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Objective: Prior studies have shown that there is an inverse association between birth
weight and stroke in adulthood; however, whether such association is causal remains
yet known and those studies cannot distinguish between the direct fetal effect and the
indirect maternal effect. The aim of the study is to untangle such relationship using novel
statistical genetic approaches.

Methods: We first utilized linkage disequilibrium score regression (LDSC) and Genetic
analysis incorporating Pleiotropy and Annotation (GPA) to estimate the overall genetic
correlation between birth weight and stroke. Then, with a set of valid birth-weight
instruments which had adjusted fetal and maternal effects, we performed a two-sample
Mendelian randomization (MR) to evaluate its causal effect on stroke based summary
statistics from large scale genome-wide association study (GWAS) (n = 264,498 for
birth weight and 446,696 for stroke). We further validated the MR results with extensive
sensitivity analyses.

Results: Both LDSC and GPA demonstrated significant evidence of shared maternal
genetic foundation between birth weight and stroke, with the genetic correlation
estimated to −0.176. However, no fetal genetic correlation between birth weight and
stroke was detected. Furthermore, the inverse variance weighted MR demonstrated
the maternally causal effect of birth weight on stroke was 1.12 (95% confidence
interval [CI] 1.00–1.27). The maternal ORs of birth weight on three subtypes of stroke
including cardioembolic stroke (CES), large artery stroke (LAS) and small vessel stroke
(SVS) were 1.16 (95% CI 0.93–1.43), 1.50 (95% CI 1.14–1.96) and 1.47 (95% CI
1.15–1.87), respectively. In contrast, no fetal causal associations were found between
birth weight and stroke or the subtypes. Those results were robust against extensive
sensitivity analyses, with Egger regression ruling out the possibility of pleiotropy and
multivariable MR excluding the likelihood of confounding or mediation effects of other
risk factors of stroke.
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Conclusion: This study provides empirically supportive evidence on the fetal
developmental origins of stroke and its subtypes. However, further investigation
is warranted to understand the pathophysiological role of low birth weight in
developing stroke.

Keywords: birth weight, stroke and subtypes, ischemic stroke, Mendelian randomization, maternal effect, causal
association, genetic correlation, fetal origins

INTRODUCTION

Stroke is primarily caused by brain infarction (i.e., ischemic
stroke) or intracerebral hemorrhage (ICH) with a neurological
deficit of sudden onset (Malik et al., 2018), and it represents
one of the leading causes of morbidity and mortality worldwide
(Kyu et al., 2018; Roth et al., 2018). Although conventional risk
factors (e.g., smoking) for stroke have been well-established;
the pathological mechanism of stroke remains yet completely
understood. Recently, the role of early fetal growth even before
birth was recognized and the hypothesized adverse determinants
in utero are related to the risk of developing stroke in adulthood
(Eriksson et al., 2000) – a hypothesis referred to as the fetal
origins of adult chronic diseases which was first proposed in the
late 1980s (Barker, 1990; Lucas et al., 1999; Barker et al., 2002).
This hypothesis for fetal developmental programming states
the fetus has to adapt to adverse intrauterine exposures (e.g.,
under-nutrition) by slowing the growth of body, consequently,
resulting in low birth weight (a commonly employed index
of exposure on early growth for intrauterine environment).
However, such adaptation has a long-term influence on postnatal
health status because developmental programming in utero can
permanently alter organ structure (e.g., liver, heart, and kidney)
and modify epigenetic regulation of gene expression. The brain
can be directly modulated due to the sparing adaptation in
restricted fetal growth (Eriksson et al., 2000). Such recognition
has revolutionized the understanding of pathogenesis for many
adult chronic metabolic diseases. Many observational studies
have provided evidence showing low birth weight associated with
enhanced susceptibility to stroke in later life (Rich-Edwards et al.,
1997; see Supplementary Table S1 for more information).

