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Coral reefs are continuing to decline worldwide due to anthropogenic climate change.
The study of the molecular diversity and biogeographical patterns of Symbiodiniaceae,
is essential to understand the adaptive potential and resilience of coral–algal symbiosis.
Next generation sequencing was used to analyze the Symbiodiniaceae rDNA internal
transcribed spacer 2 marker genes from 178 reef-building coral samples in eight coral
habitats across approximately 13◦ of latitude in the South China Sea (SCS). A total of
three Symbiodiniaceae genera, Cladocopium, Durusdinium, and Gerakladium, as well
as 31 dominant Symbiodiniaceae types, were identified. Symbiodiniaceae richness,
diversity, and community composition varied according to latitude; intermediate and
low latitude coral reefs (IR and LR) have higher Symbiodiniaceae richness and
diversity than high latitude coral habitats (HC and HR). A PERMANOVA analysis found
significant differences in the Symbiodiniaceae community composition in the SCS
(F = 14.75, R2 = 0.20, p = 0.001 < 0.01). The major dominant Symbiodiniaceae
types were C1 in the HC and the HR, C1/Cspc/C50/C15 and D1 in the IR, and
C3u and C15 in the LR. Canonical correspondence analysis showed that the relative
abundance of different Symbiodiniaceae types is affected by multiple environmental
factors. Phylogenetic analysis indicated that the Symbiodiniaceae type Cladocopium,
which shared common ancestors, shows similar environmental adaptability. Based on
these results, we suggest that coral host species played a relatively small role in the
identity of the dominant Symbiodiniaceae type. Therefore, the biogeographical patterns
of Symbiodiniaceae may be mainly affected by environmental factors. Our research
provides a comprehensive overview of the biogeography of Symbiodiniaceae in the
SCS, where coral communities and reefs are widely distributed across different latitude
regions and have variable environmental conditions. Our data will provide support
for further study of the regional diversification of Symbiodiniaceae and the ecological
resilience of the coral-Symbiodiniaceae symbioses.
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INTRODUCTION

Coral reefs are the most diverse ecosystems in the oceans, and
they provide habitats for at least 30% of marine organisms
(Reakakudla et al., 1997). They are also the most diverse
symbiotic ecosystems on earth (Blackall et al., 2015). The ability
of reef-building corals to build reef structures depends on
Symbiodiniaceae, which provides up to 95% of host respiratory
demand (Falkowski et al., 1984; Muscatine et al., 1984). However,
this special symbiotic relationship is threatened by anthropogenic
climate change (Carpenter et al., 2008; Hughes et al., 2017;
Langlais et al., 2017). When the external environment changes
drastically, the coral suffers the loss of symbionts, and coral
bleaching occurs (Glynn, 1993; Rowan et al., 1997; Hoegh-
Guldberg, 1999; Baker, 2003; Hughes et al., 2003, 2017; Langlais
et al., 2017). As anthropogenic climate change continues to
increase, coral reef ecosystems are being seriously threatened
(Hoegh-Guldberg et al., 2007). The strongest El Niño event
recorded occurred in 1997–1998, and the highest global sea
surface temperature (SST) that was experienced in 1998 directly
led to global-scale coral bleaching, with an effective loss of
16% in coral coverage (Wilkinson, 2002). Moreover, damage to
coral reefs by anthropogenic climate change is cyclical, with
increased frequency and longer-lasting effects. The two global
bleaching events that occurred in 2010 and 2015 have once
again seriously affected global coral reef ecosystem (Hughes
et al., 2017). The bleaching event in 2015 lasted for 2 years
and became the longest-lasting global bleaching event in history
(Eakin et al., 2016; Hughes et al., 2017; Langlais et al.,
2017). According to the statistics, the collapse of coral–algal
symbiosis since the 1970s has been due to climate change, which
caused the coral cover to dramatically decline by approximately
50–80% worldwide (Gardner et al., 2003; Bruno and Selig,
2007; Silverstein et al., 2015). In addition to the increase in
SST, the health of coral reef ecosystems is also threatened
by a number of other factors, including ocean acidification
and eutrophication (Goiran et al., 1996; Lapointe, 1997).
However, different kinds of Symbiodiniaceae have unique eco-
physiological and environmental adaptability characteristics that
result in differences in the tolerances of their symbiosis systems
(LaJeunesse et al., 2010, 2018; Hume et al., 2016). Therefore,
Symbiodiniaceae are ecologically diverse and have established
symbiotic relationships with different coral hosts that exhibit
distinct environmental tolerances at large geographical scales
(Cantin et al., 2009; LaJeunesse et al., 2010; Baker et al., 2013;
Ziegler et al., 2015). Moreover, there is some evidence supporting
the “adaptive bleaching hypothesis,” which suggests that corals
may be able to acclimate to future climate change by shuffling or
switching their symbionts (Baker, 2004; Fautin and Buddemeier,
2004; Stat et al., 2006). However, the shuffling and switching
of Symbiodiniaceae community composition does not seem to
have saved more corals in the recent global bleaching event
(Perry and Morgan, 2017; Hughes et al., 2018). This results
from the fact that coral-Symbiodiniaceae symbioses are stable
(Thornhill et al., 2006; Hume et al., 2015; Ziegler et al., 2017),
which, however, does not eliminate the possibility of symbiont
community composition change driven by SST and light stress

(Silverstein et al., 2015; Boulotte et al., 2016). For example,
Orbicella faveolata, an endangered species from areas of the
Caribbean Sea and Gulf of Mexico such as the Florida Keys
(Florida, United States) (Manzello et al., 2018), retained some
of the coral species that are vital for the heavily degraded
coral reef ecosystem.

