, 0.81 [0.67–0.94] for other) but
none of them was significantly higher than that of the whole
Fig. 3. ROC Curve for CA1 and total hippocampal volume in aMCI patients versus HC. ROC
curves for CA1 (blue) and total hippocampal volume (gray) in the comparison between
healthy controls (HC) and patients with amnestic Mild Cognitive Impairment (aMCI).
The area under the curve (AUC) is significantly higher (p = 0.05) for CA1 (AUC = 0.881)
than for total hippocampal volume (0.763). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
hippocampus (0.91 [0.78–1]). For the discrimination between HC
and aMCI, the AUC of CA1 (0.88 [0.78–0.98]) was significantly higher
than 0.5 and higher than the AUC of the whole hippocampus (0.76
[0.60–0.93], p = 0.05; see Fig. 3), whereas the subiculum AUC
(0.74 [0.59–0.90]) was significantly higher than 0.5 but did not per-
form better than the whole hippocampus, and the AUC for the other
subfields was not significantly different from 0.5 (0.53 [0.34–0.72]).
Finally, none of the volume measurements were allowed to sepa-
rate AD from SD as none of the AUCs was significantly different
from 0.5: 0.51 [0.27–0.74] for CA1, 0.64 [0.43–0.85] for subiculum,
0.69 [0.45–0.94] for other, and 0.69 [0.47–0.90] for the whole
hippocampus.

3.4. Volume of hippocampal subfields versus neocortical amyloid load in
aMCI patients

A Kruskal–Wallis ANOVA with three groups (HC, Aβ-positive aMCI,
Aβ-negative aMCI) was performed on TIV-normalized hippocampal
Fig. 4. CA1 atrophy in aMCI patients classified as Aβ-positive or Aβ-negative
according to their neocortical Florbetapir SUVr. Abbreviations: HC = healthy
controls; Aβ + aMCI = β-amyloid—positive patients with amnestic Mild Cognitive
Impairment; Aβ − aMCI = β-amyloid—negative patients with amnestic Mild Cognitive
Impairment. For this analysis, a subsample of 28 age-, gender-, and education-matched HC
was selected. Kruskal–Wallis ANOVA was significant (p = 0.001) and post-hoc tests were
performed with the Mann–Whitney test (*: p b 0.05; ***: p b 0.001).
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measurements. A significant effect of group was found for CA1
(H = 13.8; p = 0.001), subiculum (H = 5.99; p = 0.05) and glob-
al hippocampus (H = 5.98; p = 0.05). Post-hoc analyses revealed that
Aβ-positive aMCI had significantly lower CA1 (p b 0.001), subiculum
(p = 0.01) and hippocampal volumes (p = 0.01) as compared to HC,
while Aβ-negative aMCI only showed lower CA1 volume (p = 0.04) as
compared to HC, as illustrated in Fig. 4. The direct comparison between
Aβ-positive aMCI and Aβ-negative aMCI did not show any significant dif-
ference (all p values N 0.25). Similarly, none of the volumes significantly
correlated with Florbetapir neocortical SUVr in the whole group
of 15 aMCI (CA1: Spearman's ρ = −0.34, p = 0.22; subiculum
ρ = −0.26, p = 0.34; other ρ = −0.01, p = 0.96; whole hippo-
campus ρ = −0.23, p = 0.41). All the results remained unchanged
when using W-scores instead of TIV-normalized volumes (data not
shown).

4. Discussion

Using a high-resolution sequence on a 3 T MRI scanner, hippocam-
pal subfields were delineated in healthy controls and patients with
aMCI, AD or SD. Analyses showed that the pathologies had a differential
effect on the hippocampal subfields, with a preferential involvement
(i.e. stronger and earlier atrophy) of CA1 and subiculum. This pattern
was not discriminant at the dementia stage as i) no differences were
found between AD and SD and ii) hippocampal subfields did not
perform better than the whole hippocampus in discriminating AD
from HC. By contrast, at the aMCI stage, CA1 volume loss predominated
andwas found to better discriminate aMCI patients fromHC than global
hippocampal volume.

