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Abstract

Traumatic brain injury is a complex and diverse medical condition with a high frequency of intracranial abnormalities.

These can typically be visualized on a computed tomography (CT) scan, which provides important information for further

patient management, such as the need for operative intervention. In order to quantify the extent of acute intracranial

lesions and associated secondary injuries, such as midline shift and cisternal compression, visual assessment of CT images

has limitations, including observer variability and lack of quantitative interpretation. Automated image analysis can

quantify the extent of intracranial abnormalities and provide added value in routine clinical practice. In this article, we

present icobrain, a fully automated method that reliably computes acute intracranial lesions volume based on deep

learning, cistern volume, and midline shift on the noncontrast CT image of a patient. The accuracy of our method is

evaluated on a subset of the multi-center data set from the CENTER-TBI (Collaborative European Neurotrauma Effec-

tiveness Research in Traumatic Brain Injury) study for which expert annotations were used as a reference. Median volume

differences between expert assessments and icobrain are 0.07 mL for acute intracranial lesions and -0.01 mL for cistern

segmentation. Correlation between expert assessments and icobrain is 0.91 for volume of acute intracranial lesions and

0.94 for volume of the cisterns. For midline shift computations, median error is -0.22 mm, with a correlation of 0.93 with

expert assessments.
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Introduction

Traumatic Brain injury (TBI) is a complex and often

poorly understood disease process that is defined as an alter-

ation in brain function, or other evidence of brain pathology, caused

by an external force. Often referred to as ‘‘the silent epidemic,’’ it

will surpass many diseases as the major cause of death and dis-

ability by 2020, according to the World Health Organization.1 In

the acute phase after TBI, computed tomography (CT) imaging is

commonly performed to detect the most important brain patholo-

gies and quantify extent of injury. CT is widely available, fast,

noninvasive, and remains the cornerstone for initial assessment and

diagnosis of TBI in emergency settings.2–4 A broad spectrum of

abnormalities/lesions can be encountered in TBI patients, de-

pending on the type and amount of external forces that caused the

initial insult. However, one of the most important purposes of

imaging in the acute phase after injury is to identify the presence of

large extra- or intracerebral space-occupying lesions that are in

need of urgent neurosurgical evacuation (e.g., subdural hematomas,

epidural hematomas, contusions, or intracerebral hematomas). The

volume of these lesions and associated secondary features (a mid-

line shift [MLS] greater than 5 mm, cisternal compression, etc.) are

important guiding factors for surgical and medical management of

raised intracranial pressure.5,6 In addition, some of these variables

are also important for outcome prediction, which is why they are

used in multiple prognostic CT scoring systems and are also

commonly collected as important imaging variables in large-scale

clinical TBI trials.7–12 Manual segmentation of these lesions is

time-consuming and suffers from intra- and interobserver vari-

ability.13–15 A fully automated method could increase the reliability

and consistency of volume estimations and quantification of asso-

ciated factors (i.e., MLS and cisternal compression).
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The aim of this article is to develop a fully automated method