However, it remains unclear whether the observed association
between birth weight and stroke in prior studies uncover a
truly causal association, or only a spurious correlation due to
confounding emerging during the prenatal/postnatal life (Barker,
1990; Leon, 1998; Eriksson et al., 2000; Law, 2002; Ruiz-Narvaez
et al., 2014; Kahn et al., 2017) or due to pleiotropy and
shared genetic foundation (Rich-Edwards et al., 1997; Lawlor
et al., 2005). More importantly, the observed inverse association
between birth weight and stroke can be driven by the indirect
maternal effect and/or direct fetal effect (Horikoshi et al., 2013,
2016; Beaumont et al., 2018; Warrington et al., 2019). To
our knowledge, none of previous studies had distinguished the
maternal effect from the fetal effect. The ability to discriminate
relatively maternal and fetal genetic contributions to birth weight
(Warrington et al., 2018, 2019) makes it feasible to deeper
investigate the origin of the inverse relationship between birth
weight and stroke. In addition, it is also unknown whether

such negative association can be generalized to stroke subtypes
because stroke is a complex heterogeneous disease with multiple
subtypes having distinct differences in clinical manifestation and
genetic background (Malik et al., 2018).

In the past few years, several large scale genome-wide
association studies (GWASs) have been performed and have
greatly advanced our understanding of the genetic architecture
for birth weight (Horikoshi et al., 2013, 2016; Beaumont et al.,
2018; Warrington et al., 2019) and stroke (Malik et al., 2018). It
has been shown that birth weight shares specific single nucleotide
polymorphisms (SNPs) with many adult diseases (Horikoshi
et al., 2016; Warrington et al., 2019). However, little is known
about the shared heritability and overall pleiotropy between birth
weight and stroke, as well as its subtypes. Quantifying the extent
to which the two types of phenotypes share genetic origin will
shed some light on common biological mechanism underlying
birth weight and stroke and provides novel insights into the
relationship between them.

Herein, our main objectives are to investigate the genetic
overlap and to further determine the causal relationship
between birth weight and stroke. To achieve those objectives,
we performed a comprehensive genetic analysis with linkage
disequilibrium score regression (LDSC) (Bulik-Sullivan et al.,
2015) and Mendelian randomization (MR) (Sheehan et al., 2008)
based on summary statistics obtained from large scale GWASs
[n = ∼300,000 for birth weight (Warrington et al., 2019) and
∼447,000 for stroke (Malik et al., 2018)].

MATERIALS AND METHODS

GWAS Genetic Data Sources for Birth
Weight and Stroke
We initially obtained summary association statistics for birth
weight from the Early Growth Genetics (EGG) Consortium1

(Warrington et al., 2019). The association analysis was performed
on each SNP for own (n = 298,142) and offspring (n = 210,267)
birth weights after controlling covariates (e.g., gestational age).
To distinguish the fetal and maternal genetic components of
genotypes on birth weight, an efficient structural equation model
(SEM) was implemented up to 264,498 individuals who reported
their own birth weight and 179,360 individuals who reported
their offspring birth weight (Warrington et al., 2018), generating
adjusted fetal effects after controlling for the maternal genotype
and maternal effects after controlling for the offspring’s genotype.
It was shown some SNPs had only a direct fetal effect, some

1https://egg-consortium.org/
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had only an indirect maternal effect and some had a combined
effect of the two on birth weight (Warrington et al., 2019;
Supplementary Figure S1). The separation of fetal and maternal
effects of SNPs on birth weight plays a crucial role in clarifying
the origin of the observed relationship between birth weight
and stroke. In our LDSC analysis we applied the genome-wide
fetal and maternal specific effects of birth weight (see below for
details); in our MR analysis we employed a set of independent
associated SNPs (p < 5.00E-8) reported in Warrington et al.
(2019); Supplementary Tables S2, S3.

We next yielded summary association statistics for any
ischaemic stroke (AIS) at the MEGASTROKE Consortium2

(Malik et al., 2018). In addition, we also obtained summary
statistics for three stroke subtypes: cardioembolic stroke (CES),
large artery atherosclerotic stroke (LAS) and small vessel stroke
(SVS). The genetic data sets employed in our analysis are briefly
summarized in Table 1.