In the past, the Symbiodiniaceae family (formerly the
Symbiodinium genus) was divided into nine clades (A–I) by a
molecular taxonomy study (Pochon and Gates, 2010). A recent
study proposed that evolutionarily divergent zooxanthellae
“clades” are equivalent to genera in the family Symbiodiniaceae,
and consequently seven of these were formally described as
Symbiodinium (formerly Clade A); Breviolum (formerly Clade B);
Cladocopium (formerly Clade C); Durusdinium (formerly Clade
D); Effrenium (formerly Clade E); Fugacium (formerly Clade F);
and Gerakladium (formerly Clade G) (on the basis of genetics and
ecology, clades H and I were not formally described as genera;
LaJeunesse et al., 2018). Of these, Symbiodinium, Breviolum,
Cladocopium, and Durusdinium generally form symbiotic
relationships with corals (Pochon et al., 2004; Ziegler et al., 2017).
These genera can be further divided into subclades or types with
distinct genetic, physiological, and ecological differences using
high-resolution molecular markers (LaJeunesse et al., 2014, 2018)
such as rDNA internal transcribed spacer regions (ITS1 and
ITS2) (LaJeunesse and Trench, 2000; LaJeunesse, 2001; Oppen,
2001; Arif et al., 2014), the hypervariable regions of domain V of
the chloroplast large subunit (cp23S) (Santos et al., 2002; Santos
and Coffroth, 2003; Pochon et al., 2006), and the chloroplast
psbA non-coding region (psbAncr) (LaJeunesse and Thornhill,
2011; Reimer et al., 2017). Of these markers, the ITS2 region
remains the most generally used marker for the determination
of Symbiodiniaceae diversity. However, many challenges remain
in the application of ITS2, including intragenomic variation
(IGV), pseudogenes, and PCR artifacts that can interfere with
diversity assessments and lead to overestimations of a magnitude
of approximately six to eight times (Apprill and Gates, 2007;
Thornhill et al., 2007; Stat et al., 2011). Therefore, it is important
to avoid the interference caused by these factors, especially the
interference caused by IGV (Thornhill et al., 2007; Sampayo
et al., 2010; Ziegler et al., 2017). Although PCR-DGGE can be
used to identify dominant ITS2 variants, which in many cases
represent Symbiodiniaceae types, or even species (LaJeunesse,
2001; Arif et al., 2014; Ziegler et al., 2017; Thornhill et al.,
2017), its use is limited by its sensitivity, which can only identify
symbionts with a relative abundance of > 5–10% (Thornhill
et al., 2006). Recently, next generation sequencing (NGS) has
been applied to assess Symbiodiniaceae ITS2 diversity, which
has greatly improved the resolution of different ITS2 to < 5%,
or potentially to 1%) (Arif et al., 2014; Thomas et al., 2014;
Tong et al., 2017; Ziegler et al., 2017). However, the ITS2 is a
multicopy marker because of the tandem repeat arrangement of
rRNA genes; consequently, the identification of IGV remains an
issue (Thornhill et al., 2007; Sampayo et al., 2010). Arif et al.
(2014) established a data processing method for Symbiodiniaceae
ITS2 NGS data and suggested 97% to be the optimal cut-off value
for operational taxonomic unit (OTU) clusters. This improved
the objectivity, comparability, and simplicity of Symbiodiniaceae
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diversity assessments. In addition, many studies have only
considered ITS2 variants with > 5% abundance in at least one
sample for diversity analysis, which allows for comparison with
the results of DGGE from previous studies, and can reduce IGV
interference (Tong et al., 2017; Zhou et al., 2017; Ziegler et al.,
2017; Cai et al., 2018). At present, NGS has been used to evaluate
the diversity and community composition of Symbiodiniaceae in
coral habitats around the world, and to reveal their biogeographic
and ecological patterns in different regions (Thomas et al., 2014;
Klepac et al., 2015; Stat et al., 2015; Ziegler et al., 2017).

Coral reefs in the SCS have high biological diversity. The SCS
is located on the northern edge of the “Coral Triangle,” which
borders the high latitude coral reefs of Japan in the north and
the coral diversity center of Indonesia in the south (Spalding
et al., 2001) (Figures 1A,B). Coral reefs are widely distributed
through the SCS, from the Zengmu Reef (∼4◦N) near the equator,
to the Leizhou Peninsula and Weizhou Island (∼20–21◦N) in
the northern part of the SCS (Wang and Li, 2009; Yu, 2012).
Higher latitudes such as Hong Kong, Daya Bay, Dongshan, and
Fangchenggang (∼21–23◦N) have also been found to have non-
reefal coral communities (Chen et al., 2007; Dong et al., 2008; Ng
and Ang, 2016). However, the results of ecological monitoring
show that the coral reefs in the SCS have degraded rapidly over
the past few decades, following the same trend in degradation
of coral reefs that has been seen globally (Gardner et al.,
2003; Bellwood et al., 2004; Yu, 2012; Zhao et al., 2013, 2016).
Therefore, it is essential to evaluate both the potential adaptability
of the coral–algal symbiotic system and the factors that affect
this in the SCS. Molecular research on Symbiodiniaceae can be
used to evaluate the diversity and biogeographical patterns of
this family (Baker, 2004; Rowan, 2004; Tong et al., 2017; Cai
et al., 2018). In the past, molecular studies of Symbiodiniaceae
have focused on coral–algal symbiosis in Hong Kong, Sanya, and
southern Taiwan, which are all in the northern SCS, and have
shown low diversity in these areas (Chen et al., 2005; Zhou and
Huang, 2011; Ng and Ang, 2016). The coral growth areas in the
northern SCS are close to the Chinese mainland and are therefore
affected by various factors such as seasonal low temperatures
and lower salinity that may cause Symbiodiniaceae diversity or
community composition to be obviously different from those
in coral reef areas further from the Chinese mainland. In the
case of intermediate (Xisha Islands and Zhongsha Islands) and
low (Nansha Islands) latitude areas in the SCS, studies have
indicated that coral–Symbiodiniaceae symbiosis is shaped by
high temperatures in these areas, and the relative abundance
of Durusdinium (Clade D) increased in Montipora and Galaxea
corals (Tong et al., 2017). Moreover, there is a significant
difference in Symbiodiniaceae community composition between
high latitudes and intermediate or low latitudes (Huang et al.,
2006, 2011; Dong et al., 2009). In addition, these studies used
traditional restricted fragment length polymorphisms and DGGE
(Chen et al., 2005; Huang et al., 2006, 2011; Dong et al., 2009;
Zhou and Huang, 2011; Ng and Ang, 2016), while NGS has
not been widely used, so that the evaluation of the diversity
and community composition of Symbiodiniaceae lacks sensitivity
(Arif et al., 2014; Edmunds et al., 2014; Thomas et al., 2014;
Boulotte et al., 2016). As coral reefs in the SCS are distributed

across a large spatial scale, the coral–Symbiodiniaceae symbiosis
at different latitudes is affected by different environmental factors,
such as SST (Hoegh-Guldberg, 1999), light intensity (Rowan
et al., 1997; Hoegh-Guldberg, 1999), nutrition concentration
(Hoegh-Guldberg, 1999; Gustafsson et al., 2015), and salinity
(Veron, 1986; Hoegh-Guldberg, 1999; Gustafsson et al., 2015).
Because the coral reefs are distributed across a large spatial scale,
our understanding of the molecular diversity and biogeographical
patterns of Symbiodiniaceae in the SCS is limited.

