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Abstract: Despite efforts to abrogate the severe threat to life posed by the profound 
malignancy of mature natural killer/T-cell lymphoma (NKTCL), therapeutic advances still 
require further investigation of its inherent regulatory biochemical processes. Next- 
generation sequencing (NGS) is an increasingly developing gene detection technique, 
which has been widely used in lymphoma genetic research in recent years. Targeted therapy 
based on the above studies has also generated a series of advances, making genetic mutation 
a new research hotspot in lymphoma. Advances in NKTCL-related gene mutations are 
reviewed in this paper. 
Keywords: mature T-and NK-cell lymphoma, gene mutation, next generation sequencing

Introduction
Since 1977, Sanger’s invention of end termination sequencing,1 also known as DNA 
sequencing technology, has been used. As one of the most important analytical 
methods of molecular biology, so far, it has not only provided important data for 
basic biological research such as genetic information disclosure and gene expression 
regulation, but also played an important role in applied research such as gene-based 
diagnosis and therapy, for example, several studies have used NGS to analyze the 
genetic profile of lung cancer.2–4 Large clone classification by mapping of low 
resolution is known as first-generation sequencing technology, a term used to define 
the above sequencing approach which uses a dideoxy chain termination technique. 
Sanger sequencing cannot entirely satisfy research requirements due to the progressive 
advancement of medical technology. Therefore, next-generation sequencing (NGS) 
came into being in 2005.5 NGS relies on standard sequencing approaches from Sanger 
techniques, but there have been innovative improvements in other ways allowing 
millions of parallel sequencing reactions to be conducted6 (Figure 1). NGS can 
sequence smaller subclones at a high resolution and can identify genetic differences 
as the sequence of each base can be identified and numerous target loci (several genes) 
are detectable for simultaneous analysis.7 In addition, NGS is a high-throughput 
sequencing technology with higher flux and sensitivity,8 faster speed and lower 
cost9,10 (Figure 2). So far, NGS has three major sequencing platforms, including 
Solexa Genome Analyzer’s Illumina system, Applied Biosystems’ SOLID system 
and the 454 FLX system from Roche.11 Clinical research has evolved drastically due 
to progress in NGS technology.12
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Lymphoma is the most common malignant tumor of the 
blood system in the world, which occurs in lymph nodes and 
other organs.13 Lymphoma occurs as a result of genetic 
changes within cells that predispose them to further genetic 
changes.14 Over time, other acquired abnormalities promote 
cloning, which delivers growth and/or survival advantages 
over other cells,15 and eventually develops into clinical 
lymphoma. Lymphomas were classified into non- 
Hodgkin’s lymphoma and Hodgkin’s lymphoma according 
to morphology and immunohistochemistry.16 Non- 
Hodgkin’s lymphoma is classified into T or B-cell lym-
phoma with respect to cell origin. Hodgkin’s lymphoma is 
divided into nodular lymphocytes and classic Hodgkin’s 
lymphoma, the former being the dominant type of the 
disease.17 NK/T extranodal cell lymphoma is a major NK 
cell lymphoma with a ratio of 10.4% in mature T cell lym-
phoma and NK cell lymphoma.18 Similar to other malignant 
proliferative diseases, lymphoma has genetic instability and 
chromosomal abnormalities, which together directly cause 
the development of malignancy.

NGS has been applied to accurate diagnosis of gene 
mutation, analysis of pathogenesis, prognosis monitoring 
and so on.19 Recent developments in lymphoma genome 

sequencing have led to a preliminary appreciation of 
somatic mutation complexity in these tumors as well as 
a number of findings of significant functional and clinical 
significance, including studies on the prognostic impact of 
some genes on lymphoma or potential as drug targets.20 

Compared with cases of B cell lymphoma, there has been 
slower use of NGS for molecular studies in mature NK/ 
T-cell lymphoma.21 This article reviews the application of 
NGS in scientific analysis and clinical detection of mature 
T- and NK-cell lymphoma (Table 1).

T-Cell Prolymphocytic Leukemia
Prolymphocytic leukemia (PLL) is a highly malignant 
mature lymphoma,22 and available treatment options in 
this aggressive disease are largely inefficient and patient 
outcomes are highly dissatisfactory.23 Catovsky et al24 

first reported T-cell prolymphocytic leukemia (T-PLL), 
a subtype of PLL in 1977. T-PLL accounted for about 
80% of PLL and the average diagnosis age was between 
sixty-five and seventy years, mostly in men. Almost all 
T-PLL cases have cloning-specific T-cell receptor (TCR) 
gene rearrangement.25 Recombination of genes coding 
for receptors of T-cells suggests clonal T-cell 

