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The type VI secretion system (T6SS) is a transmembrane multiprotein nanomachine

employed by many Gram-negative bacterial species to translocate, in a

contact-dependent manner, effector proteins into adjacent prokaryotic or eukaryotic

cells. Typically, the T6SS gene cluster encodes at least 13 conserved core components

for the apparatus assembly and other less conserved accessory proteins and effectors.

It functions as a contractile tail machine comprising a TssB/C sheath and an expelled

puncturing device consisting of an Hcp tube topped by a spike complex of VgrG and

PAAR proteins. Contraction of the sheath propels the tube out of the bacterial cell into

a target cell and leads to the injection of toxic proteins. Different bacteria use the T6SS

for specific roles according to the niche and versatility of the organism. Effectors are

present both as cargo (by non-covalent interactions with one of the core components) or

specialized domains (fused to structural components). Although several anti-prokaryotic

effectors T6SSs have been studied, recent studies have led to a substantial increase

in the number of characterized anti-eukaryotic effectors. Against eukaryotic cells,

the T6SS is involved in modifying and manipulating diverse cellular processes that

allows bacteria to colonize, survive and disseminate, including adhesion modification,

stimulating internalization, cytoskeletal rearrangements and evasion of host innate

immune responses.
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INTRODUCTION

Gram-negative bacteria depend on specific secretion systems, numbered Type I through Type VII,
to transport proteins outside the cell for survival and fitness. It has been estimated that >25%
of pathogenic and non-pathogenic proteobacteria encode between one and six Type VI secretion
systems (T6SS) (Bingle et al., 2008; Boyer et al., 2009). The T6SS is a dynamic contractile protein
nanomachine, evolutionarily related to bacteriophage tails, which delivers protein effectors in a
contact-dependent manner into diverse cellular types, including other bacteria, fungi, and host
eukaryotic cells. As reviewed elsewhere (Records, 2011; Basler, 2015; Cianfanelli et al., 2016b;
Nguyen et al., 2018; Cherrak et al., 2019; Navarro-Garcia et al., 2019; Hernandez et al., 2020), the
T6SS gene cluster encodes 13 core components for apparatus assembly. The system can be divided
in three substructures, (i) a membrane complex (TssJLM) anchored to the inner membrane and
associated to the outer membrane (Aschtgen et al., 2008; Ma et al., 2009b; Durand et al., 2015;
Logger et al., 2016; Rapisarda et al., 2019; Yin et al., 2019), (ii) a baseplate complex assembled
by a wedge (TssEFGK) (Brunet et al., 2015; Cherrak et al., 2018; Nazarov et al., 2018) and
a spike (VgrG and, in some cases PAAR proteins) (Shneider et al., 2013; Brunet et al., 2015;
Renault et al., 2018) and (iii) the dynamic tail complex that comprises the inner tube (Hcp)
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(Ballister et al., 2008; Brunet et al., 2014; Douzi et al., 2014) and
the contractile sheath (TssBC) that wraps around the Hcp tube
and propels the spike (Bonemann et al., 2009; Basler et al., 2012;
Broms et al., 2013; Zhang et al., 2013; Kube et al., 2014).

The T6SS can translocate effector proteins in two modular
ways: binding of an additional protein domain to structural
components of the needle, Hcp, PAAR, or VgrG (specialized

or evolved effectors) or by non-covalent direct or indirect
interactions, via adaptor proteins, with any of the components
of the needle (cargo effectors) (Shneider et al., 2013; Durand
et al., 2014; Whitney et al., 2014; Alcoforado Diniz et al.,
2015; Ma et al., 2017; Pissaridou et al., 2018). There are T6SS
effector chaperone (TEC), or adaptor (Tap-1), proteins that are
essential for toxin loading and delivery through binding to VgrG

and effector proteins (Liang et al., 2015; Bondage et al., 2016;
Flaugnatti et al., 2016; Jana and Salomon, 2019). TEC and Tap-1
proteins share a highly conserved domain of unknown function
(DUF4123) and are not secreted; they exhibit a low pI values
and are often genetically encoded upstream of their cognate
effector genes or downstream of vgrG genes (Liang et al., 2015;
Unterweger et al., 2015). Proteins containing DUF2169 domains
are commonly found downstream of vgrG and upstream of
DUF4150-containing effector genes and also serve as adaptor
or chaperone in binding the N-terminal PAAR or PAAR-like
domains of its cognate effector to the tip for translocation
(Bondage et al., 2016; Santos et al., 2019). The DUF1795
containing proteins, namely Eag proteins, bind and stabilize the
N-terminal PAAR-containing domains of their cognate effectors.
Eag chaperone family members are frequently encoded adjacent
to putative effectors with predicted transmembrane domains
(Cianfanelli et al., 2016a; Quentin et al., 2018).

It has been reported that the T6SS mainly functions as a
device for inter-bacterial competition to inject toxic antibacterial
proteins into rival bacterial cells, thus modulating polymicrobial
communities. More recently, the range of known functions of
the T6SS has extended, including action against microbial fungi,
biofilm formation and transport of ions. The T6SS also functions
as a classical virulence factor by delivering toxins that allow
bacteria to manipulate and subvert eukaryotic cells.