that could estimate acute intracranial lesion volume reliably and

consistently quantify basal cistern volume and MLS. The main

contributions of the article are: 1) application and extension of the

U-Net–based convolutional neural network (CNN) for acute intra-

cranial lesions segmentation; 2) accuracy validation of the proposed

method on three subcohorts of the CENTER-TBI (Collaborative

European Neurotrauma Effectiveness Research in Traumatic Brain

Injury) data set, having multi-center data with different acquisition

and imaging protocols.7

Methods

Data overview

In this article, data from the CENTER-TBI study (NCT02210221)
is used, which recruited patients across a broad range of hospitals,
including trauma centers, university hospitals, and community hos-
pitals, over 5000 patients. The data are collected in three strata,
differentiated by care path: 1) patients seen in the emergency room
(ER) and discharged (ER stratum); 2) patients admitted to hospital,
but not to the intensive care unit (ICU; admission stratum); (3)
patients admitted to the ICU (ICU stratum). CT scan was
performed according to standard clinical practice on either a GE
(GE Healthcare, Little Chalfont, UK), Siemens (Siemens Healthcare,
Erlangen, Germany), Philips (Philips Healthcare, Best, The Neth-
erlands), or Toshiba (Toshiba Corporation, Tokyo, Japan) clinical
scanner having a wide range of imaging (acquisition and recon-
struction) parameters. Three distinctive subcohorts of the CENTER-
TBI data set are considered for evaluating acute intracranial lesions
segmentation: cistern segmentation and midline shift estimation such
that every data set ensures a sufficient variability in terms of TBI
severity and imaging characteristics of interest.

Data set 1: Acute intracranial lesions delineation

The training data for acute intracranial lesions segmentation
consist of 72 males and 33 females with 42 subdural hematomas, 43
epidural hematomas, and 66 intraparenchymal hemorrhages/con-
tusions (multiple lesion types per patient were possible). The test
data consist of 39 images and have similar distribution as the
training, and the volumes range from 5.5 to 223 mL. Nine subjects
were scanned on GE, 11 on Philips, 16 on Siemens, and three on
Toshiba scanners. CT imaging parameters were as follows: com-
puted tomography dose index (CTDIvol; in milliGrays) ranges
from 0.03 to 85.66, peak kilovoltage (kVp) ranges from 80 to 140,
slice thickness ranges from 0.41 to 5.00 mm, and pixel spacing
ranges from 0.30 to 1.00 mm. Manual delineation of acute intra-
cranial lesions is performed using 3D Slicer (version 4.8.1) (3D
Slicer (online; accessed September 19, 2018; www.slicer.org)) by
two neuroscientists (after mutual consensus), trained to interpret
and segment TBI pathology. Each segmentation was supervised
and validated by an expert neuroradiologist with over 25 years of
experience.

Data set 2: Cisterns delineation

Cistern data contain 70 cases with suprasellar, quadrigeminal, or
prepontine/ambient cisternal compression indicated in the struc-
tured radiological reports. Multiple cisterns could be simulta-
neously compressed. Seven subjects were scanned on GE, 12 on
Philips, 37 on Siemens, and 14 on Toshiba scanners. CT imaging
parameters were as follows: CTDIvol (in milliGrays) ranges from
0.10 to 223.87, kVp ranges from 100 to 140, slice thickness ranges
from 0.43 to 5.00 mm, and pixel spacing ranges from 0.29 to
1.00 mm. A (trained) neuroscientist manually segmented the cis-
terns using 3D Slicer under supervision of an expert neuroradiol-
ogist. Total volume of cisterns ranged from 0 to 19.76 mL.

Data set 3: Midline shift measurement

MLS data contain 38 images for which the structured radio-
logical reports indicated MLS status (<5 or >5 mm). Six subjects
are scanned on the GE, 15 on Philips, 13 on Siemens, and 5 on
Toshiba scanners. CT imaging parameters were as follows:
CTDIvol (in milliGrays) ranges from 15.86 to 71.65, kVp ranges
from 100 to 140, slice thickness ranges from 0.43 to 5.00 mm, and
pixel spacing ranges from 0.35 to 1.00 mm. Two neuroradio-
graphers (after mutual consensus) measured the MLS following the
Common Data Elements,16 under supervision of an expert neuro-
radiologist. First, a line (line A) was drawn from the protuberantia
occipitalis interna to the crista galli. At the level of the largest MLS,
a line (line B) was drawn perpendicular to this line A, across the
image, between the left and right internal table of the skull. A third
line (line C) was drawn from the internal table of the skull to the
septum pellucidum at the level of largest midline shift, in the op-
posite direction of the shift. This line was at the same level and
parallel to line B. The MLS was then calculated with the following
formula: j B

2
�Cj.17 Measurements were performed at all levels

between the foramen of Monro and the roof of the lateral ventricles,
where a possible MLS was visible. The measurement with the
largest midline shift was taken as the final MLS. The experts’ MLSs
ranged from 0.20 to 19 mm.