Figure 1 The construction of second-generation sequencing libraries and sequencing process. NGS library is prepared by fragmenting a gDNA sample and ligating 
specialized adapters to both fragment ends. Sequencing reagents, including fluorescently labeled nucleotides, are added and the first based is incorporated, The flow cell is 
imaged and the emission from each cluster is recorded. The emission wavelength and intensity are used to identify the base. This cycle is repeated “n” times to create a read 
length of “n” base.
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proliferation. Cytogenetic analysis confirmed that T-PLL 
patients had multiple genetic changes. The common chro-
mosomal abnormalities involved chromosome 14 (90%), 
including (tX;14)(q28; q11), inv (14) and (t14;14)(q11; 
q32).26 TCL1B and TCL1A involving MTCP1 and chro-
mosome 14 in chromosome 14 transgenic animal models 
have confirmed that TCL1 and MTCP1 are carcinogenic, 
co-activating molecules of Akt kinases that promote cell 
proliferation and survival. Then chromosome 8 was 
reported to have idic (8p11), (t8;8) and trisomy 8q aber-
rations. Other reproducible cytogenetic abnormalities 
were −11q23,27 with −22q, −13q, 6q, −9p, 12p, 17p 
with 22q and 6p with −12p; visible in approximately 
50% of T-PLL, and considered relevant to their occur-
rence and development. The application of second- 
generation sequencing technology further confirms that 
T-PLL carries of a variety of genetic molecular abnorm-
alities such as IL2RG, JAK1/3, STAT5B, EZH2, 
FBXW10 and CHEK2 mutations28 which contribute to 
T-PLL pathology through several different pathways29 

including affecting the repair of DNA, epigenetic tran-
scriptional regulation and proteasome degradation.30 As 
more mutant genes are discovered, we can diagnose and 
treat T juvenile lymphoblastic leukemia more accurately. 
With the continuous development of sequencing technol-
ogy, NGS technology provides a detailed overview of 

various genomic damages/lesions related to the pathogen-
esis of T-PLL.

Adult T Cell Lymphoma/Leukemia
While it is known to correlate with T cell-associated type 1 
leukemia virus (HTLV-1) infection, the peripheral T cell 
tumor known as Adult T cell lymphoma/leukemia (ATL) 
still has no identified genetic causality.31–33 

A comprehensive molecular analysis of the transcriptome 
and guided re-sequencing, exome, genome, methylation 
and copy number based on arrays was described by 
Keisuke Kataoka et al. The modifications found 
substantially correlate with the groups interacting with 
HTLV-1Tax and are enriched in signaling downstream of 
TCR-NF-kB, T cell mechanisms including transport and 
immune surveillance. Other notable roles include fusing 
ICOS-CD28 and CTLA4 -CD28genes as well as triggering 
aberrations in, IRF4, PRKCB, CKR7, FYN, VAV1, CCR4, 
PLCG1 and CARD11. It was additionally discovered that 
aberrations were present in CSnK2B, GPR183, 
CSNK1A1, HNRNPA2B1 and GATA3CSNK2A1 genes 
with repeated mutations and deletions inside CARD11 
and IKZF2 genes. The discoveries give a novel under-
standing into the fundamental issues in ATL detection 
and therapy, yet additionally direct improvement of new 

Figure 2 Information analysis process. The library was sequenced and a large number of short fragments were obtained reads, Through bioinformatics analysis software, the 
reads was compared to the reference genome to obtain the location information of each read on the reference genome. Comprehensive reads comparison information to 
analyze the variation. Clinical NGS data analysis aims to detect, annotate, and provide a clear, professional and reliable report interpretation and ultimately as an important 
reference for clinical diagnosis and treatment.
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strategies for the determination and treatment of this obsti-
nate tumour.34–36

Extranodal NK/T Cell Lymphoma, 
Nasal Type
With over 90% of patients testing positive for the Epstein- 
Barr virus (EB) in its tumors.37 The virus has a clear 
association with nasal extranodal natural lymphatic tumor 
killer/T-cell (NKTCL), which is an invasive, but 

uncommon type of non-Hodgkin lymphoma (NHL) with 
a poor prognosis and is typified by cytotoxic cells.38 Often 
the upper digestive tract (eg paranasal sinuses, nasal cavity 
and nasopharynx) is affected by external tissue including 
the gastrointestinal tract, soft tissue and skin.39 It is the 
most common mature T-cell/NK type in Asia.40 But it is 
rare in the West. Nine percent of the total number of NHL 
patients in China was extranodal NK/T lymphomas.41