The T6SS toxins targeting eukaryotic cells are varied in

biological and biochemical functions (Hachani et al., 2016). In
general, different bacterial species use and adapt their T6SS for
specific roles according to the host, niche or survival strategy
of the organism and there is also considerable diversity in

effector portfolio. In this review, we discuss and summarize the

activity, target and mode of delivery of eukaryotic cell-targeting
T6SS toxins important in pathogenicity, which interact and
manipulate different components of the host cell. The effectors
below revised are categorized accordingly to the bacterial species
that encodes them.

T6SS EUKARYOTIC EFFECTORS

Table 1 and Figure 1 give a general overview of functionalities of
the eukaryotic T6SS effectors described in the text.

Vibrio
Vibrio cholerae is a natural free-living bacterium widely
distributed in aquatic environments and also the environment
within human hosts. V. cholerae is a non-invasive intestinal
pathogen; O1 and O139 serogroup cause the diarrheal disease
cholera. The first reported T6SS toxin targeting eukaryotic cells
was VgrG-1. Mutants unable to produce this protein lack the
ability to secrete Hcp or to infect amoebae and mammalian
macrophages, suggesting that rather in addition to be an essential
component of the T6SS apparatus, VgrG-1 is a genuine effector
(Pukatzki et al., 2007; Zheng et al., 2011). VgrG-1 carries a large
(395 amino acids) C-terminal extension with homology to the
actin cross-linking domain (ACD) of the RtxA toxin, a member
of the MARTX family (Durand et al., 2012). VgrG-1 catalyzes
in vitro the covalent cross-linking of two G-actin monomers
in a Mg2+/Mn2+-ATP dependent manner and in vivo induced
massive cross-linking of cytosolic actin in macrophages and
from harvested intestines in an infant mice model of infection
(Pukatzki et al., 2007; Ma and Mekalanos, 2010; Durand et al.,
2012). Actin oligomers disrupt the normal inter-subunit interface
in the actin filament and prevent polymerization (Satchell, 2009;
Heisler et al., 2015). Bacterial internalization by endocytosis is
needed for VgrG-1 ACD domain translocation into phagocytic
cells to impair their function and cause cell death, preventing
bacterial clearance from the gut (Ma et al., 2009a). VgrG-1 also
possesses an actin binding motif (ABM) on the surface of the
ACD similar to WH2 domain. Actin nucleation is inhibited
by this ACD-ABM because the motif can bind and sequester
actin monomers; this binding domain is also indispensable for
ACD mediated actin cross-linking (Dutta et al., 2019). VgrG-1
forms homotrimeric and heterotrimeric complexes by interacting
with VgrG-2 and VgrG-3 (Pukatzki et al., 2007). The crystal
structure of VgrG-1-ACD (PDB 4DTD) reveals a V-shaped
structure formed of 12 β-strands and 9 α-helices and an active
site composed of 5 residues; one of these, Glu-16, is the critical
residue for the cross-linking activity (Durand et al., 2012).

Another noteworthy T6SSV. cholerae protein is the virulence-
associated secretion protein X (VasX or VCA0020), encoded in
the T6SS gene cluster downstream of hcp and vgrG-2. The 121-
kDa protein VasX requires the T6SS transcriptional activator
VasH for expression, and a functional T6SS apparatus for
secretion with the VgrG spike as carrier for its delivery. VasX
plays a role in T6SS mediated virulence, killing amoebae by a
mechanism that depends on actin cross-linking (Zheng et al.,
2011; Dong et al., 2013). VasX carries an N-terminal Pleckstrin-
homology (PH) domain that binds to membrane lipids including
phosphatidic acid (PA) and each of the phosphatidylinositol
phosphates (PIP). Since inositol phosphates are rarely found in
bacteria the PH domain of VasX may have a role in binding
to host membrane lipids and is thought to form pores in lipid
bilayers (Miyata et al., 2011). VasX also carries a motif named
MIX (marker for type six effectors) and a C-terminal colicin
domain important for its secretion and T6SS assembly (Salomon
et al., 2014; Liang et al., 2019).

Vibrio proteolyticus (Vpr) is a marine bacterium that has
been previously isolated from corals with yellow band disease.
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TABLE 1 | List of anti-eukaryotic T6SS effectors and their functions.

Organism Effector Function (biochemical activity) References

Vibrio

V. cholerae VgrG1 Contains an actin cross-linking domain (ACD) that binds and covalently

cross-links actin, leading to an accumulation of toxic actin oligomers and altering

host cell morphology, preventing host cell cytoskeletal rearrangements and

disabling phagocytosis.

Pukatzki et al., 2007; Ma et al.,

2009a; Ma and Mekalanos, 2010;

Durand et al., 2012; Heisler et al.,

2015; Dutta et al., 2019

VasX Required for virulence toward Dictyostelium discoideum.

The PH domain binds host membrane lipids.

Miyata et al., 2011; Zheng et al.,

2011; Dong et al., 2013

V. proteolyticus Vpr01580 Predicted MIX-effector with a C-terminal domain homologous to cytotoxic

proteins and other T6SS effectors that contain Rhs repeats.