4.1. Hippocampal subfield atrophy in AD

The finding of a differential atrophy of the hippocampal subfields
in AD, with a stronger and earlier alteration of CA1 and subiculum, is
in agreement with neuropathological studies (Braak & Braak, 1991;
Rössler et al., 2002; Schönheit et al., 2004; West et al., 1994). For in-
stance, West et al. (1994) reported a reduction in the number of neu-
rons in AD patients compared to HC of 68% in CA1, 47% in the
subiculum and 25% in the hilus of the dentate gyrus. The higher
vulnerability of CA1 neurons is likely to be at least partly due to the
neurofibrillary pathology as the CA1 subfield is the first hippocampal
area to be affected by NFT (Braak & Braak, 1991; Schönheit et al.,
2004). Moreover, several studies have reported a strong negative
correlation between neuronal counts and NFT number in the CA1
subfield (Fukutani et al., 2000; Von Gunten et al., 2006) suggesting
that the progression of brain atrophy and the progression of NFT
are strongly associated (Whitwell et al., 2008).

Using a variety of neuroimaging approaches such as radial atrophy
(Frisoni et al., 2006), large-deformation high-dimensional brain map-
ping (Wang et al., 2003), voxel-based morphometry (Chételat et al.,
2008) or manual delineation (Mueller et al., 2010), the predominance
of atrophy in CA1 (and to a lesser extent in the subiculum) in patients
with clinical AD or aMCI has already been shown in vivo. In the present
study, we confirmed this point using a refined methodology in patients
with both a clinical diagnosis of AD and a positive Florbetapir PET-scan.
Our study showed that all subfields were atrophied at this AD dementia
stage and subfield measurements were not more accurate than the
global hippocampus in discriminating AD from HC. By contrast, and in
agreement with previous volumetric studies (Hanseeuw, 2011;
Mueller et al., 2010; Pluta et al., 2012), we showed that subfield mea-
surements were more accurate than global hippocampal volumetry to
differentiate aMCI from HC, highlighting the interest of these methods
for early AD detection. However, discrepancies exist as regards to the
area of largest difference between HC and aMCI patients (CA1 (Pluta
et al., 2012), CA1–CA2 transition area (Mueller et al., 2010) or
subiculum (Hanseeuw, 2011), probably reflecting variations in the
anatomical landmarks used for subfield delineation as further discussed
in previous publications (La Joie et al., 2010;Wisse et al., 2012) (see the
method Section 2.3.1 for further discussion).

4.2. Comparison of the pattern of hippocampal atrophy in AD versus SD

AD and SD patients did not differ in terms of subfield volumetry.
Although the absence of significant difference could be due to a lack of
statistical power, preferential atrophy of both CA1 and subiculum was
found in both groups and this finding is consistent with a recent
surface-based study of the hippocampus in SD (Lindberg et al., 2012).
Yet, the pathological substrate of hippocampal atrophy in SD is not
clear, notably because patients with SD can presentwith heterogeneous
pathological features (Davies et al., 2005). Despite this variability, a se-
vere neuronal loss in the CA1 subfield together with a preservation of
neurons in the dentate gyrus, consistent with our imaging findings,
was reported independently of the histopathological subtypes (Davies
et al., 2005).