Estimation of Overall Genetic Correlation
Between Birth Weight and Stroke With
LDSC and GPA
To assess shared polygenic architecture between birth weight
and stroke, we applied the cross-trait LDSC to calculate the
genetic correlation (Bulik-Sullivan et al., 2015). LDSC quantifies
the genome-wide genetic overlap with summary statistics only
while taking into account LD structure among genetic variants,
and can be easily conducted by regressing the product of the z
statistics of two traits against the LD scores that are computed
from the 1000 Genomes project phase III (The 1000 Genomes
Project Consortium, 2015). The regression slope provides an
unbiased estimate for genetic correlation between phenotypes
(Bulik-Sullivan et al., 2015). Detail of quality control procedure
for birth weight and stroke in the LDSC analysis is shown in
Supplementary Material.

To complement LDSC we also conducted the recently
proposed GPA analysis (Genetic analysis incorporating
Pleiotropy and Annotation) (Chung et al., 2014), which
can provide additional results about pleiotropy between the
two phenotypes. Let π10 denotes the probability that a SNP
is associated with the first phenotype but not the second, π01
denotes the probability that a SNP is associated with the second

2https://strokegenetics.org/

TABLE 1 | GWAS genetic data sets used in the present study.

Traits n (or
case/control)

Data source

Birth weight
(fetal or maternal)

264,498 (own) and
179,360 (offspring)

Warrington et al., 2019

AIS 40,585/406,111 Malik et al., 2018

CES 9,006/406,111 Malik et al., 2018

LAS 6,688/406,111 Malik et al., 2018

SVS 11,710/406,111 Malik et al., 2018

AIS: any ischaemic stroke; CES: cardioembolic stroke; LAS: large artery
atherosclerotic stroke; SVS: small vessel stroke.

phenotype but not the first, π11 denotes the probability that a
SNP is associated with both phenotypes and π00 denotes the
probability that a SNP is not associated with any phenotypes.
Then GPA aims to estimate these proportions that characterize
the SNP causal effects to better understand the relationship
between the phenotypes. In particular, two important ratio
quantities, π11/(π10 + π11) or π11/(π01+π11) are estimated,
representing the proportion of SNPs associated with one
phenotype that are also associated with the other and indicating
the extent of common biological pathways to which the two
phenotypes may share (Chung et al., 2014; Zeng et al., 2018).
As complex correlations among SNPs can bias the estimate of
GPA, we employed a LD-based pruning method to remove large
correlations between pairs of SNPs [using PLINK (Purcell et al.,
2007) based on the European individuals in the 1000 Genomes
project phase III (The 1000 Genomes Project Consortium, 2015):
indep-pairwise 100 25 0.2] to ensure the remaining SNPs were
not in high LD with each other in the GPA analysis.

Estimation of Causal Effects Between
Birth Weight and Stroke With
Two-Sample MR Analysis
We first aligned to birth weight-increasing allele with that of
stroke. Then the causal effect of birth weight on stroke was
estimated with inverse-variance weighted (IVW) MR methods
(Burgess et al., 2017a; Hartwig et al., 2017) based on fetal or
maternal specific effects of SNPs (Figure 1; Warrington et al.,
2019). We then calculated the odds ratio (OR) for every one unit
decrease of birth weight, with the unit estimated to be 488 g across
all the sub-studies in a recent GWAS of birth weight (Horikoshi
et al., 2016). We also generated informative plots (e.g., SNP effects
scatter) for further illustrating our MR results.