The conventional Sanger sequencing has identified 
numerous somatic gene alterations in NKTCL.42 Some 
epigenetic disorders and DDX3X mutations rarely found 
by traditional sequencing techniques have been revealed 
by NGS recently.43 Using full exome sequencing and 
validation in a large confirmatory cohort of 80 individuals 
via selective sequencing, Lu Jiang et al44 established 
somatic gene aberrations in twenty-five NKTCL patients. 
Recurring mutations occur primarily in JAK-STAT signal-
ing molecules (STAT5B and STAT3), tumor suppressing 
genes (MGA and TP53), DDX3X RNA helicase genes (2/ 
5 volunteers) and in epigenetic influencers (ARID1A, 
ASXL3 EP300 and MLL2). Poor clinical prognosis is 
associated with such DDX3X mutations. These discov-
eries help to understand NKTCL disease mechanisms.45

BCOR are typically the most common (16.9%) mutat-
ing genes, superior to DDX3X and TP53 (13.6% and 
14.70%, respectively) as revealed in the report by Zhang 
et al.42 The study of such genes offers fresh perspectives 
on disease development and contributes to therapeutic 
goals or specific biomarker development. Montes- 
Mojarro et al investigated mutation profiles and various 
strains of EBV in seventy-one cases of ENKTL from 
South America and compared them with Asian popula-
tions. NGS mutation analysis covered common gene muta-
tions previously identified in ENKTL. The results showed 
that STAT3 was the most common mutant gene (23%), 
followed by MSN (14%), BCOR (13%), DDX3X (8%), 
JAK3 (3%), TP53 (8%), STAT5B (1%) and MGA (4%). 
The DDX3X, BCOR and STAT3 mutations rarely 
appeared together, indicating divergent molecular signal-
ing cascades were involved in the development of 
ENKTL. TP53, MGA and MSN mutations occur in con-
junction with other mutations. Seventy-five percent of 
cases had type A EBV, with thirty base pairs. Overall, 
this ENKTL study of mutations in South Americans has 
shown that common gene mutations (twenty-five percent) 
induce activation of JAK-STAT signaling, most of which 
are STAT3 mutations. TP53, DDX3X and BCOR muta-
tions were also identified, albeit at varying rates relative to 

Table 1 Common Related Gene Mutations in Mature T- and NK- 
Cell Lymphoma

Mature T-and NK-cell 
Lymphoma

Major Mutant Genes

T-cell prolymphocytic 

leukemia26–28

(t14;14)(q11; q32), IL2RG, JAK1/ 

3, STAT5B, EZH2, FBXW10, 
CHEK2

Adult T-cell leukemia- 
lymphoma34–36

PLCG1, PRKCB, CARD11, 
VAV1, IRF4, FYN, CCR4, CCR7, 

GATA3, HNRNPA2B1, GPR183, 

CSNK2A1, CSNK2B

Extranodal natural killer/T-cell 
lymphoma, nasal type42,43,46,53

TP53, DDX3X, MGA, STAT3, 
STAT5B, MLL2, ARID1A, EP300, 

ASXL3, BCOR, MSN, JAK3, 

KMT2D

Intestinal T-cell lymphoma57,58 STAT5B, SETD2, JAK1, JAK3, 

STAT3, SOCS1, KRAS, TP53

Mycosis fungoides64 TCR

Sezary’s syndrome67 MYC, TOX, TP53, NCOR1, 

PTEN, FAS, DNMT3A, USP28, 

CAAP1, TMEM244, EHD1, 
MTMR2, RNF123, TOX, BAIAP2, 

CPN2, GPR128, CAPN12, 

FIGLA

Subcutaneous panniculitis-like 

T-cell lymphoma75

mTOR/AKT/PI3K

Peripheral T- cell lymphoma, 

NOS77,80

TP53, TP63, CDKN2A, WWOX, 

ANKRD11, pY-STAT3

Angioimmunoblastic T-cell 

lymphoma and other nodal83,90 

lymphomas of T follicular helper 

(TFH) cell origin

RHOA, TET2, IDH2, DNMT3A, 

CD28

Anaplastic large cell lymphoma94 miRNA

Breast Implant-Associated 
Anaplastic Large Cell 

Lymphoma97

JAK1, STAT3
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similar populations in Asia. The findings also show that 
such mutations are not prognostic.46,47