Contrastingly, hippocampal atrophy differed between SD andADpa-
tients in terms of hemispheric and anterior–posterior asymmetry, in
agreement with previous reports (Chan et al., 2001; Davies et al.,
2004; Galton, 2001; Nestor et al., 2006), and we showed that these
two gradients were mostly independent of subfields. Previous authors
(Chan et al., 2001; Davies et al., 2004; Galton, 2001) hypothesized that
this asymmetric nature of hippocampal atrophy in SD could partly ex-
plain the intriguing relative preservation of episodic memory in SD as
compared to AD (Hornberger & Piguet, 2012) in spite of similarly severe
hippocampal atrophy (Pleizier et al., 2012). According to these authors,
the relatively spared hippocampal areas (posterior areas and most of
the time the right hippocampus) in SD could therefore be sufficient to
support essential episodic memory abilities (Chan et al., 2001; Davies
et al., 2004; Galton, 2001). Alternatively, it has been proposed (Nestor
et al., 2006) that differential alterations of cortical areas that are crucial
for episodic memory, such as the posterior cingulate cortex (PCC) that
shows a strong hypometabolism in AD but not in SD, are more likely to
account for the differential alteration of episodic memory between AD
and SD. Yet, these two hypotheses are not necessarily independent as
hippocampal atrophy has been shown to induce PCC hypometabolism
through a disconnection process in AD (Villain et al., 2008). Besides, the
connectivity of the hippocampus varies along its anterior–posterior
axis, with the posterior part being more strongly connected to the PCC
(Poppenk et al., 2013). It is thus possible that the predominance of
atrophy in the anterior hippocampus in SD at least partly accounts
for differences in distant cortical alterations (e.g. the lack of PCC
hypometabolism) compared to AD, themselves underlying differ-
ences in the cognitive deficits. This would also be consistent with
the idea that SD and AD target two large-scale brain networks that
would underlie different cognitive functions and differentially in-
clude anterior versus posterior hippocampi (Ranganath & Ritchey,
2012).

4.3. Relationships between hippocampal subfield atrophy and Aβ in aMCI

Because the presence of Aβ deposition significantly increases the
likelihood of having AD pathology in patients with aMCI according to
current diagnosis recommendations (Albert et al., 2011; Dubois et al.,
2010), we also investigated hippocampal subfield atrophy in aMCI pa-
tients as a function of Aβ load. We did not find a significant influence
of the presence of Aβ on the pattern of hippocampal subfield atrophy
as both Aβ-positive and Aβ-negative aMCI showed a predominant atro-
phy of the CA1 subfield (Fig. 4). However, these findings should be con-
sidered as preliminary given the small size of the aMCI samples when
dichotomized in Aβ-positive and Aβ-negative. Yet, this finding is in
line with recent studies showing that AD-type atrophy and/or
hypometabolism can be found in both Aβ-negative healthy controls
(Jack et al., 2012) and Aβ-negative MCI patients (Prestia et al., 2013).
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While it may reflect methodological issues related to biomarker mea-
surements (Jack et al., 2013), it is possible that CA1 atrophy in Aβ-
negative patients reflect non-AD pathophysiological processes. This
would be consistent with the finding of CA1 atrophy in other disorders
(Gemmell et al., 2012; Jack et al., 2002; Zarow et al., 2012) and the idea
that aMCI in Aβ-negative patients is unlikely due to AD etiology (Albert
et al., 2011). Alternatively, recent findings suggest that neuronal injury
biomarkers known to be closely related to tau pathology such as hippo-
campal atrophy (see above), may occur independently and possibly prior
to Aβ in the course of AD (Chételat, 2013; Knopman et al., 2013). This
would rather support hypotheses suggesting that tau pathology could
occur independently fromAβ accumulation (Small, 2008), than the amy-
loid hypothesis where tau-related neurodegeneration is supposed to ap-
pear downstream to Aβ. Further investigations are needed not only to
test these hypotheses but also to replicate our findings regarding the re-
lationships between hippocampal subfield atrophy and Aβ in a larger
sample given the limited size of our aMCI subgroups.

It should also be noted that subfield volumetry as performed in the
present study only provides approximations of the exact volumes of
the hippocampal subfields, based on anatomical landmarks derived
from histological atlases (see the method Section 2.3.1 for further
discussion).

4.4. Conclusion

Overall, our findings in AD and SD are consistent with the topogra-
phy of neuronal loss described in post-mortem studies as well as with
previous imaging studies that used different methods. They suggest
that hippocampal subfield volumetry is a promising biomarker for
early AD detection at a predementia or even presymptomatic stage,
especially with the widespread use of high-resolution MR sequences
in the last years (Mueller et al., 2010; Wisse et al., 2012) and the on-
going development of automatic subfield segmentation procedures
(Van Leemput et al., 2009; Yushkevich et al., 2010). Further studies
are therefore needed to assess the diagnostic and prognostic accuracies
of this novel technique in larger samples and in comparison to other
established AD biomarkers.