Method description

Figure 1 presents an overview of the proposed method, which
has four steps. In the first step, the pipeline pre-processed the input
CT image where the brain was extracted and segmented into gray
matter, white matter, and cerebrospinal fluid (CSF). Brain extrac-
tion was performed using the 2D U-Net method described in
Ronneberger and colleagues.18 The method contains five layers of
contracting and expansive paths. In each layer, there are two con-
volutions of kernel size 3 · 3 and activated with a rectified linear
unit (ReLu), which are normalized afterward with a zero mean and
unit standard deviation. The number of filters used in the two
convolutional blocks of the first layer were 64, and then in the
successive layer, the number of filters was doubled. The network
was optimized using Adadelta19 and was implemented in Python
language (Python (online; accessed November, 28, 2018; https://
www.python.org)) using Keras (Keras (online; accessed Novem-
ber, 28, 2018; https://keras.io)) with Tensorflow (Tensorflow (on-
line; accessed November, 28, 2018; https://www.tensorflow.org))
backend. Brain segmentation was computed by registering the in-
put image to the CT atlas20 in the Montreal Neurological Institute
(MNI) coordinate space21 using NiftyReg,22 (NiftyReg (online;
accessed November, 28, 2018; http://cmictig.cs.ucl.ac.uk/wiki/
index.php/NiftyReg)) followed by segmenting the skull-stripped
input CT image with the help of the available MNI CT before
probability maps of gray matter, white matter, and CSF using a
maximum likelihood expectation/maximization algorithm, Nifty-
Seg. (NiftySeg (online; accessed November, 28, 2018; http://
cmictig.cs.ucl.ac.uk/research/software/software-nifty/niftyseg))
The CSF segmentation was used to locate the lateral ventricles as
well as the cisterns in the input CT image using binary anatomical
priors of these structures available from MNI coordinate space.

In the second step, cisterns were segmented by performing a set
of morphological operations (constrained dilation, smoothing, and
imposing nonoverlap at the cistern border) on the located cisterns
from the pre-processing step to obtain the final segmentation. In the
third step, acute intracranial lesions were segmented using a three-
dimensional U-Net–based CNN architecture as described by Cxiçek
and colleagues.23 The CNN uses intensity-normalized (zero mean
and unit standard deviation) extracted brain images from the pre-
processing step for training. It extracts the relevant information
from the input image and synthesizes the segmentation information
at four resolutions (layers). In the extraction path, every layer has
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two 3 · 3 · 3 convolutions blocks, and each convolution is followed
by a ReLu activation function. Then, a 2 · 2 · 2 max pooling op-
eration decreases the input resolution by half in each dimension.
The number of filters used in the two convolutional blocks of the
first layer are 32 and 64, respectively, and then in the successive
layer, the number of filters is doubled. During synthesis path, every
layer has a 2 · 2 · 2 upsampling operation followed by two con-
volutions with ReLu, as described in the compression path.
Shortcut connections are added from the same resolution of the
compression path to provide high-resolution features before per-
forming the convolution operation. In the final layer, a 1 · 1 · 1
convolution layer reduces the number of output channels to desired
classes, followed by a softmax function to enforce sparse seg-
mentation. The network is trained with an input voxel patch of the
image of size 132 · 132 · 132 with desired output channels and a
batch size of one. The output patch size is 44 · 44 · 44 and with a
voxel size of 1 · 1 · 1 mm3; the approximate receptive field is ap-
proximately 88 · 88 · 88 mm3 for each voxel in the output seg-
mentation. The network is trained with an Adam optimizer
(learning rate = 10–5; decay factor = 0.0),24 with categorical cross
entropy as a loss function,# and is trained in two stages. In the first
stage, the model is trained to differentiate intracranial lesions from
the background using input and output image patches. 2) In the
second stage, we computed the false lesions mask using the model
segmentation from the first stage and the ground truth, and retrained
the network with false lesions mask as an additional class. This
forced the network to focus on the hard samples and learn to dif-
ferentiate between acute intracranial lesions and false lesions. The
false lesions mask includes venous sinus, free, and attached edges
of the falx cerebri and tentorium cerebelli, etc., that contain blood,
which have similar Hounsfield units as intracranial lesions. Be-
cause the data size is small, the images are augmented by flipping,
translating, rotating, and adding Gaussian noise randomly. This
would allow for more variability in the training set, and avoid
possible overfitting. In the testing phase, the trained CNN assigns
every voxel in an image a probability of being acute intracranial
lesions, which is then thresholded to 0.7 (empirically chosen) to
obtain the final segmentation. The network was implemented in
Python language using Keras with Tensorflow backend. In the