Ray et al., 2017

Vpr01570 MIX V effector containing a CNF1 domain that targets Rho GTPases resulting in

actin cytoskeleton rearrangements in macrophages and toxicity to yeast.

Ray et al., 2017

Vpr00400 Predicted effector homologous to the C-terminal domain of the insecticidal toxin

Txp40 of Xenorhabdus and Photorhabdus.

Ray et al., 2017

Escherichia coli

Enterohemorrhagic

E. coli

KatN Mn2+-containing catalase secreted into the host cell’s cytosol after

phagocytosis. It decreases the level of intracellular reactive oxygen species,

enabling bacterial survival in macrophages.

Wan et al., 2017

Extra-intestinal

pathogenic E. coli

VgrG1 Involved in bacterial adherence, multiplication, and evasion of innate immune

responses.

Zong et al., 2019

Pseudomonas

P. aeruginosa PldA Phospholipase D effector; it induces PI3K activation by interacting with Akt1 and

Akt2 and promotes bacterial internalization into non-phagocytic cells.

Wilderman et al., 2001; Russell et al.,

2013; Bleves et al., 2014; Jiang et al.,

2014; Wettstadt et al., 2019

PldB Phospholipase D effector; it promotes bacterial internalization into epithelial cells

via the induction of the PI3K/Akt pathway.

Bleves et al., 2014; Jiang et al., 2014

VgrG2b Enables entry into non-phagocytic cells by interacting with members of the

microtubule γ-TuRC complex.

Sana et al., 2015; Wood et al., 2019

TplE Contains a eukaryotic PGAP1-like domain, which targets the host cell’s ER

leading to an unfolded protein response through the IRE1α-XBP1 pathway,

which in turns induces stress and autophagy.

Jiang et al., 2016

Klebsiella

K. pneumoniae Pld1 Essential phospholipase for bacterial virulence in mice that plays a role in

pathogenesis. It is encoded within a T6SS core gene cluster.

Lery et al., 2014

VgrG4 Plays a role in T6SS-mediated intoxication of fungal cells. Storey et al., 2020

Francisella

F. tularensis PdpC Plays a role in phagosomal escape, trafficking to lysosomes, intramacrophage

replication and is important for virulence in vivo. It is required for replication of

bacteria in the liver and spleen of mice and for AIM2 inflammasome activation.

Lindgren et al., 2013a,b; Long et al.,

2013; Uda et al., 2014; Eshraghi

et al., 2016; Ozanic et al., 2016;

Brodmann et al., 2017

PdpD Contributes to intramacrophage growth and phagosomal rupture. It is required

to activate the AIM2 inflammasome.

Ludu et al., 2008; Eshraghi et al.,

2016; Brodmann et al., 2017

OpiA Contributes to intramacrophage bacterial growth by promoting bacterial

endosomal escape into the cytoplasm. It belongs to a family of bacterial PI3K

enzymes and also plays a role in evasion of innate immunity in host cells by

reducing the levels of TNF-α.

Eshraghi et al., 2016; Ledvina et al.,

2018; Cantlay et al., 2020

OpiB Contributes to intracellular growth in phagocytic cells. The C-terminus is

homologous to the ankyrin repeat domains and the N-terminus corresponds to

an evolutionarily conserved cysteine protease.

Eshraghi et al., 2016

IglE It is translocated into macrophages and associates to microtubule organizing

centers modulating membrane trafficking for bacterial intracellular growth.

Broms et al., 2012; Shimizu et al.,

2019

Edwardsiella

E. tarda EvpP The C-terminal domain interacts with EvpC and suppresses activation of the

NLRP3 inflammasome by inhibiting the Ca2+-dependent MAPK-Jnk pathway.

NLRP3 inhibition promotes bacterial colonization.

Zheng and Leung, 2007; Wang et al.,

2009; Hu et al., 2014; Chen et al.,

2017

E. ictaluri EvpP Plays a role in host cell colonization, apoptosis and necrosis in macrophages.

Promotes adhesion and internalization.

Kalindamar et al., 2020

(Continued)
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TABLE 1 | Continued

Organism Effector Function (biochemical activity) References

E. piscicida EvpP EvpP-inhibits the Jnk-MAPK pathway and Jnk-caspy inflammasome signaling

pathways suppressing recruitment of neutrophils to infection sites and promoting

bacterial colonization. Interacts with ribosomal protein S5 (RPS5) to regulate

apoptosis.

Tan et al., 2019; Qin et al., 2020

Burkholderia

B. cenocepacia TecA Disrupts macrophage actin cytoskeleton by deamidating Rho GTPases, which

results in the activation of the Pyrin inflammasome.

Aubert et al., 2016

B. pseudomallei and

B. thailandensis

VgrG5 The C-terminal domain is involved in mediating multinucleated giant cell

formation, membrane fusion and virulence in mice.

Schwarz et al., 2014; Toesca et al.,

2014

Serratia

S. marcescens Tfe1 Acts against fungal cells causing plasma membrane depolarization leading to cell

death.