To assess whether MR model assumptions were violated
in our analysis and to assess the robustness of the results,
we performed several complementary and sensitivity analyses
for the causal effect estimation of birth weight on stroke: (1)
weighted median-based method to estimate the causal effect
when some of the instrument variables of birth weight are likely
invalid (Bowden et al., 2016a); (2) leave-one-out (LOO) cross-
validation analysis (Noyce et al., 2017) and MR-PRESSO analysis
(Verbanck et al., 2018) for pleiotropy and outlier instrument
detection; (3) MR-Egger regression to evaluate the directional
pleiotropy of instruments (Bowden et al., 2016b; Burgess and
Thompson, 2017); (4) IVW estimation for causal effects of
birth weight on the three stroke subtypes; (5) multivariable MR
analysis (Do et al., 2013; Burgess and Thompson, 2015; Burgess
et al., 2017b) to investigate whether other relevant complex
phenotypes (i.e., 12 early growth traits, 7 anthropometric traits,
14 metabolic traits and 9 socioeconomic traits) may mediate
or confound the causal effect of birth weight on stroke. (6)
Statistical power for MR analysis was calculated with an analytic
approach proposed by Brion et al. (2013)3. Details of power
calculation and the multivariable MR analysis are shown in
Supplementary Material. The MR analyses were performed

3https://cnsgenomics.shinyapps.io/mRnd/
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FIGURE 1 | Overview of our idea in the present study. The thin arrows represent the relationship between SNPs and maternal intrauterine exposures; the thick arrow
represents the causal effect of interest; the dotted arrows represent the potential confounding that are not associated with the genetic instrument; the dashed arrows
represent the fetal effect.

within the R (version 3.5.2) software and the significance level
was set to 0.05.

RESULTS

Estimated Overall Genetic Correlation
Between Birth Weight and Stroke
Linkage disequilibrium score regression shows there is a
negative maternal genetic correlation between birth weight
and stroke (rg = −0.176, p = 1.10E-3), in contrast to the
positive but non-significant fetal genetic correlation (rg = 0.007,
p = 0.886). However, due to the small sample size that leads
to negative estimates of heritability for the stroke subtypes, we
cannot acquire a valid estimate for maternal or fetal genetic
correlations between birth weight and the subtypes of stroke
(Supplementary Table S4).

Using GPA and based on ∼137,000 approximately
independent SNPs, we observe substantially maternal pleiotropy
exists between birth weight with stroke and its subtypes (except
SVS; Table 2); however, no fetal pleiotropy is detected (except
SVS; Table 2), in line with the results of LDSC shown above. In
addition, we find the proportion of SNPs that are associated with
both birth weight and stroke (i.e., π11) and the proportion of
SNPs that are associated with birth weight are also associated with
stroke (i.e., π11/(π10 + π11) or π11/(π01 + π11)) are consistently
larger for the maternal specific effect of birth weight compared
with those for the fetal specific effect of birth weight (Table 2).

Estimated Causal Effects for Birth
Weight on Stroke
Owing to the presence of heterogeneity across instrumental
variables (Cochran’s Q p < 0.05 for all the IVW MR analyses),
the random-effects IVW method was thus utilized. We find the
maternal causal effect of birth weight on stroke is 1.13 (p = 0.040),

indicating a 13% (95% CI 0–27%) increase of stroke risk for every
488 g decrease in birth weight (Figures 2A, 3). The maternal
ORs of birth weight on CES, LAS and SVS are 1.15 (95% CI
0.93–1.43, p = 0.182), 1.49 (95% CI 1.13–1.96, p = 3.49E-3),
and 1.46 (95% CI 1.16–1.85, p = 1.90E-3), respectively, again
implying lower birth weight is associated with an increased risk of
stroke subtypes. However, no statistically significant fetal causal
associations are identified between birth weight and stroke or the
three subtypes (Figures 2B, 3).