fourth step, the MLS was estimated by defining a range of potential
slices between the foramen of Monro and the roof of the lateral
ventricles in the MNI coordinate space. On each of these slices, the
shift was calculated using the formula: j �B

2
� �Cj, where �B corre-

sponds to the max width in the axial plane and �C is the distance from
the middle of the frontal part of the ventricles to the skull such that �B
and �C have the same starting x-coordinate value (Fig. 2). Maximum
displacement is given as the MLS encountered for the patient.

Performance metrics

The acute intracranial lesions and cisterns volume agreement
between icobrain and expert reference segmentation was evaluated

FIG. 1. Schematic representation of icobrain method. CSF, cerebrospinal fluid. Color image is available online.

FIG. 2. Estimation of the midline shift. �B is the max width in the
axial plane and �C is the distance from the middle of the frontal
part of the ventricles to the skull such that �B and �C have the same
starting x coordinate value (black bidirectional arrow). The mid-
line shift is then calculated using the expression: j �B

2
� �Cj. Color

image is available online.

#Deep learning (online; accessed November 28, 2018; http://www
.deeplearningbook.org).
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through the volume difference (in mL), absolute volume difference,
and the intraclass correlation coefficient (ICC). Volume difference
was computed as the difference between the value derived from the
expert reference segmentation and the corresponding total volume
reported by the icobrain method. A positive value indicates under-
segmentation, and negative value indicates oversegmentation by the
automated method. To measure the deviation from the expert refer-
ence segmentation (irrespective of under- or oversegmentation),
absolute volume difference was computed, which was the absolute
value of the volume difference. The ICC assessed the agreement of
measurements made by multiple observers measuring the same
quantity.25 In this article, ICC was used in the absolute agreement
formulation.

The Dice similarity index was used to evaluate the overlap
agreement between icobrain and expert reference segmentations
for acute intracranial lesions and cistern segmentations. It was
defined as the ratio between the number of voxels where both the
icobrain and the expert reference segmentation agree (true posi-
tives; TP) and the mean number of voxels labeled as acute intra-
cranial lesions/cisterns by the two methods.26 Segmentation quality
was evaluated by sensitivity and precision. Sensitivity was defined
as the ratio between TP and the total number of acute intracranial
lesions/cisterns voxels in the expert reference segmentation
(TP and false negatives [FN]). Precision was defined as the ratio
between TP and the total number of acute intracranial lesions/cis-
terns voxels in the automatic segmentation (TP and false positives
[FP]). Mathematically, Dice, sensitivity, and precision are defined

as follows: Dice¼ 2TP
2TP þ FP þ FN

, Sensitivity¼ TP
TP þ FN

, and

Precision¼ TP
TP þ FP

. An additional classification accuracy mea-

sure is reported, defined as the ratio of number of cases where both
reference and automatic measurements agree (i.e., their respective
largest lesion volume is either >25 or <25 mL) and total number of
subjects.

For the MLS, the difference in shift (in mm) was computed
between the expert and icobrain method measurements. We also
report the absolute shift measurement, which is the absolute value
of the difference in shift. Finally, the classification accuracy mea-
sure is also reported. In this case, the agreement was defined where
both reference and automatic measurements either measured the
shift >5 or <5 mm.