Using clear sampling and immunohistochemistry, Sim 
et al examined JAK3 mutations and STAT3 genetic mod-
ifications. JAK3 mutations in the pseudokinase domain of 
71 NTCL patients were present in five cases (7.0%): one 
JAK-3, one JAK-3[G589D], two JAK-3 [H583Y] and two 
JAK-3[A573V]. Tofatinib (tofactinib), the inhibitor of 
JAK3, blocks (JAK3 [G589D]) or JAK3 [H583Y] muta-
tions which transduce Ba/F3 cell proliferation indepen-
dently of IL-3.48,49 Full exome sequence and somatic 
activity mutations of JAK3 (A573V and A572V) were 
identified by Ghee Chong Koo et al in two of four patients 
receiving NKTCL. Further confirmation by Sanger 
sequence and high-resolution melting (HRM) examination 
detected the occurrence of JAK3 mutations in 61 more 
patients. Out of 65 patients, 23 (35.4%) had mutations of 
JAK3. Examination of the roles played by JAK3 mutations 
adds evidence that constant JAK/STAT stimulation in the 
absence of cytokines enhances cell growth. Furthermore, 
treatment of both wild-type and mutant NKTCL cell lines 
with novel pan-JAK inhibitor CP-690550 resulted in more 
apoptosis, less cell viability and less dose-dependent phos-
phorylation. Thus, an effective treatment for NKTCL 
patients could potentially target the dysregulated JAK/ 
STAT pathways.50,51

Five NKTCL somatic mutations in tissue samples were 
documented by Dobachi et al Analysis based on sequen-
cing found 21 genes with 25 mutations. The most common 
(4 out of 5) were histone-related modifications of KMT2D 
genes. These findings align with recent NGS studies show-
ing that KMT2D genes are new NKTCL drivers.52 

Chromatin reshaping genes TP53 and ARID1A, which 
have also been reported in recent studies using NGS, 
also showed mutations. Further mutations were detected 
in 18 new genetic candidates whose molecular activity 
may be linked to the progression of cancer and suggests 
that these genes may lead to numerous oncogenic 
instances. These could be used as possible NKTCL bio-
markers in the coming years.53 Luyuan et al detected the 
mutation of 9 target genes in 29 ENKTL pathological 
specimens using a NGS technique. They analyzed the 
prognosis of patients with the mutated genes and found 
that 4 genes were closely related to the progression and 
prognosis of the disease, including KMT2D (31%), STST3 
(24.1%), ARIDIA (34%) and TP53 (24%). The study 
suggests that high-frequency mutations of KMT2D genes 
in ENKTL, are associated with patient outcomes and may 

contribute significantly to the development of ENKTL as 
genes that normally suppress tumors. STAT3 mutations 
contribute to ENKTL tumor cell invasion and prolifera-
tion. TP53 and ARID1A mutations may be associated with 
ENKTL pathogenesis.

More and more studies use NGS technology to detect 
the target gene mutation of Extranodal NK/T-cell 
Lymphoma, and analyze its relationship with disease prog-
nosis and clinical characteristics, so as to provide the basis 
for the pathogenesis, clinical diagnosis and targeted ther-
apy of Extranodal NK/T-cell Lymphoma.

T-Cell Lymphoma in the Intestines
Lymphoma is a systemic disease in which a specific type 
of malignancy termed extranodal lymphoma (ENL) occurs 
in lymphoid organs or non-lymphatic aggregated organs 
outside lymph nodes.54 ENL has a high incidence and 
about 40%-50% of NHL occur outside the node. The 
most frequent site is the digestive tract.55 Among cancers 
of the digestive tract, intestinal T-cell lymphoma (ITCL) is 
quite uncommon.56 The initial study of the disease based 
on full-exome sequencing (WES) was conducted by 
Nairismagi et al, which demonstrated that STAT5B activa-
tion mutations were present in TCRβ and TCRαβ-derived 
EITL tumors using the most comprehensive set of the 
literature published to date. This study provides multi-
pronged proof of highly activated G-protein coupling 
(GPCR) and JAK-STAT signaling pathways in EITL, 
most of which points to the ability to effectively reduce 
primary EITL cell viability using selective treatment.57 

EATL genetic profiles have been identified by Moffitt 
et al through analyzing the whole-exome sequence of 69 
EATL tumors. In EATL (32% of cases), SETD2 is the 
most frequent silencing gene. STAT5B, SOCS1, STAT3, 
JAK3 and JAK 1 are commonly mutated genes, all playing 
a role in the JAKSTAT pathway. The study also found 
TERT, TP53 and KRAS mutations. Type I and Type II (In 
the latest classification criteria, EATL type 2 has been 
classified as monomorphic epitheliotropic intestinal T-cell 
lymphoma) of EATL have significant genetic overlaps, 
suggesting a common pathogenesis mechanism. Final 
data provide the broadest genetic details concerning this 
uncommon yet deadly disease, and may guide future cate-
gorization initiatives.58

Lymphoma of Cutaneous T-Cells
Cutaneous T-cell lymphoma (CTCL), which develops pri-
marily on the skin and is not normally subcutaneous, is 
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a category of ectopic lymphoproliferative diseases.59 The 
most common form, comprising 55±5% of all CTCL is 
mycosis fungoides (MF). The leukemia type termed 
Sezary syndrome (SS) is commonly associated with ery-
throdermic lesions as well as peripheral blood and lymph 
node involvement. Most CTCL is therefore SS or MF.60 