Acknowledgments

Funding: This work was supported by the Fondation Plan Alzheimer
(Alzheimer Plan 2008–2012), Programme Hospitalier de Recherche
Clinique (PHRC National 2011), Agence Nationale de la Recherche
(ANR LONGVIE 2007), Région Basse Normandie, and Institut National
de la Santé et de la Recherche Médicale (INSERM), including the
Inserm-Liliane Bettencourt School (MD–PhD Program). These funding
sources were not involved in study design, data collection, statistical
analysis, results interpretation, writing of the report or in the decision
to submit the article for publication. The authors have no disclosure.

Additional contributions: The authors are grateful to A. Bejanin, J.
Dayan, C. Duval, M. Fouquet, A. Manrique, K. Mevel, A. Pélerin, A.
Quillard, C. Schupp, N. Villain, and the Cyceron MRI-PET staff members
for their help with patients and imaging examination. We thank L.
Barré, A. Abbas, D. Guilloteau, for the radiotracer; F. Mézenge, and B.
Landeau, for their technical support and A. Hammers, for his careful
reading of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2013.08.007.

References

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., et al., 2011. The
diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations
from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic
guidelines for Alzheimer's disease. Alzheimer's & Dementia 7, 270–279.

Bobinski, M., Wegiel, J., Wisniewski, H.M., Tarnawski, M., Bobinski, M., Reisberg, B., et al.,
1996. Neurofibrillary pathology—correlation with hippocampal formation atrophy in
Alzheimer disease. Neurobiology of Aging 17, 909–919.

Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathologica 82, 239–259.

Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., et al., 2001. Pat-
terns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Annals
of Neurology 49, 433–442.

Chételat, G., 2013. Alzheimer disease: Aβ-independent processes—rethinking preclinical
AD. Nature Reviews. Neurology 9, 123–124.

Chételat, G., Fouquet, M., Kalpouzos, G., Denghien, I., de La Sayette, V., Viader, F., et al.,
2008. Three-dimensional surface mapping of hippocampal atrophy progression
from MCI to AD and over normal aging as assessed using voxel-based morphometry.
Neuropsychologia 46, 1721–1731.

Convit, A., De Leon, M.J., Tarshish, C., De Santi, S., Tsui, W., Rusinek, H., et al., 1997. Specific
hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neuro-
biology of Aging 18, 131–138.

Davies, R.R., Graham, K.S., Xuereb, J.H., Williams, G.B., Hodges, J.R., 2004. The human
perirhinal cortex and semantic memory. European Journal of Neuroscience 20,
2441–2446.

Davies, R.R., Hodges, J.R., Kril, J.J., Patterson, K., Halliday, G.M., Xuereb, J.H., 2005. The path-
ological basis of semantic dementia. Brain 128, 1984–1995.

Desgranges, B., Matuszewski, V., Piolino, P., Chételat, G., Mézenge, F., Landeau, B., et al.,
2007. Anatomical and functional alterations in semantic dementia: a voxel-based
MRI and PET study. Neurobiology of Aging 28, 1904–1913.

Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., Dekosky, S.T., Barberger-Gateau, P., et
al., 2010. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol-
ogy 9, 1118–1127.

Frisoni, G.B., Sabattoli, F., Lee, A.D., Dutton, R.A., Toga, A.W., Thompson, P.M., 2006. In vivo
neuropathology of the hippocampal formation in AD: a radial mapping MR-based
study. NeuroImage 32, 104–110.

Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M., 2010. The clinical use of
structural MRI in Alzheimer disease. Nature Reviews. Neurology 6, 67–77.

Fukutani, Y., Cairns, N.J., Shiozawa, M., Sasaki, K., Sudo, S., Isaki, K., et al., 2000.
Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in
late-onset sporadic Alzheimer's disease. Psychiatry and Clinical Neurosciences
54, 523–529.