Results

Quantitative results

Table 1 presents the quantitative performance of the method for

acute intracranial lesions, cisterns, and midline shift. For acute

intracranial lesions, the median volume difference between ico-

brain and the expert reference segmentations was 0.07 mL, whereas

the median value of absolute volume difference was 8.83 mL.

icobrain acute intracranial lesions volumes were well correlated to

the expert reference volumes with an ICC of 0.91. Median overlap

with the reference expert segmentation was 0.73 with a median

precision and sensitivity of 0.75 and 0.75, respectively. Classifi-

cation accuracy based on the 25-mL cutoff was 0.92. Similarly, for

cistern segmentation, median volume difference was -0.01 mL,

whereas the median value of absolute volume difference was

1.48 mL. Very good correlation (ICC of 0.94) was observed. Median

overlap with the reference expert segmentation was 0.70, whereas

precision and sensitivity were 0.72 and 0.69, respectively, for cistern

volume >5 mL (n = 39). For the MLS, the median difference in the

shift was -0.22 mm, whereas the median value of absolute difference

in the shift was 0.86 mm. Again, a very good correlation was ob-

tained, with ICC of 0.93. Classification accuracy based on the 5-mm

cutoff was 0.89. Figure 3 visualizes the volumetric correlations be-

tween the expert reference and icobrain measurements.

Qualitative results

Figures 4 and 5 show several TBI cases from data sets 1 and 2,

respectively, representative for the expected performance of the

icobrain segmentations. The original CT images are shown next to

annotated versions with the lesion segmentation from the expert

reference segmentation (red) and icobrain (orange). The first row

corresponds to the 75th percentile of Dice, followed by 50th and 25th

percentiles (Table 1) in the second and third rows, respectively. In

Figure 4, epidural and subdural hematomas are well segmented with

few false positives near the brain boundary. Isodense contusions

(e.g., Fig. 4C) were difficult to segment accurately, especially if they

were near the brain boundary. In Figure 5, cistern segmentations are

similarly illustrated. The segmentations in Figure 5A show that the

suprasellar and quadrigemnial cisterns match closely between the

human expert and the automatic method, whereas the prepontine

cistern differs in terms of the inferior stopping point, owing to the

lack of a clear anatomical boundary. Figure 6 (second row) shows

how the midline is measured by the expert and the corresponding

shift obtained with the icobrain method on 3 subjects. The estimated

shifts by the experts are 5.60 mm for Figure 6A, followed by

1.10 mm on Figure 6B and 0.40 mm for Figure 6C. The corre-

sponding obtained values from the icobrain method are 5.95 mm for

Figure 6A, followed by 1.91 mm for Figure 6B and 1.91 mm for

Figure 6C.

Discussion and Conclusion

In this article, icobrain is presented, a fully automated method

that reliably computes acute intracranial lesions and cistern vol-

umes along with MLS on a noncontrast CT image of a TBI patient.

The method has been validated using a multi-center data set from

the CENTER-TBI study.

Table 1. Performance Measures between Icobrain

and Expert Reference Values for Acute Intracranial

Lesions and Cistern Volumes and for Midline Shift

Acute intracranial
lesions Cisterns

Volume difference
(mL)

0.07 (-7.73, -7.47) –0.01 (-1.66, -1.21)

Absolute volume
difference (mL)

8.83 (2.02–17.05) 1.48 (0.70–2.26)

Classification accuracy 0.92 —
ICC 0.91 0.94
Dice 0.73 (0.55–0.81) 0.70* (0.66–0.73)
Precision 0.75 (0.63–0.87) 0.72* (0.67–0.79)
Sensitivity 0.75 (0.61–0.84) 0.69* (0.64–0.74)

Midline shift

Shift difference (mm) –0.22 (-0.88, -0.76)
Absolute shift difference (mm) 0.86 (0.37–1.48)
Classification accuracy 0.89
ICC 0.93

*For cisterns, Dice, sensitivity, and precision are reported for volume
>5 mL.