Trunk et al., 2018

Tfe2 Acts against target fungal cells, leading to fungal cell death. Disrupts nutrient

uptake and amino acid metabolism leading to the induction of autophagy.

Trunk et al., 2018

Aeromonas

A. hydrophila VgrG1 Targets the actin cytoskeleton. Has a vegetative insecticidal protein-2 domain

with actin ADP-ribosyl transferase activity.

Suarez et al., 2010

Yersinia

Y. pseudotuberculosis YezP Zn2+-binding effector that protects the pathogen from ROS and plays a role in

virulence.

Wang et al., 2015

Three T6SS effectors with putative anti-eukaryotic activities were
identified by analyzing the Vpr secretome. Vpr01570 contains an
N-terminal MIX V domain and a C-terminal CNF1 (cytotoxic
necrotizing factor 1) deamidase domain that targets and activates
Rho GTPases. Vpr01570 exogenously expressed in macrophages
induces actin cytoskeleton rearrangements, including assembly
of contractile actin stress fibers and ruffles at the top of the
cells in a T6SS-dependent manner. Vpr01570 induces toxicity
when expressed in yeast and these effects depend on the CNF1
domain (Ray et al., 2017). Vpr01580 is encoded next to the
Vpr01570 encoding gene and also contains a MIX V domain;
its homologous proteins are cytotoxic and contain Rhs repeats.
Vpr00400 is homologous to the C-terminal domain of the
toxic protein Txp40 which has insecticidal activity. Additional
studies are required to elucidate the role of Vpr01580 and
Vpr00400 (Ray et al., 2017).

Escherichia coli
Enterohemorrhagic Escherichia coli (EHEC) is a human
intestinal pathogen responsible for outbreaks of bloody diarrhea
and hemolytic uremic syndrome worldwide. KatN is 84%
identical to the Mn2+-containing catalase KatN of Salmonella
enterica and the specific activity of KatN is 268.3 U/mg
protein (Wan et al., 2017). KatN contributes to the EHEC
response to oxidative stress in vitro; OxyR and RpoS are
involved in katN transcription activation and H-NS, a global
regulator, in its repression. After phagocytosis, EHEC induces
the expression of T6SS, and translocated KatN contributes
to the survival of intracellular bacteria in macrophages by
hydrolyzing and decreasing the levels of reactive oxygen species
(ROS) providing an ideal niche for bacterial growth and further
infection (Wan et al., 2017).

Extra-intestinal pathogenic Escherichia coli (ExPEC) strains
can cause urinary tract, bloodstream, prostate, and other
infections at non-intestinal sites, leading to disease in humans
and other animals. They are a serious threat to human
public health and high risk for food safety. Porcine ExPEC
causes meningitis, pneumonia, arthritis, and septicemia and is
multidrug-resistant. The VgrG protein, a core component and
a T6SS effector, performs diverse functions as an effector in
addition to its structural component role. ExPEC VgrG1 plays
a role in bacterial adherence, multiplication, and also a main
role in evasion of innate immune response. In the absence
of VgrG1, the serum level of IL-1β in mice is significantly
reduced (Zong et al., 2019).

Pseudomonas
One of the most virulent opportunistic pathogens is
Pseudomonas aeruginosa, commonly found in soil and water
as well as in plants and humans. P. aeruginosa is metabolically
versatile and can cause a wide range of severe opportunistic
infections in patients with cancer, cystic fibrosis and burns. The
P. aeruginosa genome encodes three evolutionary distinct T6SS
clusters, the H1–3-T6SSs, which are expressed simultaneously,
each secreting a variable set of toxins. The H1-T6SS targets
bacteria, while H2-3-T6SS targets bacteria and are also involved
in internalization into eukaryotic cells (Mougous et al., 2006;
Sana et al., 2012, 2016).

Phospholipases D (PLDs) are found in only a very limited
number of prokaryotic organisms but, when present, they often
play a role in bacterial pathogenesis. The 122-kDa protein PldA
(Tle5a) from P. aeruginosa has high homology with eukaryotic
PLDs; the protein is secreted via H2-T6SS and delivered as a
cargo effector via their cognate VgrG4b. PldA possesses two
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FIGURE 1 | Schematic illustration of current models for the role of some anti-eukaryotic effectors. (A) P. aeruginosa delivers PldA and PldB which bind Akt to allow

bacterial internalization via the induction of the PI3K pathway. VgrG2b enables bacterial internalization by interacting with members of the microtubule γ-TuRC

complex. TplE targets the endoplasmic reticulum (ER) and induces stress and autophagy. (B) B. cenocepacia TecA is a deamidase that disrupts actin cytoskeleton by

deamidating Rho GTPases and activates the Pyrin inflammasome. (C) The V. cholerae evolved VgrG1 interacts with and cross-link actin, leading to an accumulation of

toxic actin oligomers and altering host cell morphology. VasX binds the lipid membrane phosphatidic acid (PA) and is thought to form pores in lipid bilayers.