In this study, the sampling areas selected included eight coral
habitats (six coral reefs and two coral communities) in the SCS,
spanning 13◦ of latitude (Figure 1). NGS was used to analyze the
diversity and community composition of Symbiodiniaceae. This
study attempted to gain a more complete understanding of the
diversity, community composition, phylogenetic relationships,
and environmental impact factors at different latitudes in the
SCS. It also attempted to understand the molecular diversity and
biogeographical patterns of Symbiodiniaceae, as well the factors
that impact them. This study may provide vital information
that will assist future research into the adaptability and
resilience of the coral-Symbiodiniaceae symbiosis to respond
to climate change.

MATERIALS AND METHODS

Clustering analysis of SST (◦C) data from 2008 to 2016 collected
by the NASA Giovanni satellite1 shows that the sampling areas
can be divided into three latitude regions (Supplementary
Table 3). Clustering analysis was performed using the Ward
method, with a squared Euclidean distance as a metric.
Furthermore, depending on whether or not the corals build reefs
in high latitude regions, they were further divided into high
latitude coral communities (non-reefal) and high latitude coral
reefs. Therefore, the sampling areas was finally divided into four
latitude regions (Table 1).

Other environmental data including aqua-MODIS
chlorophyll a concentration (Chl a, mg·m−3), photosynthetically
active radiation (PAR, E·m−2

·s−1), and the diffuse attenuation
coefficient for downwelling irradiance at 490 nm (KD, 1/m)
from 2008 to 2016 were also acquired from the NASA Giovanni
satellite (Table 1 and Supplementary Table 3). In addition,
salinity (SAL, h) was measured in situ using an ES-421
conductance salinity meter (Atago, Tokyo, Japan) (Table 1 and
Supplementary Table 3). These environmental datasets were
used in the canonical correlation analysis (CCA).

High Latitude Coral Communities
Fangchenggang (FC, Figure 1C and Table 1) is located in the
northern part of Beibu Gulf from the SCS and near Vietnam.
We first discovered non-reefal coral community distribution in
this area. Daya Bay (DY, Figure 1D and Table 1) also have
not developed into extensive coral reefs and the coral cover has
declined significantly between 1983 (76.6%) and 2008 (15.3%)
(Chen et al., 2009). The low winter SST is the possible restrictive

1https://giovanni.gsfc.nasa.gov/giovanni/
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FIGURE 1 | The range of coral reef distribution and sampling areas in the South China Sea (SCS). (A) Annual average SST (2008–2016) in the SCS indicate that
which have difference among distinct latitude areas (B) Map of the whole SCS with labeled coral reef area. The sampling sites is marked by star. (C–J) The details of
sampling sites in the SCS. The map was constructed using software ArcGIS (ver. 10.1).
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TABLE 1 | Coral samples from the South China Sea (SCS) including sampling regions, climate, coral habitats, coordinates, environmental factors (contain SST, Chl a, PAR, SAL, and KD), coral samples information and
collected depth.

Regions Climate sampling
coral
habitats

Coordinates Environmental factors Coral
species

The
number

of
samples

sampling
dates

Depth

SST/
◦C

(SD)

Chl a/
mg·m−3

(SD)

PAR/
E·m−2·s−1

(SD)

SAL/
h (SD)

KD/
m−1

(SD)

High
latitude
coral
communities
(HC)

Subtropical Daya Bay
(DY)

E114◦33′–114◦39′,
N22◦34′–22◦39′

24.4
(4.4)

2.105
(0.65)

37.126
(8.44)

32.6
(0.14)

0.159
(0.05)

P. lutea 6 2015.08 2–15 m
F. palauensis 5

P. versipora 4

M. efflorescens 5

A. formosa 5

Fangchenggang
(FC)

E108◦31′_108◦33′,
N21◦56′ _21◦58′

24
(4.9)

1.688
(0.68)

35.952
(9.31)

30
(0.15)

0.143
(0.05)

F. palauensis 5 2016.08 4–12 m

P. versipora 6

High
latitude
coral
reefs
(HR)

Weizhou
Island (WZ)

E109◦04′_109◦08′,
N21◦00′ _21◦04′

25.5
(4.4)

2.235
(0.55)

37.561
(8.61)

32.4
(0.03)

0.174
(0.04)

P. lutea 7 2015.08 2–15 m
F. palauensis 6

P. versipora 3

M. efflorescens 6

A. formosa 6

Leizhou
Peninsula
(LP)

E109◦54′–109◦55′,
N20◦13′–20◦18′

25.8
(4.1)

2.75
(0.27)

38.58
(9.02)

32.8
(0.05)

0.201
(0.02)

P. lutea 3 2015.08 2–12 m

P. versipora 2

M. efflorescens 1

Intermediate
latitude
coral
reefs
(IR)

Tropical Beijiao (BJ) E111◦28′–111◦31′,
N17◦06′–17◦07′

27.6
(3.8)

0.156
(0.09)

42.553
(7.86)

33.3
(0.05)

0.02
(0.01)

P. lutea 6 2015.06 5–15 m
F. palauensis 4

P. versipora 4

M. efflorescens 4

A. formosa 4
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TABLE 1 | Continued

Regions Climate sampling
coral
habitats

Coordinates Environmental factors Coral
species

The
number of
samples

sampling
dates

Depth

SST/
◦C

(SD)

Chl a/
mg·m−3

(SD)

PAR/
E·m−2·s−1

(SD)

SAL/
h (SD)

KD/
m−1

(SD)

Low latitude coral
reefs (LR)

Huangyan
Island (HY)

E117◦44′–117◦50′,
N15◦06′–15◦13′

28.8
(1.2)

0.359
(0.42)

43.657
(5.45)

34.1
(0.04)

<0.01
(0.04)

P. lutea 7 2015.05 5–15 m

F. palauensis 5

P. versipora 6

M. efflorescens 3

A. formosa 6

Sanjiao
Reef (SJ)

E115◦16′–115◦19′,
N10◦10′–10◦13′

29
(0.9)

0.147
(0.11)

42.654
(5.51)

33.3
(0.03)

<0.01
(0.01)

P. lutea 5 2016.05 5–15 m

F. palauensis 5

P. versipora 6

M. efflorescens 7

A. formosa 7

Xinyi reef
(XY)

E115◦54′–115◦58′,
N9◦20′–9◦21′

29.1
(0.9)

0.124
(0.05)

43.93
(4.95)

33.1
(0.02)

<0.01
(0.01)

P. lutea 4 2016.05 5–15 m

F. palauensis 6

P. versipora 6

M. efflorescens 6

A. formosa 7
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factor that has prevented greater development of the DY coral
communities (Chen et al., 2009). FC and DY were classified as
high latitude coral communities (HC), since coral communities
are sporadic and corals can not build reefs, affected by the
seasonal low temperature.