Whole genome sequencing for both SS and MF has shown 
that genes for epigenetic regulators, cell survival and fate, 
Th2 differentiation, cell cycle regulations, homologous 
recombination and TCR/NFκB had somatic mutations. 
A newly discovered primary skin lymphoma subtype, 
which is a primary T-cell lymphoma is called subcuta-
neous lipomatous T-cell lymphoma. Current profiles of 
SS and MF gene expression have been used to generate 
diagnostic approaches, which can consistently classify 
their genes.61

Mycosis Fungoides
MF is mostly skin-limited and rarely progresses into 
leukemia.62 It is one of the main types of nodular T-cell 
lymphoma and the most common skin T-cell lymphoma, 
which is believed to be caused by mature skin T-cell 
carcinogenesis.63 It commences with red plaques that 
look like scales containing tumorous T-cells, which may 
expand into tumors and eventually spread. Advanced MF 
is a prototype disease with the main features of peripheral 
T-cell lymphoma: chronic, recurrent growth, low prolifera-
tion, chemoresistance, and approximately 50% mortality 
over 5 years.

A detailed analysis using next-generation sequencing 
(NGS) was conducted by Hamrouni et al and found a large 
amount of clonal heterogeneity associated with TCR in 
MF samples. It also demonstrated that lymphoma cells 
with the same TCR gene sequence may have different 
TCR and DNA sequencing. The deletion of absolute 
TCR-α, -β, -γ monoclones was further confirmed by TCR 
amplification and sequencing from microdissected lym-
phoma cells. The study also found that, despite a lack of 
leukemic blood involvement, TCR rearrangements of lym-
phoma patients’ cells were characterized in the peripheral 
blood, but circulating TCRγclones did not always repre-
sent major skin clones.64 Sufficool et al determined clon-
ality by a NGS-based method in which polymerase chain 
reaction was used to multiply the TCR-g variable regions 
and the identity of the rearranged variable and junction 
regions were determined by sequencing PCR products. Of 
the 35 MF cases tested, 29 (85%) patients showed clonal 
T-cell rearrangements through NGS, while the standard 

CE test gave a result of 15 (44%). Three patients with 
MF were followed up and the results showed the same 
clone TCR sequence in subsequent skin biopsy samples.65

Sezary’s Syndrome
SS is a type of T-cell lymphoma of the skin with grievous 
leukemia. It is distinguished by the presence of abnormal 
cells (CD45RO+CD4+) throughout the skin, blood and 
lymph nodes, bearing a phenotype of central memory 
T-cells (TCM), and serious lymphedema, pruritus, and 
erythroderma.66 SS is an extremely uncommon condition 
(occurrence: 0.1/100,000) and causes around 3% of CTCL, 
but its prevalence is rising. NGS and whole-genome ana-
lysis enabled KatarzynaI ż ykowska et al, to research the 
variation in number of copies of nine plugs and the impact 
of SS rearrangements on gene expression. Repetitive 
changes to the number of copies were found in 10q 
(PTEN, FAS), 8q (MIC, TOX), 9p (CAAP1), 2p 
(DNMT3A), 11q (USP28) and 17p (TP53, NCOR1), but 
recurrent modifications were not established. However, the 
expression of the five genes (TOX, RNF123, MTMR2, 
TMEM244 and EHD1) was modified in all patients. 
Fifteen modifications observed in SeAx and SS patients 
resulted in a new expression of fusion transcripts, of which 
nine were in the box (MAP4K3-FIGLA, DCP1A-CCL27, 
MBNL1-KIAA2018, TMEM66-BAIAP2, PTPRC-CPN2, 
EHD1-CAPN12, MYB-MBNL1, TFG-GPR128 and 
MBD4-PTPRC). However, 5 triggers of normal T cell 
ectopic gene expression were not raised (FIGLA, 
GPR128, CPN2, BAIAP2 and CAPN12). In addition to 
the results of this study revealing how complicated the cell 
genome of Sezary cancer is, they also display an unprece-
dented amount of new genetic modifications leading to 
ectopic genes expression and transcript fusion.67

A collection of pairs of normal tumor samples was 
compiled by Ana Carolina da Silva Almeida et al. 
Seventeen patients with CTCL and twenty-five patients 
with SS received full exon sequencing. The tests revealed 
a unique pattern of variation in the number of somatic 
copies of SS, including high-prevailing chromosomal dele-
tions that included the following tumor inhibitors: 
CDKN1B, RB1, DNMT3A, TP53, and PTEN. T-cell 
receptor stimulation activity is regulated by the transmis-
sion of signals of somatic mutations like PRKG1, BRAF, 
mutated, CARD11, and MAPK1 mutations that propel the 
development of NFAT, NF kappa B, and MAPK. These 
were analyzed by a study determining mutations in core 
genes involved in epigenetic regulation (BRD9, MLL3, 
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CHD3, SMARCA4, MLL2, CREBBP and TET2). Overall, 
new knowledge about mutational genetic elements of 
Sezary syndrome is provided by this study.68