Except classification accuracy and ICC, all other measures are presented
in median (25th-75th) percentiles.

ICC, intraclass correlation coefficient.
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Accurate volume estimation of acute intracranial lesions and cis-

terns could be of great added value in routine clinical practice. Un-

fortunately, their manual delineation is time-consuming and thus not

often used in clinical practice. Semiquantitative methods, such as the

ellipsoid method27 and the Cavalieri direct estimator,28 have been

proposed to estimate volumes, but are still time-consuming and often

lack precision, especially in lesions with irregular shapes. In addition,

these methods are still observer dependent and are therefore subject to

substantial inter- and intrarater variability.29 The same holds true for the

interpretation of prognostically important features that are associated

with large masses, like MLS and cisternal compression. For example,

the state of the basal cisterns is currently still always qualitatively

measured in clinical routine. Multiple semiquantitative methods

could be used, which can be an additional source of variability.30

Automatic methods have the obvious advantage of being fast and

consistent compared to manual and semiautomated methods. It is

interesting to note that automatic MLS measurement has received

considerable interest in the literature. Automatic methods that mea-

sure MLS either use symmetry of the brain or some specific ana-

tomical landmarks, such as falx cerebri, frontal horns of the lateral

ventricles, and the third ventricle.31–35 In general, all these methods

perform well except in extreme cases, such as very large intracerebral

hemorrhage (brain symmetry is almost always compromised).

For acute intracranial lesions segmentation, the techniques are

based on intensity threshold, region growing, fuzzy clustering, active

contours, or atlas registration.36–40 The data sets used in most of these

methods are relatively small, with little information about variability

in brain injury severity, which makes it difficult to compare them

FIG. 3. Scatter plots of expert reference values versus icobrain computed values for (A) total acute intracranial lesions volume,
(B) total cisterns volume, and (C) midline shift. Color image is available online.
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against our method. Small sample size in the data sets used in the

literature could be attributed to the fact that acquiring and delineating

lesions manually on large data sets is very challenging and time-

consuming. Discriminating normal blood containing structures (e.g.,

venous sinuses) from intracranial lesions poses challenges for any

automated method, given that they are in a close proximity and share

the same range of image intensities in a noisy CT scan.

Comparing the performance of our method with the state-of-the-

art methods is difficult not only because different data sets were

used, but also because most of them focus on classification tasks

(e.g., detecting MLS more than 5 mm), including classifying se-

verity level of cistern effacement and detecting presence or absence

of certain type of intracranial hemorrhages. This is indeed an im-

portant aspect; however, an accurate agreement of these parameters

FIG. 4. Qualitative results for acute intracranial lesions segmentation on 3 representative subjects from data set 1. The first column
shows original computed tomography images with superimposed acute intracranial lesions segmentations from the expert in the second
column and icobrain in the third column. (A) Acute intracranial lesions segmentation on a representative subject with Dice of 0.81,
followed by (B) Dice of 0.73 and (C) Dice of 0.54. Color image is available online.
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with the experts gives more insights in the method’s performance

and thus builds trust for any computer-based method.

For MLS, Chilamkurthy and colleagues13 evaluated their

method for MLS detection >5 mm on a large data set and obtained

an average sensitivity of 0.89 at a high specificity operating point.

Wang and colleagues41 reported the accuracy of 0.90 on 43 subjects

for MLS >5 mm. Our results are very similar, because we obtained

a classification accuracy of 0.89 at the typical threshold of 5 mm.

Yuh and colleagues34 assessed the MLS using symmetry of CSF in

lateral ventricles with respect to the symmetry of the skull and

observed the detection classification accuracy (for >5 mm shift) of

0.98 on 250 subjects obtained from multi-center data (vendor/ac-

quisition parameters analysis was not performed). However, this

study did not compare against expert measurements.