High Latitude Coral Reefs
Weizhou Island (WZ, Figure 1E and Table 1) and Leizhou
Peninsula (LP, Figure 1F and Table 1) have coral communities
and developed into extensive coral reefs. The average live coral
cover declined from 50 to 6.02% (1984–2015) and the rate
of decline was 1.42%·y−1 (Wang, 2017). LP is about 110 km
southeast of WZ and the coral reefs of LP displayed patchy
distribution and live coral coral cover change uneven. According
to the latest data, the average living coral cover was only 12.1%
in LP, which varies from 0 to 38%. Therefore, the distribution
of coral was uneven in LP (Huang et al., 2011). WZ and LP are
located at the northern margin of the SCS and are partly affected
by seasonal low temperature. So these two areas were classified as
high latitude coral reefs (HR).

Intermediate Latitude Coral Reefs
Beijiao (BJ, Figure 1G and Table 1) is located in the northern part
of the Xisha Islands. About coral cover, it has declined obviously.
The average live coral cover of Xisha Islands declined from 65 to
7.93% (2005–2009) (Wu et al., 2011). According to the data of
Giovanni satellite, the monthly average SST of BJ was 27.6◦C, so
it was classified as intermediate latitude coral reefs (IR).

Low Latitude Coral Reefs
Huangyan Island (HY, Figure 1H and Table 1), Sanjiao Reef (SJ,
Figure 1I and Table 1) and Xinyi Reef (XY, Figure 1J and Table 1)
were classified as low latitude latitude coral reefs with relatively
high heat stress. The live coral cover of HY was low, which was
only 9.54% in the reef slope and 0.24% in the lagoons (2015).
In addition, before this study, there was not coral reef ecological
survey conducted in XY and SJ, so we did not collect the data of
live coral cover. According to the results of clustering analysis of
SST, HY, SJ, and XY were classified as low latitude coral reefs (LR).

Sample Collection
A total of 178 coral samples from five species were collected
from a depth range of 2–15 m using SCUBA. Hammers and
chisels were used to collect coral fragments. The collected samples
were coral species that are widely distributed throughout the
SCS, including Porites lutea (n = 38), Favia palauensis (n = 36),
Plesiastrea versipora (n = 37), Montipora efflorescens (n = 32),
and Acropora formosa (n = 35) (Table 1 and Supplementary
Table 1). The collected coral fragments were transferred to
cryotubes after being rinsed with sterile seawater (35h sterile
seawater was used to clean the surface of coral samples, to prevent
contamination by free-living Symbiodiniaceae found in seawater)
and DMSO/NaCl Buffer was added at a ratio of 4:1 buffer to
tissue ratio (Gaither et al., 2011). After the above operation,
the cryotubes containing the samples were stored in a 4◦C
refrigerator prior to DNA extraction.

DNA Extraction and PCR Amplification
In the pretreatment stage, the coral fragments were ground in
a liquid nitrogen environment with a mortar and pestle, and
the homogenate and tissue were pelletized by centrifugation
at 12,000 g. A DNeasy Plant Mini Kit (QIAGEN, Hilden,
Germany) was used to extracted DNA from pellets, following the
manufacturer’s instructions. The DNA obtained was used as a
template for PCA after filtering for quality and purity. ITSintfor2
(5′ GATTGCAGA ACTCCGTG-3′) (LaJeunesse and Trench,
2000) and ITS2-reverse (5′ GGGATCCATA TGCTTAAGTT
CAGCGGGT-3′) (Coleman et al., 2010) were used as primers
to conducted PCR amplification of the ITS2 region of the
Symbiodiniaceae rDNA. An ABI GeneAmp 9700 thermal cycler
(Thermo Fisher Scientific, Waltham, MA, United States) was
used as a PCR reaction system, and the reactions were conducted
under the following conditions: 3 min at 95◦C, followed by
35 cycles of 95◦C for 30 s, 55◦C for 30 s, 72◦C for 45 s,
and a final extension at 72◦C for 10 min. PCRs were run in
triplicate per sample, which were conducted using a 20 µL
reaction volume of TransGen AP221-02 (TransGen Biotech,
Beijing, China) containing: 4 µL 5 × FastPfu Buffer (TransGen
Biotech, Beijing, China), 2.5 mM dNTPs, 0.8 µL (5 µm) forward
primer, 0.8 µL (5 µm) reverse primer, 0.4 µL FastPfu DNA
Polymerase (TransGen Biotech, Beijing, China), and 10 ng
template DNA; the final volume was adjusted to 20 µL using
ddH2O. PCR products stained with loading buffer were run
on a 2% agarose gel. Purified amplicons were combined in
equimolar amounts, and a paired-end sequenced (PE)300bp × 2
strategy was used on an Illumina MiSeq platform (Illumina, San
Diego, CA, United States); analyses were undertaken at Majorbio
Biopharm Technology Co., Ltd., Shanghai, China. All sequences
were submitted into the NCBI Sequence Read Archive (SRA)
database (Accession number: SRP162001 and SRP 181784).

Data Processing and Bioinformatics
Analysis
Quality control of the Illumina MiSeq Platform output data was
conducted using Trimmomatic software (Bolger et al., 2014),
which filtered bases with a reads tail mass value of < 20 to ensure
high quality reads for subsequent analysis. The full-length ITS2
rDNA fragments were obtained using the consolidated PEAR
data (Zhang et al., 2014), read quality was trimmed, and chimeras
checked using MOTHUR. CUTADPAT was used to trim the
reverse and forward primers sequences. The precise methods
used can be found in Ziegler et al. (2017).

We found that the previous ITS2 databases contained some
replicate sequences, so we collected several published databases
(Franklin et al., 2012; Arif et al., 2014; Tong et al., 2017) and
uploaded them to the CD-HIT Suite Website2, set sequence
identity cut-off as 100%, and established a non-duplicate ITS2
database (Supplementary Data Sheet 1).

In order to cope with the challenge of using the ITS2
gene as a multicopy marker, we used sequence-based ITS2
analysis and OTU analysis to evaluate Symbiodiniaceae diversity

2http://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi?cmd~=~cd-hit-est
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and community composition in the SCS. This methodology
provide a comprehensive description of molecular diversity
and biogeograhpical patterns of Symbiodiniaceae in the SCS,
because sequence-based ITS2 analysis can directly assess the
association between coral and symbionts, and OTU-based
analysis is able to estimate Symbiodiniaceae molecular richness
and diversity requiring no formal description of ITS2 symbiont
types (Ziegler et al., 2017).