Sensitivity Analyses for MR
We next performed multiple sensitivity analyses to evaluate
the robustness of this inversely maternal association between
birth weight and stroke above (Figure 3 and Supplementary
Figures S2, S3). The weighted median approach generates a
similar maternal causal effect to the random-effects IVW method
(OR = 1.14, 95% CI 0.99–1.31, p = 0.077). The LOO analysis
shows no single instrument substantially influences the estimated
maternal casual effect. For example, after removing rs45446698
(located within gene CYP3A7-CYP3AP1 and had the largest
maternal effect size on birth weight with beta = 0.077), the OR
is estimated to be 1.11 (95% CI 0.99–1.24, p = 0.068); after
removing rs139429176 (located within gene P2RX7/HNF1A and
had the largest effect size on stroke with beta = −0.155), the
OR is estimated to be 1.12 (95% CI 1.00–1.25, p = 0.041). Like
the LOO analysis, MR-PRESSO also demonstrates no maternal
instrumental outliers at the significance level of 0.05. The
intercept of the MR-Egger regression is 5.08E-4 (se = 1.35E-
3, p = 0.707), indicating horizontal pleiotropy unlikely biases
the estimated maternal causal effect. Nevertheless, we screened
the EBI website4 and removed 50 instruments that were
associated with other relevant traits and diseases (Supplementary
Table S5), and still obtained similar estimates (OR = 1.11,

4https://www.ebi.ac.uk/
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TABLE 2 | Pleiotropy estimated among the fetal/maternal specific effect of birth weight and stroke as well as its subtypes.

Stroke π00 π10 π01 π11 π11/(π10 + π11) π11/(π01 + π11) LRT p-value

Fetal effect of birth weight

AIS 0.789 0.128 0.058 0.024 0.158 0.293 3.32 0.068

CES 0.748 0.169 0.071 0.012 0.066 0.145 0.16 0.689

LAS 0.721 0.196 0.057 0.026 0.117 0.313 0.66 0.418

SVS 0.790 0.127 0.045 0.038 0.230 0.458 5.95 0.015

Maternal effect of birth weight

AIS 0.807 0.105 0.042 0.047 0.309 0.528 22.62 1.97E − 06

CES 0.772 0.139 0.051 0.037 0.210 0.420 5.87 0.015

LAS 0.731 0.180 0.047 0.041 0.186 0.466 4.59 0.032

SVS 0.759 0.152 0.074 0.015 0.090 0.169 1.50E − 03 0.969

The last two columns are the likelihood ratio test (LRT) statistic and p-value of hypothesis testing for pleiotropy between birth weight and stroke. π10, the proportion of
SNPs that are associated with stroke; π01, the proportion of SNPs that are associated with birth weight; π11/(π10 + π11), the proportion of SNPs that are associated with
stroke are also associated with birth weight; π11/(π01 + π11), the proportion of SNPs that are associated with birth weight are also associated with stroke.

FIGURE 2 | (A) Relationship between the maternal effect of birth weight and the effect size estimates on stroke for all instruments. (B) Relationship between the fetal
effect of birth weight and the effect size estimates on stroke for all instrument. The 95% confidence intervals for the estimated SNP effect sizes on stroke are shown
as vertical lines, while the 95% confidence intervals for the estimated SNP effect sizes on birth weight are shown as horizontal lines.

95% CI 1.00–1.22, p = 0.039 for AIS; OR = 1.07, 95% CI
0.87–1.32, p = 0.513 for CES; OR = 1.53, 95% CI 1.17–
1.99, p = 0.002 for LAS and OR = 1.42, 95% CI 1.11–1.82,
p = 0.006 for SVS).

The multivariable MR analysis rules out the possibility
that early growth and adult complex traits can completely
mediate or confound the maternal causal effect (Figure 4).
Note that, adjustment for some of traits (e.g., growth 1012)
attenuates the maternal causal effect of birth weight on
stroke, while adjustment for some of traits (e.g., obesity
in children, SBP, or DBP) strengthens such causal effect
and adjustment for some of traits (e.g., overweight and
fasting glucose) results in little difference. In particular, we
find the control of gestational duration cannot essentially
weaken the estimated maternal causal effect (the adjusted
OR = 1.27, 95% CI 1.09–1.47, p = 1.88E-3) although the
duration of gestation is a major determinant of birth weight
and is highly correlated with birth weight (Lawlor et al.,
2005), implying the maternal causal effect of birth weight
is independent of gestational duration. Additional sensitivity
analyses demonstrate the estimated maternal or fetal causal
effects for CES, LAS, and SVS are also robust against alternative

MR methods, instrumental outliers and pleiotropy (Figure 3 and
Supplementary Figures S2, S3).