Galton, C.J., Patterson, K., Graham, K., Lambon-Ralph, M.A., Williams, G., Antoun, N., et al.,
2001. Differing patterns of temporal atrophy in Alzheimer's disease and semantic
dementia. Neurology 57, 216–225.

Gemmell, E., Bosomworth, H., Allan, L., Hall, R., Khundakar, A., Oakley, A.E., et al., 2012.
Hippocampal neuronal atrophy and cognitive function in delayed poststroke and
aging-related dementias. Stroke 43, 808–814.

Geuze, E., Vermetten, E., Bremner, J.D., 2005. MR-based in vivo hippocampal volumetrics:
2. Findings in neuropsychiatric disorders. Molecular Psychiatry 10, 160–184.

Hanseeuw, B.J., Van Leemput, K., Kavec, M., Grandin, C., Seron, X., Ivanoiu, A., 2011.
Mild cognitive impairment: differential atrophy in the hippocampal subfields.
AJNR. American Journal of Neuroradiology 32, 1658–1661.

Harding, A.J., Halliday, G.M., Kril, J.J., 1998. Variation in hippocampal neuron number with
age and brain volume. Cerebral Cortex 8, 710–718.

Hornberger, M., Piguet, O., 2012. Episodic memory in frontotemporal dementia: a critical
review. Brain 135, 678–692.

Jack Jr., C.R., Petersen, R.C., Xu, Y.C., Waring, S.C., O'Brien, P.C., Tangalos, E.G., et al., 1997.
Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease.
Neurology 49, 786–794.

Jack Jr., C.R., Dickson, D.W., Parisi, J.E., Xu, Y.C., Cha, R.H., O'Brien, P.C., et al., 2002. Ante-
mortem MRI findings correlate with hippocampal neuropathology in typical aging
and dementia. Neurology 58, 750–757.

Jack Jr., C.R., Knopman, D.S., Weigand, S.D., Wiste, H.J., Vemuri, P., Lowe, V., et al., 2012. An
operational approach to National Institute on Aging–Alzheimer's Association criteria
for preclinical Alzheimer disease. Annals of Neurology 71, 765–775.

Jack Jr., C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S.,
et al., 2013. Tracking pathophysiological processes in Alzheimer's disease: an
updated hypothetical model of dynamic biomarkers. Lancet Neurology 12,
207–216.

Knopman, D.S., Jack, C.R., Wiste, H.J., Weigand, S.D., Vemuri, P., Lowe, V.J., et al., 2013.
Neuronal injury biomarkers are not dependent on β-amyloid in normal elderly.
Annals of Neurology 73, 472–480.

La Joie, R., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., et al., 2010. Differ-
ential effect of age on hippocampal subfields assessed using a new high-resolution
3 T MR sequence. NeuroImage 53, 506–514.

La Joie, R., Perrotin, A., Barré, L., Hommet, C., Mézenge, F., Ibazizene, M., et al., 2012.
Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ)
load in Alzheimer's disease dementia. Journal of Neuroscience 32, 16265–16273.

Lindberg, O., Walterfang, M., Looi, J.C.L., Malykhin, N., Ostberg, P., Zandbelt, B., et al., 2012.
Hippocampal shape analysis in Alzheimer's disease and frontotemporal lobar degen-
eration subtypes. Journal of Alzheimer's Disease 30, 355–365.

Malykhin, N.V., Bouchard, T.P., Ogilvie, C.J., Coupland, N.J., Seres, P., Camicioli, R., 2007.
Three-dimensional volumetric analysis and reconstruction of amygdala and hippo-
campal head, body and tail. Psychiatry Research 155, 155–165.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984. Clinical
diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under
the auspices of Department of Health and Human Services Task Force on Alzheimer's
disease. Neurology 34, 939–944.