For sequence-based ITS2 analysis, the quality-filtered reads
were aligned to the ITS2 database using BLASTn and the
parameters setting following the pipeline detailed in Tong et al.
(2017) (Supplementary Table 2). In addition, in order to allow
comparison with the results of DGGE from previous studies and
to avoid IGV interference, we determined the number of different
ITS2 sequences that were present at a minimum cut-off of > 5%
in at least one of the 178 samples (Ziegler et al., 2017).

For OTUs analysis, qualified ITS2 sequences were subsampled
to 1000 reads per sample using MOTHUR, and sequences
with a retention length of > 90% were clustered into an
OTU based on a similarity of 97% (Arif et al., 2014;
Thomas et al., 2014; Ziegler et al., 2017). The most abundant
OTU sequence was selected as the representative sequence to
be aligned to the ITS2 database using BLASTn, and non-
Symbiodiniaceae OTUs were removed (Arif et al., 2014). Finally,
OTU data were used for a statistical assessment of difference

in Symbiodiniaceae diversity and community composition
(Supplementary Table 4).

Venn and PERMANOVA were analyzed using GNU R
software. CANOCO 5.0 was applied to the CCA to establish
the relationships between zooxanthellae ITS2 subclade and
environmental factors (Šmilauer and Lepš, 2014). The
phylogenetic tree was constructed based on the Kimura
two-parameter model with uniform rates between sites using
Bayesian inference in MrBayes.

RESULTS

Symbiodiniaceae Diversity in the SCS
For ITS2 sequence-based analysis, 7,761,607 sequences were
identified that belong to Symbiodiniaceae, after quality
control. Symbiodinium, Breviolum, Cladocopium, Durusdinium,
Fugacium, Gerakladium, Clade H, and Clade I were detected
in the sequences. However, in order to reduce the impact
of intragenomic diversity on the results, only ITS2 variants
that were present with at least 5% abundance in at least one
sample were considered. Consequently, we were able to identify
Cladocopium, Durusdinium, and Gerakladium, and these were
therefore retained for further analysis. At the subdivision level,
31 dominant Symbiodiniaceae types (number of sequences:

FIGURE 2 | Symbiodiniaceae OTU richness and diversity in hosts of five coral species in the South China Sea. (A) The number of OTUs of Symbiodiniaceae in five
coral species (Porites lutea, Favia palauensis, Plesiastrea versipora, Motipora efflorescens, and Acropora formosa) from distinct latitude regions. The error bars are
mean SD. (B) The Shannon (H’) diversity index values of Symbiodiniaceae in five coral species from different latitude regions. The error bars are mean SD. (C) Venn
diagram showing the number of Symbiodiniaceae OTUs were identified in high latitude coral communities (no reef), high latitude coral reefs, intermediate coral reefs
and low latitude coral reefs in the South China Sea as well as number of OTUs that were shared between them.
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7,420,489, covering more than 95%) were identified from three
genera, namely Cladocopium (n = 26), Durusdinium (n = 4), and
Gerakladium (n = 1).

For OTU-based analyses, the subsampled data set
contained 178 coral samples throughout the SCS, representing
Symbiodiniaceae ITS2 sequences which clustered into 58 OTUs
at a 97% similarity. These OTUs included five Symbiodiniaceae
genera, namely Symbiodinium = 1 OTU, Breviolum = 1
OTU, Cladocopium = 46 OTUs, Durusdinium = 5 OTUs, and
Gerakladium = 5 OTUs.

In addition, the LR contained 47 Symbiodiniaceae OTUs and
had the highest regional Symbiodiniaceae OTU diversity (n = 15).
The IR contained 33 Symbiodiniaceae OTUs and six regional
OTUs (Figure 2C). In comparison, HC and HR contained 24
and 27 OTUs, respectively, and two regional OTUs (Figure 2C).
Interestingly, 18 OTUs were found to be present in all regions (17
OTU in Cladocopium and 1 OTU in Durusdinium). This account
for 31.0% of all OTUs detected and was higher than the number
of regional OTUs in any of the regions studied (Figure 2C).

Furthermore, there was a significant spatial difference in
the OTU richness of Symbiodiniaceae, which was higher in
the LR than in the HC (Kruskal-Wallis, p = 0.0001 < 0.001)
or the HR (Kruskal-Wallis, p = 0.0001 < 0.001). Equally, the
Symbiodiniaceae OTU richness was also higher in the IR than in
the HC (Kruskal-Wallis, p = 0.021 < 0.05) or the HR (Kruskal-
Wallis, p = 0.035 < 0.05). However, there was no significant
difference in OTU richness between the LR and the HR (Kruskal-
Wallis, p = 0.076 > 0.05) nor between the HC and HR (Kruskal-
Wallis, p = 0.6408 > 0.05; Figure 2A). In addition, the results of
Kruskal-Wallis test indicated that the variation in the Shannon
(H’) index values and OTU richness were consistent (Figure 2B).
Consequently, the diversity and richness of Symbiodiniaceae
OTUs in the IR and LR was determined to be higher than in
the HC or the HR.

Community Composition of
Symbiodiniaceae in the SCS
The Symbiodiniaceae community composition was determined
across sampling sites by analysis of OTUs in each region that
had more than 5% relative abundance in at least one ITS2
sequence sample (Figure 3). The results of this analysis show
that all of the regions studied are dominated by ITS2 sequences
from Cladocopium, Durusdinium, and Gerakladium. At the
subdivision level, the community composition of five corals
species had undergone distinct changes, with the exception of
the stable symbiotic relationship between Porites lutea and C15
that was observed in all four latitude regions (Figure 3). In HC
and HR, the Symbiodiniaceae composition was dominated by
C1 and C15, but C15 only made a large contribution to Porites
lutea (Figures 3A,B).

In comparison, the composition of communities in warmer
IR were largely dominated by C50, Cspc, C15, C1, and D1. It
is worth noting that the relative abundance of C15, C50, Cspc,
and D1 increased in IR communities, while the contribution of
C1 decreased moving from the high latitude region (HC and
HR) to the IR. C15 dominated the community composition of

Porites lutea and M. efflorescens, while C50 and Cspc made large
contributions to the community composition of F. palauensis and
A. formosa. In addition, the relative abundance of heat-tolerant
D1 also increased in Plesiastrea versipora, compared with HC and
HR (Figure 3C).

C3u dominated communities in the LR, which had high
contributions from F. palauensis, Plesiastrea versipora,
M. efflorescens, and A. formosa. The contribution of C1 to
Symbiodiniaceae community composition was lower in the LR,
compared with the IR (Figure 3D). Generally, going from the
HC and HR through the IR to the LR, the symbiont community
shift is represented by a decreasing contribution from C1, and an
increasing contribution of C15. There is also a large contribution
from C50, Cspc, and D1 in IR and C3u in the LR. Accordingly,
our results showed that there were differences between the
community compositions of Symbiodiniaceae dominated types
at different latitude regions.