The most commonly observed genetic abnormality in 
58% of the cases using exome and RNA sequencing assays 
was found by Prasad et al to be mutation and/or elimination 
of the TP53 gene in the 17p chromosomal arm. Nevertheless, 
mutations affecting CARD11, GLI3, STAT5B and PLCG1 
were found in a single individual. However, the study 
reported changes in the number of copies of several fusion 
and novel genes or single point mutations and forecasted 
biological associations. This work highlights the essence of 
genetic variation and the origins of human genetic variance. 
From cell to cell, Sezary’s cells will incorporate changes in 
the genes involved in T-cell, JAK and NF-κB69–71 signaling 
as well as the reaction to DNA disruption, chromatin restruc-
turing, apoptosis regulation, and transcriptional route activa-
tion. The clinical importance of these potential targets should 
be tested by functional analyses. A recent study observed 
a 54/participant median cellular point mutation quantity, but 
few mutations (TP53, ITPR1, DSC1 and PRH) were identi-
fied in more than one individual. The most common genetic 
defects affected the gene TP53, with a missing 17p chromo-
somal arm with or without it being defective in 58% of cases, 
aligning with other NGS results from large studies. Many 
research teams have confirmed that the removal of TP53 in 
the 17p chromosomal arm is the most common SS deletion.72 

TP53 clones with double knockouts of the gene were ana-
lyzed in two early identified patients, indicating that the 
reduction of TP53 can constitute a clinical SS subtype.73

Subcutaneous Panniculitis-Like T Cell 
Lymphoma
The disorder is sporadic and has a low overall prevalence.74 Li 
et al performed both selective and exome sequencing (WES) 
of several cases of Subcutaneous Panniculitis-like T-cell lym-
phoma (SPTCL). In fact, epigenetic SPTCL mutagens have 
been reported in 72% of cases. These mutagens are active 
epigenetically on almost all levels including functions in mod-
ifying histones (DOT1L, 2/18; KMT2D, 2/18 and CREBBP, 
2/18), methylation of DNA (MBD1, 1/18) and chromatin 
assembly (ARID1B, 3/18; SMARCA4, 3/18; CHD4, 3/18). 
Recurring mutations in the gene for the mTOR/AKT/PI3K 
pathway have been identified in 44% of SPTCL cases. TSC1 
and mTOR genes (3/18 cases) are the most frequent mutations 
that have been observed in the mTOR/AKT/PI3K signaling 
cascade, while AKT2, TSC2 and PI3KCB, (1/18 each), 

PI3KCA and PI3KCD (2/18 each) had a lower incidence. In 
this study, only one SPTCL patient had mutated TP53. 
Relative to other T-cell lymphomas, this showed a reduced 
incidence. In the mTOR/AKT/PI3K pathway and in SPTCL 
epigenetic mutagens, the team found multiple mutations. 
STPCL can potentially be treated by successful clinical stra-
tegies directed against these two pathways.75

Peripheral T- Cell Lymphoma, NOS
With violent properties, high mortality and poor prognosis, 
among other identifying characteristics, peripheral T-cell 
lymphoma (PTCL) is a malignant form of lymphoma with 
strong specificity, most of which develops after NK and 
T-cells mature in the thymus.76 Vasmatzis et al conducted 
a study that adapted previous preliminary bioinformatic algo-
rithms to detect de novo PTCL chromosomal rearrangement. 
Thirteen of 21 PTCL patients were classified with recurrent 
rearrangements. Among these were five modifications affect-
ing p53-related genes, including ANKRD11, WWOX, 
CDKN2A, TP63, and TP53. The current rearrangement of 
TP63 is very important,77 as it codes for a fusion protein 
which contains p63, that is n-truncated (Np63), which is 
almost the same as the normal Np63 subtype. And it is 
recognized for its carcinogenic traits and inhibits the p53 
pathway through a strongly negative pathway.78 About 
5.8% of patients had these rearrangements which correlated 
with poor survival outcomes in the ALK mutexed rearrange-
ment. TP63 rearrangement correlates with poor PTCL survi-
val outcomes. Compared to other malignant neoplasms, 
PTC53 is seldom caused by TP53 mutations and the results 
indicate that in PTCL, the suppressive function of p53 
against tumors may be eliminated by other genetic 
aberrations.79 Emma I. Andersson et al sequencing patient 
samples of AITL (=30), ALCL (AITL(=21) and PTCL-NOS 
(AITL(=12) cases in one study, The pSTAT3, pMAPK and 
pAKT were amplified and sequenced and immunohisto-
chemical staining. The team discovered mutations in 13% 
of AITL, 13% of ALKALCL, 38% of ALKALCL and 17% 
of PTCL-NOS cases. They found pY-STAT3 expression was 
highest in PTCL containing or mutated.80