V. proteolyticus Vpr01570 contains a deamidase domain that activates Rho GTPases. (D) F. tularensis OpiA is a kinase able to phosphorylate phosphatidylinositol (PI)

and binding to phosphatidylinositol trisphosphate [PI(3)P] for its recruitment to endosomal membranes. PdpC and PdpD activate AIM2 inflammasome. (E) E. tarda

translocates EvpP which modifies calcium flux and has an inhibitory role in NLRP3 inflammasome by reducing Jnk phosphorylation and ASC oligomerization.

E. ictalurid EvpP interacts with ribosomal protein S5 to negatively regulate apoptosis. (F) The EHEC effector KatN is a catalase that contributes to the survival in

macrophages by hydrolyzing and decreasing the levels of reactive oxygen species (ROS). VgrG1 is secreted by ExPEC that alters the IL-1β levels. This figure was

prepared using free templates on the Servier medical art website (https://smart.servier.com/).

HXKXXXXD catalytic motifs and it has phospholipase calcium-
regulated activity in vitro. PldA enzymatic activity resulting in
phosphatidylcholine hydrolysis depends on a catalytic histidine
residue (H855) (Wilderman et al., 2001; Russell et al., 2013;
Wettstadt et al., 2019). PldA can induce cell death through
PA accumulation via PLD activity, primarily aimed against
phosphatidylethanolamine (Russell et al., 2013; Jiang et al.,
2014).

The 83-kDa protein PldB (Tle5b) is a P. aeruginosa H2- and
H3-T6SS-dependent PLD effector delivered via their cognate
VgrG5 and is able to translocate into human epithelial cells. PldB
possesses two HXKXXXXD catalytic motifs that play a crucial

role in toxicity. PldA and PldB do not share homology, suggesting
that they have developed similar functions by convergent
evolution (Jiang et al., 2014; Wettstadt et al., 2019). A study
deciphering the prevalence of genes encoding T6SS effectors in
clinical isolates found that the prevalence of pldA was increased
in isolates responsible for severe acute pulmonary infection
and septicemia. In contrast, pldB prevalence was high in all
isolates (Boulant et al., 2018). PldA and PldB are not involved
in bacterial adhesion but promote intracellular invasion of host
eukaryotic cells by activation of the phosphatidylinositol 3-kinase
(PI3K)/Akt signaling pathway that is crucial for cell growth,
proliferation, and programmed cell death. After injection into
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epithelial cells, PldA and PldB directly interact with Akt1 and/or
Akt2 kinase, resulting in activation of the PI3K-Akt pathway.
Indeed, Akt phosphorylation at serine 473 promotes remodeling
of the apical membrane in which protrusions enriched in
phosphatidylinositol-3,4,5-triphosphate (PIP3) and actin enables
bacterial entry (Bleves et al., 2014; Jiang et al., 2014).

VgrG2b is conserved in all P. aeruginosa strains present
in the Pseudomonas genome database. VgrG2b is a 113-kDa
protein that contains the conserved VgrG domain homologous
to gp27 and gp5 phage-tail proteins followed by a domain of
unknown function, DUF2345, and a C-terminal extension with
a Zn2+-dependent metallopeptidase domain (LFIHEMTHVW).
It is an evolved VgrG with double function as a structural
component of the secretion machinery and a true effector
translocated via the H2-T6SS required for invasion of host
cells. VgrG2b injection precedes internalization; its C-terminal
domain interacts with α- and β-tubulin complexes and with
the γ-tubulin complexes, such as the γ-tubulin small complex
(γTuSC) and the γ-tubulin ring complex (γ-TuRC) involved
in microtubule nucleation. This interaction allows bacterial
uptake into epithelial cells to be mediated by actin cytoskeletal
rearrangement (Sana et al., 2015; Wood et al., 2019). The crystal
structure of Vgr2b C-terminal encompassing residues 833-1019
(PDB 6H56) presents a metallopeptidase fold (Wood et al., 2019).

Sana et al. (2016) proposed a working model for the interplay
of T6SS effectors PldA, PldB and VgrG2b in P. aeruginosa
internalization. First, VgrG2b is translocated via H2-T6SS,
causing the polarization of epithelial cells by targeting the
microtubule network, promoting microtubule nucleation at the
membrane by interacting with γ-TuRC. These novel sites of
non-radial microtubule nucleation interfere with the transport
of microtubule-dependent cargoes in the cell, like PI3K.
Simultaneously, PldA and PldB are translocated by the different
H2 and H3-T6SSs, activating Akt which allows actin-dependent
membrane protrusion that enables bacterial internalization into
the epithelial cells.

Another effector, TplE, contains a eukaryotic PGAP1
(post-glycosylphosphatidylinositol attachment to proteins 1)-
like domain. TplE is translocated into epithelial cells in an
H2-T6SS-dependent manner and localizes to host endoplasmic
reticulum (ER), causing a contraction of the ER surrounding the
nuclear periphery. TplE phospholipase activity is not involved
in localization but is required for disruption of ER structure.
TplE induces the upregulation of Bip and CHOP chaperones
that are biomarkers for ER stress and induces the splicing of
XBP1mRNA, suggesting that the TplE-induced unfolded protein
response is dependent on the IRE1α-XBP1 signaling pathway. It
was also reported that autophagic flux is induced by TplE delivery
into human epithelial cells (Jiang et al., 2016).