http://dx.doi.org/10.1016/j.nicl.2013.08.007
http://dx.doi.org/10.1016/j.nicl.2013.08.007
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0275
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0275
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0275
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0275
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0015
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0015
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0075
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0075
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0050
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0050
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0050
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0235
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0235
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0165
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0165
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0165
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0020
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0020
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0020
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0070
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0070
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0070
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0180
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0180
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0060
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0060
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0035
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0035
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0300
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0300
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0300
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0260
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0260
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0150
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0150
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0150
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0280
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0280
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0225
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0225
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0045
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0045
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0305
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0305
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0125
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0125
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0185
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0185
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0135
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0135
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0010
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0010
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0010
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0210
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0210
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0210
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0220
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0220
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0220
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0310
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0310
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0105
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0105
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0105
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0130
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0130
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0175
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0175
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0145
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0145
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0115
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0115
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0115
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0115


162 R. La Joie et al. / NeuroImage: Clinical 3 (2013) 155–162
Mueller, Schuff N., Yaffe, K., Madison, C., Miller, B., Weiner, M.W., 2010. Hippocampal
atrophy patterns in mild cognitive impairment and Alzheimer's disease. Human
Brain Mapping 31, 1339–1347.

Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al., 1998.
Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neu-
rology 51, 1546–1554.

Nestor, P.J., Fryer, T.D., Hodges, J.R., 2006. Declarative memory impairments in
Alzheimer's disease and semantic dementia. NeuroImage 30, 1010–1020.

Petersen, R.C., Morris, J.C., 2005. Mild cognitive impairment as a clinical entity and treat-
ment target. Archives of Neurology 62, 1160–1163.

Pleizier, C.M., van der Vlies, A.E., Koedam, E., Koene, T., Barkhof, F., van der Flier, W.M., et
al., 2012. Episodic memory and the medial temporal lobe: not all it seems. Evidence
from the temporal variants of frontotemporal dementia. Journal of Neurology, Neuro-
surgery and Psychiatry 83, 1145–1148.

Pluta, J., Yushkevich, P., Das, S., Wolk, D., 2012. In vivo analysis of hippocampal subfield
atrophy in mild cognitive impairment via semi-automatic segmentation of
T2-weighted MRI. Journal of Alzheimer's Disease 31, 85–99.

Poppenk, J., Evensmoen, H.R., Moscovitch, M., Nadel, L., 2013. Long-axis specialization of
the human hippocampus. Trends in Cognitive Science 17, 230–240.

Prestia, A., Caroli, A., van der Flier, W.M., Ossenkoppele, R., Van Berckel, B., Barkhof, F., et
al., 2013. Prediction of dementia inMCI patients based on core diagnostic markers for
Alzheimer disease. Neurology 80, 1048–1056.

Pruessner, J.C., Li, L.M., Serles, W., Pruessner, M., Collins, D.L., Kabani, N., et al., 2000.
Volumetry of hippocampus and amygdala with high-resolution MRI and three-
dimensional analysis software: minimizing the discrepancies between laboratories.
Cerebral Cortex 10, 433–442.

Ranganath, C., Ritchey, M., 2012. Two cortical systems for memory-guided behaviour. Na-
ture Review Neuroscience 13, 713–726.

Rössler, M., Zarski, R., Bohl, J., Ohm, T.G., 2002. Stage-dependent and sector-specific neuronal
loss in hippocampus during Alzheimer's disease. Acta Neuropathologica 103, 363–369.

Schönheit, B., Zarski, R., Ohm, T.G., 2004. Spatial and temporal relationships between
plaques and tangles in Alzheimer-pathology. Neurobiology of Aging 25, 697–711.

Shi, F., Liu, B., Zhou, Y., Yu, C., Jiang, T., 2009. Hippocampal volume and asymmetry inmild
cognitive impairment and Alzheimer's disease: meta-analyses of MRI studies. Hippo-
campus 19, 1055–1064.
Small, S.A., Duff, K., 2008. Linking Abeta and tau in late-onset Alzheimer's disease: a dual
pathway hypothesis. Neuron 60, 534–542.

Smith, C.D., Chebrolu, H., Wekstein, D.R., Schmitt, F.A., Jicha, G.A., Cooper, G., et al.,
2007. Brain structural alterations before mild cognitive impairment. Neurology
68, 1268–1273.