Based on the results of the OTU analysis, OTUs belonging
to Cladocopium (HC:22, HR:26, IR:27, and LR:38) and
Durusdinium (HC:1, HR:1, IR:3, and LR:4) were identified
in all latitude regions, while OTUs assigned to Gerakladium
were found in the IR (n = 2) and LR (n = 5). In addition,
one OTU assigned to Symbiodinium was only detected in
the IR, and one OTU belonging to Breviolum was only
found in the HC (Figure 4A). Moreover, the relative
abundance of more than 1% Symbiodiniaceae OTUs
indicated that the community composition of HC and
HR only contained OTUs belonging to Cladocopium. In
contrast, the IR and LR not only contained OTUs belonging
to Cladocopium, but also to Durusdinium. In addition,
the relative abundance of OTUs belonging to Breviolum,
Symbiodinium, and Gerakladium was no more than 1%
(Figure 4B). A PERMANOVA analysis also showed that there
were significant differences in the OTU community composition
of regions from different latitudes (F = 14.75, R2 = 0.20,
p = 0.001 < 0.01).

The Relationships Between
Environmental Factors and the
Symbiodiniaceae
According to the CCA, the SST, PAR, SAL, Chl a, and KD
were all potential impact factors that affected Symbiodiniaceae
types and community composition in the SCS (Figure 5). The
impact factors of Chl a and KD were negatively correlated with
SST, PAR, and SAL in the X-axis, combined with sampling
sites, which roughly indicated the change of environmental
factors from the subtropics to tropics. The night Symbiodiniaceae
types (C1, C3.10, C1c, C18, C1p, C1ca, C21, C33.1, and C3v)
were positively correlated with Chl a and KD, but negatively
correlated with SST, PAR, and SAL. The night types mostly
occurred in DY, FC, WZ, and LP. In contrast, the other 22
Symbiodiniaceae types were negatively correlated with Chl a and
KD, and were positively correlated with SST, PAR, and SAL,
which mostly occurred in BJ, HY, SJ, and XY. This result was
consistent with the community composition determined by ITS2
sequence analysis.
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FIGURE 3 | Five coral species associated with Symbiodiniaceae ITS2 type-based community composition from the SCS. (A) High latitude coral communities (no
reef). (B) High latitude coral reefs. (C) Intermediate latitude coral reefs. (D) Low latitude coral reefs. Those sequences were contained that represented relative
abundance > 5% in at least one sample in this community analysis.
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In addition, we obtained the ITS2 sequence of the
dominant Symbiodiniaceae type in the SCS from a database
(Supplementary Data Sheet 1) and created a phylogenetic tree
based on Bayesian inference. Combined with the CCA analysis
results, the members of Durusdinium and Gerakladium were
all positively correlated with Chl a and KD, and negatively
correlated with SST, PAR, and SAL in the SCS. Interestingly, the
phylogenetic and environmental characteristics of Cladocopium
were distinct from other Symbiodiniaceae genera. Most of the
members of the Symbiodiniaceae type have a close phylogenetic
relationship with C1, were positively correlated with Chl a and
KD, and negatively correlated with SST, PAR, and SAL in the
SCS. By comparison, most members of the Symbiodiniaceae type
have a close phylogenetic relationship with C3 and C15, which
were positively correlated with Chl a and KD, and negatively
correlated with SST, PAR, and SAL in the SCS. However, C1f,
C21, and C3.10 did not show any clear correlation between the
phylogenetic relationships and environmental factors in the SCS.

DISCUSSION

Biogeographical Pattern of
Symbiodiniaceae Types in the SCS
Although we detected OTUs that belong to Symbiodinium,
Breviolum, Cladocopium, Durusdinium, and Gerakladium, the
relative abundance of ITS2 sequences (relative abundance < 5%,
Figure 3 and Supplementary Table 2) and OTUs (relative
abundance < 1%, Figure 4B) that belong to Symbiodinium or
Breviolum are very low. Therefore, we suggest that the ITS2
variants from Symbiodinium and Breviolum are presently at low
abundance in corals, and that they may be transient, rather
than stable, symbionts (Lee et al., 2016). Alternatively, they may
have been incorrectly detected due to interference from IGV
(Thornhill et al., 2007).

Based on the results of ITS2 sequences and OTU analysis, we
conservatively suggest that only three genera of Symbiodiniaceae,

Cladocopium, Durusdinium, and Gerakladium, have symbiotic
relationships with coral in the SCS. This is the first time that
the presence of Gerakladium in the SCS had been confirmed.
Moreover, we found that, in addition to Porites lutea, the other
four coral species played a relatively minor role in determining
the dominant Symbiodiniaceae types. Symbiodiniaceae
communities in the SCS are generally dominated by two or
three Symbiodiniaceae types, such as C3u and Cspc, which are
widely distributed in LR corals (Figure 3D). Although there
are differences in the Symbiodiniaceae community composition
of F. palauensis, Plesiastrea versipora, M. efflorescens, and
A. formosa in IR, they all have a certain proportion of C1
(Figure 3C). Consequently, the different environmental factors
between the four latitude coral habitats could potentially explain
the differences in Symbiodiniaceae community composition.

Cladocopium and Durusdinium are the main Symbiodiniaceae
genera found in stony corals throughout the SCS. This result is
consistent with previous studies based on traditional detection
methods (such as PCR-DGGE and RFLP, Chen et al., 2005; Zhou
and Huang, 2011). Based on NGS, we found that there are
abundant Symbiodiniaceae ITS2 variants from Cladocopium and
Durusdinium in the SCS. This contradicts the view that corals
have a low level diversity of Symbiodiniaceae ITS2 types in this
region (Chen et al., 2005; Zhou and Huang, 2011; Liu et al.,
2012; Ng and Ang, 2016). Our study was the first to confirm
the presence of Gerakladium in the SCS, and to determine
that it is mainly found in the IR and LR (Figure 4). The
relative abundance of G3 correlated positively with SST, PAR, and
SAL, and correlated negatively with Chl a and KD (Figure 5).
Gerakladium is an ecologically rare genus (LaJeunesse et al., 2018)
and occurs predominantly in the Pacific Ocean (Pochon et al.,
2001, 2006; Oppen et al., 2005; Schoenberg and Loh, 2005). In
addition, Gerakladium has been detected at a low abundance as
background symbionts in stony coral colonies (LaJeunesse et al.,
2018). However, while our level of knowledge of Gerakladium is
comparatively limited, research into its geographical distribution
has shown that this genus prefers high SST and SAL survival