Power Calculation for Our MR Analysis
Finally, we calculated the statistical power for our MR analysis
and supposed the true fetal or maternal causal OR of lower
birth weight on stroke was 1.20 (approximately equal to
the estimated effect in the present study), the proportion of
variance explained by instrumental variables was equal to 2%
(approximately equal to the heritability explained by associated
SNPs reported in Warrington et al., 2019), the significance
level α is 0.05 and the proportion of stroke (or subtype) cases
is the same as that given in Table 1. Using this method,
the power of detecting such causal effect was calculated to
be 100% for AIS, 75% for CES, 63% for LAS, and 85% for
SVS, respectively, implying we have an adequately high capacity
for identifying the causal association and also suggesting the
detected maternal causal effects of birth weight on stroke and its
subtypes are truly positive and the non-significant fetal causal
effects of birth weight on stroke and its subtypes are unlikely
falsely negative.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 479

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00479 June 11, 2020 Time: 12:20 # 6

Wang et al. MR of Birth Weight and Stroke

FIGURE 3 | Estimated causal effects of birth weight (A, maternal effect; B, fetal effect) on stroke and its subtypes. Four MR methods (the fixed- and random-effects
IVW method, weighted median method and Egger regression) were performed. AIS, any stroke; LAS, large artery atherosclerotic stroke; CES, cardioembolic stroke;
SVS, small vessel stroke.

DISCUSSION

In the present study, we have investigated genetic correlation
and causal association between birth weight and stroke. Because
birth weight is subject to both fetal and maternal genomes with
diverse effects in orientation and magnitude, as a particular case,
it is essential to distinguish fetal and/or maternal components of
instrumental effects on birth weight in genetic analysis; otherwise
the results would be biased or even misleading. However,
due to unavailability of relevant data sources, prior studies

cannot distinguish such important components. By taking full
advantage of the latest GWAS genetic datasets having adjusted
fetal and maternal effects of birth weight for each genetic
variant, the present analysis holds the capability that better
untangles the source of the negative relationship between birth
weight and stroke.

Summary of Our Study
Our analysis provides new supportive evidence on the maternal
molecular genetic overlap between birth weight and stroke,
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FIGURE 4 | Estimated maternal causal effects of birth weight on stroke using the multivariate MR regression.

and further offers robust evidence showing lower birth weight,
by maternal rather than fetal genome, is causally associated
with stroke and its subtypes in later life. Furthermore, such
effect is independently of many other possible risk factors of
stroke. In contrast, our analysis does not support the fetal
genetic correlation and the direct fetal causal effect of birth
weight on stroke or its subtypes, further demonstrating the
separate maternal influence. A priori, our study is in favor
of the fetal developmental origins of stroke as well as its
subtypes and offers the scientific evidence for intervening
adverse intrauterine environments (e.g., appropriate nutritional
additions for pregnant women). In view of the increasing survival
rate of fetus with low birth weight today, our result therefore
has important implications on the early predictor of stroke in
adulthood. In addition, the present analysis also further confers
the significance to unmask the fetal and maternal contributions
respectively to birth weight as an exposure (or outcome) in
genetic studies.