Angioimmunoblastic T-Cell 
Lymphoma and Other Nodal 
Lymphomas of T Follicular Helper 
(TFH) Cell Origin
Angioimmunoblastic T-cell lymphoma (AITL) is an 
uncommon subtype of peripheral T-cell lymphoma, 
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which arises primarily in older people and causes only 1 to 
2% of NHL.81 In Europe, the incidence rate is greater 
(28.7%) than in Asia (17.9%). The recurring genetic muta-
tions comonly found in AITL comprise CD28 (9.4– 
11.3%), DNMT3A (20–30%), IDH2 (20–45%), TET2 
(47–83%) and RHOA mutations (50–70%).

G17V RHOA mutation has been shown to be extre-
mely rare in other cancers of the blood system, and it is 
observed in about 60% of PTCL with the TFH phenotype. 
Nevertheless, G17V RHOA mutations are common and 
specific in AITL and lymph nodes.82 Somatic RHOA 
mutations that encode p.gly17val were reported to be 
expressed in 68% of AITL samples by Yanagimoto et al. 
It’s important to keep in mind that all patients with p. 
gelly17val coding mutations also had mutations in TET2. 
The p.gelly17val RHOA mutation was found exclusively 
in tumor cells,83 while TET2 mutation was discovered 
both in non-tumoral blood cells and tumor cells.84 

RHOA controls several different biological mechanisms 
through encoding for a small GTPase.85 This study indi-
cated that Gly17Val RHOA mutants fail to bind to GTP 
and block wild-type RHOA function. This finding suggests 
that the impaired RHOA function, along with the prior 
eradication of the TET2 activity, selectively contributes 
AITL pathogenesis.86 The consistency and sensitivities of 
G17V RHOA mutations identified by the methods of pep-
tide nucleic acid locking of nucleic acid (pna-lna), NGS 
and droplet digital PCR (ddPCR) were compared by Nuhat 
et al Mutation of G17V RHOA was found in 40.3% of the 
NGS samples. Additionally, the samples observed by the 
pna-lna clamping system, ddPCR and NGS also identified 
the G17V mutation in 4 samples (46.3%). Moreover, the 
occurrence of mutated alleles using ddPCR showed 
a strong consistency to that of mutated alleles using 
NGS. RHOA mutations of pgly17val were present in 
50.7% of the samples. The results of this study show that 
the combination of NGS with pna-lna clamping/ddPCR is 
the best method for aiding diagnosis of AITL by identifi-
cation of p.gly17val RHOA mutations.87

Vallois et al based their findings on using deep sequen-
cing to research mutations in a series of co-stimulation 
/TCR cascades in TFH-like AITL and PTCL. In addition 
to the prominent RHOA mutations, they also found that 
49% of cases had mutations in the co-stimulatory/TCR 
pathway that were triggered frequently and almost 
mutually exclusively. Specifically, they found various 
CARD11 and PLCG1 mutations that they examined as 
in vitro functional activation. A thorough assessment of 

the gene expression profile demonstrated that samples with 
TCR mutations were abundant in biochemical markers, 
indicating higher T-cell proliferation and activation.88 

Medically, patients who received anthracycline-based 
TCR mutations showed a greater risk of early development 
than patients lacking these aberrations. These findings 
show the possibility for the management of such lym-
phoma with medicines that abrogate signaling downstream 
of TCR.89

J Rohr et al studied twenty AITL cases and detected 
two repeated locations for mutation in D124 and CD124 
T195 after carrying out full transcriptome sequencing 
(WTS). Later, 90 PTCL cases (including 5 AITL cases 
with WTS) were assigned to CD28 sequencing and func-
tional modifications correlated with the two mutation sites 
of highest frequency were examined. It was eventually 
seen that they accentuated signaling cascades or receptor/ 
ligand associations, which might lead to PTCL T-cell 
stimulation. This was backed up by an increase in second-
ary signal transduction by the CD28 mutant after binding 
ligands.90