FIGURE 4 | The OTU-based Symbiodiniaceae genera composition and relative abundance over the five species coral samples in each latitude regions. (A) Stackplot
showed Symbiodiniaceae OTU-based genera richness in each regions. (B) Symbiodiniaceae OTU-based community structures at genus level.
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FIGURE 5 | Relationships between Symbiodiniaceae types and environmental
factors. The CCA indicated the relationship among the relative abundance of
31 dominant Symbiodiniaceae types, environmental and sampling areas. The
first axis (Coordinate 1) explains 54.9% of the total variation and the second
axis (Coordinate 2) explains 21.3% of the total variation.

environments, such as the Arabian Sea (Ziegler et al., 2017).
Thus, the biogeographical pattern of Gerakladium also supports
the viewpoint that the geographical distribution and community
composition of Symbiodiniaceae may be mainly determined by
environmental factors.

The Latitudinal Flexibility of
Symbiodiniaceae Richness and Diversity
The richness and diversity of Symbiodiniaceae types in the IR
and the LR were higher than those in the HC and HR, based
on an OTU analysis (Figure 2). Biogeographical and ecological
studies have shown that the center of Symbiodiniaceae diversity
overlaps with the “Coral Triangle” (LaJeunesse et al., 2012), which
is close to the IR and LR and far away from the HC and HR.
The physiological evidence suggests that Symbiodiniaceae swim
just 3–10 m over the course of one day (Fitt and Trench, 1983),
and have a lifespan of approximately seven days in their natural
environment (Nitschke, 2015). They are most likely dependent
on sea currents for dispersal (Wirshing et al., 2013; Thornhill
et al., 2017). Therefore, due to geographical distance limitations,
only a small number of Symbiodiniaceae taxa may have spread to
the HC and HR, which may also be one of the reasons why the
richness and diversity of Symbiodiniaceae in the HC and HR are
lower than in the IR or LR.

In addition, the environmental stresses present in the HC
and HR, which are caused by seasonal SST fluctuations and
high nutrient concentrations, may also cause the observed
limitations in Symbiodiniaceae diversity and distribution.
It has been found that Symbiodiniaceae diversity in the
Persian/Arabian Gulf was limited by extreme environmental
conditions, with high SST and elevated salinity (D’Angelo
et al., 2015; Ziegler et al., 2017). Furthermore, the abundant

inorganic nitrogen content can lead to Symbiodiniaceae using
nutrients for their own growth and reproduction (Dubinsky
and Jokiel, 1994), meaning that they compete with coral for
the carbon dioxide required for calcification (Szmant, 2002).
As a result, high nutrient concentrations will reduce the
stability of the symbiotic relationships between Symbiodiniaceae
and corals (Marubini and Davies, 1996; Szmant, 2002). The
symbiotic relationship between coral and Symbiodiniaceae
is relatively stable (Thornhill et al., 2006; Hume et al.,
2015), which is probably due to co-evolution over a long
period of time. However, high nutrient concentrations can
lead to this relationship becoming unstable, which may lead
to the deaths of both the coral and the Symbiodiniaceae
symbionts. Therefore, higher environmental resistance in HC
and HR may also result in the elimination of Symbiodiniaceae
types that have poor adaptability or unstable symbiotic
relationships with coral.

It is worth noting that the number of OTUs (n = 18,
31.0%) that were distributed across all four regions is higher
than the number of regionally unique OTUs (HC:2, HR:2,
IR:6, LR:15, Figure 2C). In addition, only four unique OTUs
occurred in the HC and HR. Therefore, corals contained
many different Symbiodiniaceae OTUs in the HC, HR, IR, and
LR, while the corals of the IR and LR have more regional
Symbiodiniaceae OTUs (Figure 2C). This result supports the
view that Symbiodiniaceae in high latitude coral habitats may
originate from low latitude regions, or the “Coral Triangle” in
the SCS. Although there has not yet been research conducted
on the genetic connectivity of Symbiodiniaceae in the SCS,
there have been some studies on corals (Su, 2017; Huang et al.,
2018). For example, Huang et al. (2018) identified that the gene
flow of Porites lutea was universally asymmetrical northward
in the SCS, which possibly reflects the northward migration
of the coral (Huang et al., 2018). Other studies have found
that coral range expansion was accompanied by a reduction
in the diversity of Symbiodiniaceae genotypes (Serrano et al.,
2013; Grupstra et al., 2017). Furthermore, many Symbiodiniaceae
OTUs were distributed across four latitude regions (Figure 2C),
which suggests that many kinds of Symbiodiniaceae types may
have a relative wide range of environmental adaptations than
previously considered. The Symbiodiniaceae type that dominate
symbiont community composition in different latitude coral
habitats in the SCS may depend on their distinct competitive
characteristics. Pettay and LaJeunesse (2013) found that the
genotypes of Durusdinium glynii populations in the subtropical
Gulf of California are significantly differentiated from population
in tropical eastern Pacific, and they suggested that this may be
due to strong adaptive genotypes that are selected because of their
resistance to extreme environments.

Symbiodiniaceae Community
Composition Was Affected by Multiple
Environmental Factors in the SCS
In our study, the Symbiodiniaceae community shifted from C1
and C15 dominance in the HC and the HR, via decreasing
proportions of C1 and increasing proportions of C15, C50, Cspc,
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and D1 in the IR, to a Symbiodiniaceae community dominated by
C3u and C15, and to a lesser extent by C1, in the LR (Figure 3).
Interestingly, while both C1 and C15 belong to Cladocopium,
their contribution to the community differed dramatically with
the change in latitude; C1 was abundant at latitudes where
C15 was scarce, and C15 was abundant in latitudes where C1
was scarce (Figure 3). Although the relative abundance of C15
in the community composition of different regions is largely
determined by Porites lutea, the relative abundance of C15 is
obviously higher in F. palauensis and M. efflorescens in the IR and
LR, despite the widely established symbiotic relationship with C1

in the HC and HR. Such environments are found in high latitude
marginal coral communities in Okinawa, Japan and Jeju Island,
Korea, and C1 was the primary dominant symbiont in many host
Symbiodiniaceae communities (Reimer et al., 2006; Palmas et al.,
2015). By contrast, C15 exhibited particularly strong thermal
tolerance (Pochon et al., 2004), which allows it to thrive in high
heat-stress coral habitats, such as the Andaman Sea (LaJeunesse
et al., 2010). Accordingly, SST shaped the Symbiodiniaceae
community composition; the increased relative abundance of
Durusdinium in the IR and LR also supports this viewpoint.
A recent study by Tong et al. (2017) on Galaxea fascicularis and

FIGURE 6 | Phylogenetic analysis of the dominant Symbiodiniaceae ITS2 types in the SCS based on Bayesian inference. The light orange areas mean those
subclades were positively correlated with SST, SAL, PAR and negative correlated with Chl a and KD; The lilac areas mean those subclades were negatively
correlated with SST, SAL, PAR and positively correlated with Chl a and KD.
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Montipora spp. in the SCS showed that SST was one of the key
impact factors for the Symbiodiniaceae community composition.