For intracranial lesion segmentation, Chilamkurthy and col-

leagues13 detected five different types of intracranial lesions and

obtained an average sensitivity of >0.90 for each type. Similarly,

Yuh and colleagues34 detected four different types of intracranial

lesions and obtained good results, except for some difficulty in

separating traumatic subarachnoid hemorrhage (tSAH) and con-

tusions from the normal brain structures. Similar to MLS, the re-

searchers classified different lesions, but unfortunately, no analysis

(such as overlap with manual segmentation) was performed on their

segmentation. Detecting different types of intracranial lesions is

certainly important, and we aim to address this issue in our future

work; nevertheless, we obtained a decent classification accuracy of

0.92 using a cutoff of 25 mL, which is a typical threshold for TBI

lesions indicative of mass effect. Roy and colleagues39 performed

segmentation analysis of intraparenchymal hemorrhages and re-

ported a median overlap of 0.86 on 25 subjects, and we obtained a

median overlap of 0.73 on 39 subjects. Although the results seem

better, the lesion types were only a subset of intracranial lesions

that we considered, and no information on distribution among

subjects was given. Bhadauria and colleagues36 evaluated their

method on 20 subjects and reported an 0.89 overlap with respect to

expert ground truth. They considered 5 epidural, 4 subdural, and

11 intracerebral hemorrhage subjects, which is a much smaller

data set than in our work (43 epidural, 42 subdural, and 66 in-

tracerebral hemorrhages or contusions subjects).

An important contribution of this work is the validation of our

method on a multi-center data set. We investigated the performance

of our method for different manufacturers and acquisition param-

eters (see Fig. 7). In summary, it seems that the performance of

icobrain is not manufacturer dependent; however, the low sample

FIG. 5. Qualitative results for cisterns segmentation on 3 representative subjects from data set 2. The first column shows original
computed tomography images with superimposed cisterns segmentations from the expert in the second column and icobrain in the third
column. (A) Cisterns segmentation on a representative subject with Dice of 0.73, followed by (B) Dice of 0.70 and (C) Dice of 0.66.
Color image is available online.
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FIG. 7. Analysis of icobrain’s performance on four different manufactures and imaging parameters values. First column presents box
plots and scatter plots reflecting the measurement error as a function of these hyperparameters for data set 1 followed by data set 2 and
data set 3 in columnss two and three, respectively. CTDIvol = computed tomography dose index (in milliGrays); kVp = peak kilovoltage
(in kV), slice thickness and pixel spacing are reported in mm. Color image is available online.

FIG. 6. Qualitative results for midline shift estimation on 3 representative subjects from data set 3. First row presents original
computed tomography images and second row shows how the midline is calculated by the expert. The estimated shifts (in mm) by the
expert and icobrain for (A) is (5.60, 5.95), followed by (1.10, 1.91) for (B) and (0.40, 1.91) for (C). Color image is available online.
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size per manufacturer makes it difficult to generalize this conclu-

sion. For imaging parameters, no trend was observed with the

change in any parameter settings, which implies that the perfor-

mance of icobrain is independent of imaging parameters values.

Comparing with the literature, the median acute intracranial lesions

volume difference between the expert reference segmentations and

icobrain is 0.07 mL, and Jacobs and colleagues14 mentioned the

median volume difference of -4.0 mL between the two experts on

their data set. A low volume difference and slightly high absolute

volume difference for acute intracranial lesions volume suggests that

icobrain overestimates lower volumes and underestimates large

volumes (see Fig. 3A) for acute intracranial lesions. Based on neu-

rosurgical guidelines in Bullock and colleagues,5 the accuracy in

computing the acute intracranial lesion volume between 25 and

50 mL is important, and our absolute volume difference was <25 mL.

In 3 of 39 cases with the largest lesion volume >25 mL, we incor-

rectly measured the largest acute intracranial lesion volume <25 mL

compared to the experts’ largest volume, but the rest of the cases

were correctly classified. This results in a classification accuracy of

0.92 (j = 0.78), and Jacobs and colleagues14 observed a kappa co-

efficient of 0.74 between raters for identification of lesions >25 mL.