Klebsiella
Klebsiella pneumoniae is a ubiquitous species in nature, a
gut commensal, and an opportunistic pathogen in humans.
As a prominent nosocomial pathogen, it can cause a wide
range of infections, including urinary tract, respiratory tract
or blood infections, bacteremia and liver abscesses. Due to
the regular occurrence of multiple antibiotic-resistant isolates,

K. pneumoniae is considered a global public health concern. In
K. pneumoniae three different T6SS loci were defined, and a gene
encoding a PLD family protein Pld1 is located within a type VI
secretion system locus (Sarris et al., 2011; Lery et al., 2014). Pld1
is a Tle5 homolog, has two conserved HXKXXXXD motif and
is expressed during K. pneumoniae virulence in a mouse model
of pneumonia. The pld1 phospholipase mutant was strongly
attenuated in vivo, suggesting an effect on lipid metabolism in
K. pneumoniae pathogenesis (Lery et al., 2014).

VgrG4 encodes a C-terminal domain of unknown function
DUF2345. VgrG4 is needed for bacteria-induced killing of the
fungal pathogen Candida albicans and Saccharomyces cerevisiae,
implicating the T6SS in intoxication of fungal cells. The
DUF2345 domain is sufficient for the anti-eukaryotic activity
(Storey et al., 2020).

Francisella
Francisella tularensis is one of the most infectious intracellular
pathogens known. After entering the body via the skin, mucous
membranes, or respiratory or gastrointestinal tracts, it causes
tularemia, a necrotizing bronchopneumonia that leads to sepsis
and death. The T6SS encoded by the Francisella pathogenicity
island (FPI) is critical for the virulence of this bacterium. In
contrast F. tularensis subsp. novicida (F. novicida) has low
virulence in humans, but is highly virulent in mice and thus
often used as a laboratory model for tularemia (Eshraghi et al.,
2016). PdpC (pathogenicity determinant protein C) is a 156-kDa
protein encoded within the FPI that contributes to phagosomal
escape, trafficking to lysosomes and intramacrophage replication.
PdpC plays a role in virulence in the mouse model, as
demonstrated by the 1pdpC mutant causing significantly lower
mortality in mice with a corresponding reduction in bacterial
burden in organs. PdpC is required to activate the AIM2
inflammasome and 1pdpC induces lower levels of type I
interferon production (Lindgren et al., 2013a,b; Long et al.,
2013; Uda et al., 2014; Eshraghi et al., 2016; Ozanic et al., 2016;
Brodmann et al., 2017).

PdpD is a protein encoded within the FPI; its export requires
VgrG and PdpA. This effector contributes to intramacrophage
growth and phagosome rupture. PdpD is also required to activate
the AIM2 inflammasome (Eshraghi et al., 2016; Brodmann et al.,
2017).

OpiA and OpiB are encoded by open reading frames located
outside of the FPI and recently identified as T6SS substrates.
They contribute to intracellular growth. There are no homologs
of OpiA found outside of Francisella, and in silico analyses were
unable to identify characterized domains or motifs within the
protein. The OpiB C-terminus is homologous to the ankyrin
repeat domains mediating protein-protein interactions that are
normally found in eukaryotic proteins. The OpiB N-terminus
constitutes an evolutionarily plastic cysteine protease (Eshraghi
et al., 2016). OpiA belongs to a family of wortmannin-resistant
bacterial PI3K enzymes with members found in a wide range
of intracellular pathogens. OpiA can phosphorylate PI but not
PIP2. OpiA binds phosphatidylinositol 3-phosphate [PI(3)P] in
a selective and high-affinity manner serving as a mechanism
for the specific recruitment of OpiA to endosomal membranes.
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OpiA acts on the Francisella-containing phagosome, leading to
efficient bacterial escape from late endosomes into the cytoplasm
of infected cells (Ledvina et al., 2018). The protein is translocated
into phagocytic cells and reduces the levels of TNF-α, a
pro-inflammatory cytokine from monocytes required to block
intracellular replication. OpiA contributes to the pathogenesis of
F. tularensis, as demonstrated using a chicken embryo infection
model (Cantlay et al., 2020).

The protein IglE (intracellular growth locus E) is translocated
into macrophages (Broms et al., 2012). The 1iglE mutant
has a slower intracellular growth rate in human macrophages,
suggesting a role for this protein in intracellular replication.
IglE interacts with β-tubulin, pericentrin and with microtubule
organizing centers. It inhibits the dynein- based intracellular
trafficking in host cells, allowing F. novicida to escape from fusion
with lysosomes (Shimizu et al., 2019).