Anaplastic Large Cell Lymphoma
Anaplastic large cell lymphoma (ALCL) is another NHL 
type of T-cell lymphoma.91 Two systemic diseases are 
known to be based on anaplastic kinase (ALK) lymphoma 
expression.92 In most instances ALK+ALCL is defined by 
the ALK gene and the chromosomal translocation (NPM) 
of t(2;5) (p23; Q35), culminating in the chimeric form of 
the fusion protein ALK and constitutive activation. 
Carcinogenic NPMALK can transform and activate many 
secondary signaling cascades, primarily JAK/STAT and 
PI3 K pathways, PLC control, MAPK/RAS, which are 
involved in cellular survival, specialization and 
propagation.93 NGS was used by Steinhilber et al, to 
study the differential expression of miRNA within normal 
T-cells, ALK−ALCL and ALK+ALCL. It established 106 
miRNAs that were uniquely expressed between ALK+ and 
ALK−ALCL, and 228 miRNAs that were distinct between 
regular T-cells and ALK+ALCL cells. The research 
detected 56 miRNA signatures that differentiate between 
T cells, ALK+ALCL and ALK− ALCL. Seven down- 
regulated genes were among the most important candidate 
genes with significantly different expression between 
ALK−ALCL and ALK+: mir-155, mir-146a, mir-542-3p, 
mir-424*mir-503, mir-424, mir-196b. In comparison, 5 
miRNAs were upregulated: mir-183, mi-182, mi-203 
mir-340 and mi-135b. The ALK+ cells were upregulated 
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in mir-17-92 clusters. Furthermore, the analysis identified 
three miRNAs characteristics greatly regulated by the C/ 
EBP transcription factor, which is especially overex-
pressed by ALK+ALCL (such as the mir-181 family). 
Ironically, mir-181a, which controls TCR signal intensity 
and T-cell specialization, was significantly reduced in 
ALK+ALCL patients. To summarize, these findings 
revealed miRNA signals connecting ALK+ALCL to 
improper immune reactions, thereby partly arising from 
irregular ALK+ ALCL TCR expression of antigens.94

Large Cell Lymphoma That is 
Associated with Breast Implants 
and is Anaplastic
The connection between the fluid surrounding 
ALK−ALCL and the breast prosthesis developed in the 
capsule leads to the recognition of a unique clinicopatho-
logical entity known as ALCL related to breast implants 
(BIA−ALCL).95 BIA−ALCL is a sporadic form of T cell 
lymphoma that typically emerges after a relatively long 
incubation period following breast prosthesis.96 Blombery 
et al performed WES in two low-effusion BIA-ALCL 
patients in 2016, and observed acquired activation defects 
of JAK1 and STAT3 in both instances. This provides 
information on inherited lesions in this rare disease. In 
2018, the team performed a comprehensive genome 
exploration of 11 BIA-ALCL cases based on NGS, includ-
ing, whole-genome analysis of the number of copies, 
identifying changes in TCR structure by sequencing or 
measuring depth of TRB and the detecting of aberrations 
in 180 commonly mutated genes in hematologic malignant 
tumors. Defects were found JAK/STAT activation 
sequences in 10 out of 11 cases. Two mutations of the 
TP53 germ line were found in this research. Recent studies 
have shown that genetic changes in epigenetic modifiers 
and JAK-STAT signals are common in ALCL associated 
with breast implants.97 Moreover, there was frequent loss 
of RPL5 copy numbers and increase of PDGFRA, 
TMEM119, P2RX7, MYC and TNFRSF11A [RANK] 
copy numbers shown by two cases. Essentially, this 
study provides information on the fundamental disease 
pathways (TP53 and JAK/STAT and MYC) and establishes 
targets for potential therapeutic interventions in this rare 
disease, namely PDGRA and TNFRSF11A.98 The geno-
mic data from Blombery et al showed that irregular BIA- 
ALCL signal transduction pathways were the same as 
sALCL’s, including abnormal BIA-ALCL signals. 

Nevertheless, the recorded gene aberrations causing this 
deregulation of signaling seem to be specific to BIA- 
ALCL, having 1p22 repeat deletions and greatly repetitive 
mutations of STAT3 influencing RPL5, which are not yet 
present in SALCL. Additionally, genomic data included 
anomalies in the transduced inflammatory body signals 
including Wnt/β-catenin, PKC and TGF-cell pathways 
that could be a future study area, to improve understanding 
of this rare lymphoma.99

Conclusion
Mature NK/T-cell lymphoma is aggressively malignant and 
as a result of its many classifications and low incidence, it 
has not been adequately studied. With the rapid development 
of NGS technology and more collaboration among medical 
research centers, more and more mutated genes of various 
classifications in mature T- and NK-cell lymphoma have 
been discovered. In this paper, the application of NGS 
technology in 9 types of mature T- and NK-cell lymphomas 
with a lot of related studies and the discovery of relevant 
gene mutations are summarized. The discovery of these 
mutated genes is conducive to the accurate diagnosis and 
treatment of diseases, so that these relatively rare lympho-
mas can get personalized treatment.
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