It is noteworthy that D1, D2.2, D1a, and D6, which belong
to Durusdinium, were not dominant in the LR, and occurred
more frequently in the IR in association with Plesiastrea versipora
(Figures 3D, 4). The result of the ITS2 sequence-based analysis
showed that C3u was dominant in the community composition
of the LR, while the contribution of D1 was only 1% (Figure 3D).
The relative abundance of Durusdinium OTUs in the IR was
higher than that in LR (Figure 4B). As a result, the community
contribution of Durusdinium did not always increase as latitude
decreased in the SCS. In addition, C3u may be a symbiont with
a potentially strong heat tolerance, and it has been found in
offshore coral habitats in the Andaman Sea that are known for
exhibiting high water temperatures (LaJeunesse et al., 2010).
Furthermore, the relative abundance of C3u was higher than
that of Durusdinium in offshore, while Durusdinium is more
commonly distributed in inshore in areas of the Andaman Sea
with higher turbidities and nutrition concentrations (LaJeunesse
et al., 2010). Consequently, because coral species have little effect
on the composition of the Symbiodiniaceae type present, the
weaker competitiveness of Durusdinium compared with C3u may
be because of the lower turbidity and nutrition concentrations
in the IR. Studies have suggested that nutrition concentration
and turbidity have the potential to impact the Symbiodiniaceae
community composition (Sawall et al., 2014; Ng and Ang,
2016; Tong et al., 2017; Gong et al., 2018). For example, Gong
et al. (2018) found that, in addition to SST, nutrient inflow
can affect coral–algal symbiotic associations. Equally, Ng and
Ang (2016) discovered that the low richness and diversity of
Symbiodiniaceae in Hong Kong coral habitats may be due to
high turbidity. In contrast, Durusdinium is more readily able
to adapt to environments with high SST, high turbidity, and
tidal cycles (LaJeunesse et al., 2010, 2018; Pettay et al., 2015).
Moreover, many symbionts that belong to Cladocopium also
have high heat tolerance, such as Cladocopium thermophilum
(formerly C3-Gulf), C41, and C39, which all occur in regions of
the Persian Gulf with extremely high SST and elevated salinities
(D’Angelo et al., 2015; Hume et al., 2016; Ziegler et al., 2017).
Within the SCS, the relative abundance of numerous symbionts
belonging to Cladocopium positively correlated with SST, PAR,
and SAL, and these symbionts were mostly found in the LR
(Figure 5). These symbionts seem to show strong adaptability
to high SST seawater environments, and high competitiveness in
such environments. Although the Symbiodiniaceae community is
mainly shaped by SST, the impact of other environmental factors,
especially nutrients and turbidity, cannot be neglected.

Distant Ancestors May Affect
Relationships Between the Phylogenetic
Relationships and Environmental
Adaptability of Symbiodiniaceae in the
SCS
Some members of the C1 and C3 types may be the
ancestors of Cladocopium (LaJeunesse, 2005; Thornhill et al.,
2014). The CCA and the phylogenetic tree both provide

evidence that the members of Cladocopium have a close
phylogenetic relationship with C1, the relative abundance of
which was negatively correlated with SST, PAR, SAL, and was
positively correlated with Chl a and KD (Figures 5, 6). In
contrast, the Cladocopium symbionts have closer phylogenetic
relationships with C3, the relative abundance trend of which
showed the opposite pattern to the C1 group (Figures 5,
6). Some Symbiodiniaceae types of Cladocopium with close
phylogenetic relationships may be similar in terms of their
environmental adaptability, and distant ancestors might affect
the environmental adaptability of members of the clades
present in the SCS. C15 as a putative younger clade that
derived from C3 (LaJeunesse, 2005), and the relative abundance
of C15 was positively correlated with SST, PAR, and SAL
(Figures 5, 6). In addition, Cladocopium has high OTU richness
(Figure 4A), but because Cladocopium was the most species
rich, ecologically abundant, and functionally diverse genus within
the Symbiodiniaceae (Reimer et al., 2006; LaJeunesse et al.,
2018), the ecological functions of members this genus are
difficult to predict and evaluate. Our study found, through
a combination of phylogenetic and CCA analyses, that it
may be possible to speculate regarding the environmental
adaptability of Symbiodiniaceae types in the SCS. This method
has been applied to the ecological study of Symbiodiniaceae
(LaJeunesse, 2005; LaJeunesse et al., 2010; Gong et al.,
2018). For example, Tong et al. (2017) used the dominant
Symbiodiniaceae type (which has a relative abundance of
more than 10%) ITS2 sequence to construct a phylogenetic
tree. This revealed that the phylogenetic relationships of
the Symbiodiniaceae types were associated with geographical
distances. LaJeunesse et al. (2010) also used this method to
determine that 5% of the Cladocopium species characterized
were unique to the Indian Ocean, and that many of these were
regionally endemic.

However, associations between phylogenetic relationships
and environmental adaptability were not stable, for example
C1f within the C1 group, or C3.10 and C21 within the C3
group (Figure 6). In addition, the presence of intragenomic
rDNA variation can potentially confound estimates of
symbiont diversity and may have interfered with our
identification of Symbiodiniaceae types in ITS2 marker-
based analyses (Thornhill et al., 2007; Stat et al., 2011).
Moreover, the correlation between phylogenetic relationships
and environmental adaptability may also be due to sequence
types that represent IGV from within a single Symbiodiniaceae
species (Thornhill et al., 2007). Therefore, Symbiodiniaceae
species with the same environmental adaptability within
a group may not be as rich as expected. Future ecological
and evolutionary studies of Symbiodiniaceae may need to
utilize analyses of markers that provide detailed genetic
resolution, and the use of psbAncr is essential (LaJeunesse and
Thornhill, 2011; Reimer et al., 2017). However, phylogenetic
analysis based on the ITS marker can provide a rough
framework for evolutionary research based on high-resolution
markers, to ensure they are categorized at the appropriate
taxonomic level of Symbiodiniaceae (Thornhill et al., 2014;
Pettay et al., 2015).
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