Edwardsiella
Edwardsiella tarda infects a wide range of hosts including
fish, birds, reptiles and humans. In humans, it causes both
intestinal and extra-intestinal infections, mainly in individuals
with impaired immune systems. Edwardsiellosis in fish is
a devastating disease predominant in worldwide aquaculture
industries, making it of particular importance to the fishing
industry (Zheng and Leung, 2007). EvpP (E. tarda virulence
protein P) transcription is iron-dependent. EvpP is a 20-kDa
protein that is not conserved in other bacteria and contains no
conserved domains or motifs. It is secreted via T6SS and the
EvpP C-terminus interacts with EvpV (Hcp homolog) (Zheng
and Leung, 2007; Hu et al., 2014). In an in vivo fish model,
EvpP plays a role in proliferation and infection. This toxin also
mediates hemolytic activity in sheep erythrocytes and contributes
to mucus adhesion and serum resistance of Japanese flounder.
EvpP is important for internalization into epithelial papilloma
of carp cells (Wang et al., 2009). The protein localizes in the
membrane after injection and has an inhibitory role in NLRP3
inflammasome activation by reducing Jnk phosphorylation and
ASC oligomerization. It was reported that 1evpP induced higher
intracellular calcium flux than wildtype E. tarda indicating that
EvpP-mediated manipulation of the Jnk-ASC could be traced
upstream to intracellular Ca2+ signaling (Chen et al., 2017).

Edwardsiella ictaluri causes enteric septicemia of catfish and
is the most important endemic infectious disease in catfish
aquaculture industry. EvpP toxin is involved in adhesion and
internalization of E. ictaluri in catfish ovary cells. EvpP plays a
role in growth regulation in the phagolysosome where oxidative
stress and limited nutrients are present, and also favors survival
and increases apoptosis and necrosis in catfish anterior kidney
macrophages (Kalindamar et al., 2020).

Edwardsiella piscicida is abundant in water and causes food
and waterborne infections in fish, animals and humans (Leung
et al., 2019). Using an in vivo zebrafish larvae infection model
EvpP inhibits immune cells recruitment via Jnk-MAPK signaling
cascades. EvpP reduces the expression of cxcl8a (chemokine
ligand 8) and mmp13 (matrix metallopeptidase 13) transcripts,
indicating that EvpP plays a role in inhibiting the recruitment
of neutrophils. Meanwhile, EvpP also inhibits the Jnk-caspy
inflammasome and IL-1β expression to suppress neutrophil

recruitment, thereby promoting bacterial colonization (Tan et al.,
2019). EvpP is also able to reduce Annexin V binding and
activation of cleaved caspase-3 involved in apoptosis. This
effector interacts with ribosomal protein S5 (RPS5), most likely
resulting in downregulation of apoptosis-associated pathways in
macrophages (Qin et al., 2020).

Burkholderia
Burkholderia cenocepacia is widespread in the environment,
particularly within the rhizosphere. B. cenocepacia is
also an opportunistic pathogen causing chronic lung
infections in patients with cystic fibrosis as well as in other
immunocompromised patients (Loutet and Valvano, 2010). The
17-kDa protein TecA is a non-VgrG T6SS effector responsible
for actin disruption in vivo. TecA and other bacterial homologs
bear a cysteine protease-like catalytic triad, which inactivates
Rho GTPases by deamidating a conserved asparagine in the
GTPase switch-I region. RhoA deamidation induces Pyrin
inflammasome activation (Aubert et al., 2016).

Burkholderia thailandensis is a soil saprophyte of low
virulence. Burkholderia pseudomallei is the causative agent of
melioidosis, a serious and often fatal human infection. These
species, referred as the Bptm group, encode several T6SSs but
the type VI secretion system 5 (T6SS-5) is the one required
for virulence in mammalian infection models. VgrG-5 is a
substrate of T6SS-5 and is translocated into macrophages. VgrG-
5 C-terminal domain is involved in mediating multinucleated
giant cell formation, membrane fusion and virulence in mice
(Schwarz et al., 2014; Toesca et al., 2014).

Serratia
Serratia marcescens occurs naturally in soil and water. It is
associated with urinary and respiratory infections, endocarditis,
osteomyelitis, septicemia, wound infections, eye infections, and
meningitis. Tfe1 (T6SS antifungal effector 1) is an antifungal
small T6SS toxin (20 kDa), deletion of Tfe1 encoding gene
resulted in a four-fold increase in recovery of viable Candida
albicans target cells compared with the wild type bacteria.
Tfe1 causes cell distortion and lysis in both the budding
and filamentous forms of C. albicans. Tfe1 inhibits growth
of S. cerevisiae and induces abnormally large vacuoles and
cell lysis, confirming the fungicidal role of this effector. Tfe1
intoxication results in membrane depolarization by loss of
membrane potential, which is not due to pore formation but
can lead to a loss of membrane integrity and cell death (Trunk
et al., 2018, 2019). Removal of Tfe2 (T6SS antifungal effector 2)
encoding gene, resulted in almost complete loss of activity against
S. cerevisiae or Candida glabrata and reduced activity against C.
albicans. Tfe2 is a small protein (26 kDa) which, when expressed
in S. cerevisiae, is able to inhibit its growth. Tfe2 intoxication
disrupts nutrient uptake and amino acid metabolism and causes
autophagy. Tfe1 and Tfe2 act on different cellular targets in fungal
cells (Trunk et al., 2018, 2019).