For cisterns, icobrain’s volumes are in alignment with the ex-

perts’ reference volumes with an ICC of 0.94. In only 6 of 70 cases,

we incorrectly measured cisterns volume >5 mL compared to ex-

pert volume and 1 case the other way around. Finally, for the MLS,

the average difference between icobrain and the experts’ shift

measurement was -0.12 mm (median = -0.22), and Jacobs and

colleagues14 reported the average MLS difference of -0.20 mm

between the two experts on their data set. The classification accu-

racy between icobrain and experts’ measurements for the MLS

>5 mm was 0.89 (j = 0.78), and Chilamkurthy and colleagues and

Jacobs and colleagues13,14 reported the kappa coefficients of 0.60

and 0.82, respectively, among raters. Again, the absolute differ-

ence in the shift is moderately high (0.86), but still below the

commonly used threshold of 5 mm for MLS. In 3 of 38 cases, we

mistakenly measured a shift >5 mm and in 1 case a shift of <5 mm

compared to expert measurements. This is similar to a comparison

between experts where the maximum disagreement was observed

in 5 of 41 cases in the Wang and colleagues study.41

The main difficulty in assessing any automated method’s per-

formance using only volumes is that it does not incorporate the

information regarding the spatial overlap with the segmentations of

the expert.42 In the extreme case, an automated method can obtain

the same volume as the experts with no common voxels. Therefore,

in this article, spatial measures such as overlap (Dice), sensitivity,

and precision were used for the qualitative assessment of our

method against expert segmentation. For example, in the case of

acute intracranial lesions and cistern segmentations, a reasonable

overlap of >0.70 was attained, which implies that the achieved

volumetric performance is acceptable. We observed (results not

shown) that the Dice was comparatively low (0.44) when the total

cistern volume was <5 mL. This is attributed to the fact that Dice is

sensitive to small volumes.42 That is why we presented Dice,

sensitivity, and precision for cistern volumes >5 mL.

There are some inherent limitations to our study. We occa-

sionally segmented parts of normal blood-containing structures as

acute intracranial lesion, which could explain a decrease in preci-

sion. However, previous approaches based on intensity threshold-

ing and morphological constraints34 had more-severe problems in

terms of precision (specificity of 59% for lesion detection, con-

sidered at lesion level, not voxelwise). Our method also partly

segmented tSAH as lesions, which was not included in the manual

segmentation, because it is very time-consuming. However, tSAH

also commonly forms extra-axial collections that co-occur with

large subdural or epidural hematomas. We missed some hypodense

areas in otherwise predominantly hyperdense subdural hematomas,

which decreased the sensitivity (undersegmentation) of the method.

However, acute bleeding was mostly hyperdense, and the hypo-

dense parts were usually quite small compared to the volume of the

entire lesion. For cistern segmentation, our volumetric approach

could complement the typical clinical evaluation, which aimed at

observing whether each basal cistern was normal, partially com-

pressed, or totally obliterated. The cistern volumes from icobrain

can lead to a similar interpretation: First, a cistern is considered

compressed when its volume falls under the normal (age-matched)

range, which can be obtained from a healthy controls data set;

second, a cistern can be considered obliterated if its icobrain vol-

ume is negligible.

In the future, we would like to extend the acute intracranial

lesions to include edema as well and classify different types of

acute intracranial lesions. We also intend to use a convolutional

neural network for cistern segmentation and validate our approach

on the complete CENTER-TBI data set. These larger numbers will

permit more-robust analysis of our method’s performance on dif-

ferent scanners and acquisition protocols.

In conclusion, the proposed automatic framework provides re-

liable quantification of CT features in acute TBI. We believe that,

through its robustness and automation, icobrain could bring an

added value (possibility to measure acute intracranial lesion and

cistern volumes, as well as MLS) for the clinical evaluation of TBI

patients (care is advised with its use and interpretation). In addition,

this tool can be of great value in large-scale patient studies where

lesions are required to be measured.
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