Comparison of Our Findings With Those
in Previous Studies
We now compare our results with those displayed in
previous work (Supplementary Table S1). Our findings are
complementary to and consistent with previous studies where
inverse genetic associations were identified between birth weight
and other adult diseases (e.g., rg = −0.27 for T2D and −0.30
for T2D) (Horikoshi et al., 2016). The causality results are
also consistent with findings reported in many prior studies,
including a longitudinal American cohort of women nurses
(Rich-Edwards et al., 1997), a retrospective Finland study on
men (Eriksson et al., 2000), a historical Swedish cohort in both
men and women (Hyppönen et al., 2001) as well as other relevant
studies (Lawlor et al., 2005; Rich-Edwards et al., 2005). However,
compared with those studies, our study has the following
advantages. (1) Prior results in those observational studies
might be easily biased by potential confounders (e.g., maternal
cigarette smoking and alcohol drinking during the prenatal
period, or gestational diabetes mellitus) (Lawlor et al., 2005). In
contrast, our findings are less susceptible to those confounding

factors as MR depends on the principle that the random meiotic
assortment of genotypes is independent of confounders and
disease process of stroke in adulthood. (2) Compared with prior
studied which had small sample size (e.g., generally less than
1,000), our study includes much larger cases of stroke (up to
∼41,000); therefore, sufficient statistical power is guaranteed.
(3) This study relied on summary association statistics and
simultaneously investigated both stroke and its subtypes, holding
wider implications on the relationship between birth weight and
stroke. (4) Previous studies demonstrated association between
birth weight and stroke/subtypes, but cannot establish causality.
In contrast, MR can be thought of as a naturally randomized
controlled trial (Hingorani and Humphries, 2005) and thus
provides empirical evidence for the causal relationship between
birth weight and stroke. (5) Importantly and as demonstrated
before, unlike prior work which cannot distinguish between
maternal and fetal influences on stroke, we have the ability of
revealing birth weight has an indirect maternal, but not a direct
fetal, causal effect on stroke.

Other Contributions of the Present Study
Our study, at least in part, provides answers for several previous
unsolved questions. First, our analysis showed the shared
maternal genetic foundation between birth weight and stroke
cannot fully explain the observed inverse association, partly
resolving the question proposed in Rich-Edwards et al. (1997).
However, further work is warranted to identify the maternal
or fetal specific genetic factors that influence both birth weight
and stroke in later life. Second, even after removing the indirect
influence of early growth traits (or other relevant socioeconomic
traits and adult lifestyle) on stroke, birth weight still has a direct
role on the development of stroke in adulthood, suggesting
there exist other unknown pathways from which birth weight
is associated with stroke (Rich-Edwards et al., 1997). Third,
the present MR study further distinguishes adverse intrauterine
environments, rather than the direct fetal effect, has an indirect
long-term influence on the risk of stroke and its subtypes. Forth,
as birth weight in our study was within in the normal range (the
95% limit is 2,492–4,405 g in terms of Horikoshi et al., 2016),
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the identified inverse maternal causal effect on stroke is not likely
driven by individuals born at the extremes of birth weight.

Limitations of Our Study
First, due to the small sample sizes for the subtypes of stroke
and relying on summary association results, we cannot determine
the fetal or maternal genetic correlation between birth weight
and stroke subtypes. Investigations with much larger sample
size for stroke subtypes are warranted. Second, like most other
MR applications, we assumed a linear relationship between birth
weight and stroke. It is certainly possible that there may be
a non-linear relationship. However, as most of the individuals
had their birth weights within in the normal range, the linearity
assumption in our MR is likely reasonable (Rich-Edwards et al.,
1997). Third, although no a priori hypothesis concerning sex
differences in the effect of birth weight on stroke exists, it was
shown that there may be gender specific causal effects of birth
weight on stroke with the effect of lower birth weight on stroke
slightly higher in females compared with in males (Lawlor et al.,
2005). However, due to the dependence on of GWAS summary
association statistics, we cannot further conduct stratified analysis
to estimate the causal effects of birth weight on stroke by gender.
Because of the same reason of unavailability of genetic datasets,
we also cannot explore the relationship between extremely very
low/high birth weight and stroke. Fifth, our study focuses only
on European population; it is not known whether our findings
can be generalized to other populations. Sixth, we limited our
study on ischemic stroke; it is unclear whether our discovers can
be applicable to hemorrhagic stroke.
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