Aeromonas
Aeromonas hydrophila is common in freshwater environments
and causes disease in fish, reptiles, amphibians, and humans.
It causes a broad spectrum of infections (including septicemia,
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meningitis, endocarditis) in humans and severe motile
septicemia in warmwater fishes. The 103-kDa protein VgrG1
is translocated by the T6SS. VgrG1 contains a vegetative
insecticidal protein domain at its C-terminus with actin
ADP-ribosyltransferase activity. This effector alters the
actin cytoskeleton and induces apoptosis in epithelial cells
(Suarez et al., 2010).

Yersinia
Yersinia pseudotuberculosis is an enteric pathogen, which usually
grows in the environment and can be transmitted to mammalian
hosts through ingestion of contaminated food or water. It
typically causes a broad range of gastrointestinal diseases,
from enteritis to mesenteric lymphadenitis (Yang et al., 2018).
Y. pseudotuberculosis contains four T6SS clusters. The T6SS-
4 secreted substrate YezP (Yersinia extracellular zinc-binding
protein) is a Zn2+-binding protein that has the ability to rescue
the sensitivity to oxidative stress exhibited by T6SSmutants when
added to extracellular milieu. YezP plays a role in virulence
for mice but its contribution to the infection process requires
additional investigation (Wang et al., 2015).

CONCLUDING REMARKS

Bacterial pathogens employ many strategies to invade
mammalian hosts, damage tissues, organelles and prevent
the immune system from responding. One strategy is the
secretion of proteins (effectors) across membranes. As we
described in this review, these toxins are secreted and injected
into host cells via the T6SS and exist both as evolved VgrGs and
cargo effectors. Translocated effectors can play many roles in
eukaryotic cells, which promote bacterial virulence ranging from
attachment to directly intoxicating target cells and disrupting
their functions to finally establishing a replicative niche and
successful colonization.

The clearance of pathogens depends on the host innate
immune responses that take place at early stages of infection
and in which macrophages and neutrophils are the essential
players. Once inside the macrophage, intracellular bacteria can
reside in vacuoles or in the cytosol, depending on their effector
repertoire which help them to evade host defense and continue
the infection cycle and replicate. Here, we described 27 T6SS
effectors employed by several bacterial species to promote
virulence in eukaryotic cells. These effectors can display similar or
complementary functions into host cells and modulate the same
central pathway of the host cell (e.g., inflammasome) or having
different roles. Moreover, a pathogenmay secrete several proteins
to produce the same outcome (e.g., PldA and PldB).

Vibrio, Pseudomonas, Burkholderia and Aeromonas species
translocate toxins in a T6SS-dependent manner leading to

resistance to phagocytosis, inflammasome activation, as well as
bacterial internalization by manipulating the actin cytoskeleton.
Vibrio, Pseudomonas, and Burkholderia in particular, disrupt the
host cell cytoskeleton, targeting actin, although Pseudomonas and
Francisella effectors target the microtubules. The interference

with immunity pathways is a hallmark function achieved
by T6SS-dependent effectors. Burkholderia, Vibrio, Francisella
and Edwardsiella inject toxins involved in the activation of
the different inflammasomes that lead to the secretion of
proinflammatory cytokines. In this context, activation of the
inflammasome can be important for the clearance of the
pathogen, suggesting the possibility that the T6SS effectors may
also have a role as anti-virulence factors. This notion is supported
from results using TecA deficient mutants in experimental mice
infection whereby the mutant bacteria were able to kill infected
mice while the parental strain was cleared. This clearance effect
was abolished in infections using Pyrin inflammasome-defective
mice (Aubert et al., 2016).

Another important mechanism of host defense is the
generation of reactive oxygen species to eradicate intracellular
bacteria. E. coli and Yersinia T6SSs deliver effectors with the
ability to modulate the oxidative stress and protect the pathogen
fromROS and allowing growth. Finally, Serratia delivers effectors
into fungal cells, causing depolarization of the plasma membrane
and metabolism disrupted, leading to cell death.

In recent years, remarkable progress has been made toward
elucidating the function of eukaryotic effectors of the T6SS,
which has contributed to better understand several aspects
of bacterial pathogenesis. However, our understanding of the
molecular mechanism of many T6SS-secreted toxins awaits
detailed functional analysis, including biochemical, biophysical,
immunological and structural studies. The kinetics of effector
delivery is also an open question since very little is known on
whether their translocation is regulated in a temporal and spatial
manner and the signals that triggers their secretion.
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GLOSSARY

ABM actin binding motif
ACD actin cross-linking domain
CNF1 cytotoxic necrotizing factor 1
EHEC enterohemorrhagic Escherichia coli
ER endoplasmic reticulum
ExPEC extra-intestinal pathogenic Escherichia coli
FPI Francisella pathogenicity island
MIX marker for type six effectors
PA phosphatidic acid
PH Pleckstrin-homology
PI phosphatidylinositol
PI(3)P phosphatidylinositol 3-phosphate
PI3K phosphatidylinositol 3-kinase
PIP phosphatidylinositol phosphates
PIP3 phosphatidylinositol-3,4,5-triphosphate
PLD phospholipase D
ROS reactive oxygen species
γ-TuRC gamma-tubulin ring complex
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