Tondelli, M., Wilcock, G.K., Nichelli, P., De Jager, C.A., Jenkinson, M., Zamboni, G., 2012.
Structural MRI changes detectable up to ten years before clinical Alzheimer's disease.
Neurobiology of Aging 33 (825), e25–e36.

Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L.L., Augustinack, J., et al.,
2009. Automated segmentation of hippocampal subfields from ultra-high resolution
in vivo MRI. Hippocampus 19, 549–557.

Villain, N., Desgranges, B., Viader, F., de La Sayette, V., Mézenge, F., Landeau, B., et al.,
2008. Relationships between hippocampal atrophy, white matter disruption, and
gray matter hypometabolism in Alzheimer's disease. Journal of Neuroscience 28,
6174–6181.

Von Gunten, A., Kövari, E., Bussière, T., Rivara, C.-B., Gold, G., Bouras, C., et al., 2006.
Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in
Alzheimer's disease. Neurobiology of Aging 27, 270–277.

Wang, L., Swank, J.S., Glick, I.E., Gado, M.H., Miller, M.I., Morris, J.C., et al., 2003. Changes in
hippocampal volume and shape across time distinguish dementia of the Alzheimer
type from healthy aging. NeuroImage 20, 667–682.

West, M.J., Coleman, P.D., Flood, D.G., Troncoso, J.C., 1994. Differences in the pat-
tern of hippocampal neuronal loss in normal ageing and Alzheimer's disease.
Lancet 344, 769–772.

Whitwell, J.L., Josephs, K.A., Murray, M.E., Kantarci, K., Przybelski, S.A., Weigand,
S.D., et al., 2008. MRI correlates of neurofibrillary tangle pathology at autopsy.
Neurology 71, 743.

Wisse, L.E.M., Gerritsen, L., Zwanenburg, J.J.M., Kuijf, H.J., Luijten, P.R., Biessels, G.J., et al.,
2012. Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assess-
ment. NeuroImage 61, 1043–1049.

Yushkevich, P.A., Wang, H., Pluta, J., Das, S.R., Craige, C., Avants, B.B., et al., 2010. Nearly au-
tomatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI.
NeuroImage 53, 1208–1224.

Zarow, C., Weiner, M.W., Ellis, W.G., Chui, H.C., 2012. Prevalence, laterality, and comorbid-
ity of hippocampal sclerosis in an autopsy sample. Brain Behavior 2, 435–442.

http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0285
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0285
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0285
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0120
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0120
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0055
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0055
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0110
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0110
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0190
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0190
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0190
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0095
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0095
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0095
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0200
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0200
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0215
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0215
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0290
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0290
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0290
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0205
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0205
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0090
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0090
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0080
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0080
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0025
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0025
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0025
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0245
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0245
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0265
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0265
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0270
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0270
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0250
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0250
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0195
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0195
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0195
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0155
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0155
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0160
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0160
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0160
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0085
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0085
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0085
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0295
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0295
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0100
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0100
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0255
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0255
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0255
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0230
http://refhub.elsevier.com/S2213-1582(13)00107-1/rf0230

	Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia
	1. Introduction
	2. Material and methods
	2.1. Participants
	2.2. Neuroimaging data acquisition
	2.2.1. MRI data
	2.2.2. PET data

	2.3. Neuroimaging data processing
	2.3.1. Hippocampal subfield delineation
	2.3.2. Total intracranial volume (TIV)
	2.3.3. Florbetapir PET

	2.4. Statistical analyses

	3. Results
	3.1. Atrophy of hippocampal subfields in patients
	3.2. Hemispheric asymmetry and anterior–posterior gradient in AD and SD
	3.3. Evaluation of diagnostic accuracy
	3.4. Volume of hippocampal subfields versus neocortical amyloid load in aMCI patients

	4. Discussion
	4.1. Hippocampal subfield atrophy in AD
	4.2. Comparison of the pattern of hippocampal atrophy in AD versus SD
	4.3. Relationships between hippocampal subfield atrophy and Aβ in aMCI
	4.4. Conclusion

	Acknowledgments
	Appendix A. Supplementary data
	References


