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A B S T R A C T   

Background: Cervical cancer is among the most prevalent malignancies worldwide. This study 
explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, 
and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it 
develops a diagnostic model based on angiogenesis-related differentially expressed genes 
(ARDEGs). 
Methods: We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation 
Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment 
analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least 
Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diag-
nostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy 
responses in cervical cancer. 
Results: A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression 
Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these 
genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The 
ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive 
accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve 
analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the 
model were associated with clinicopathological features, prognosis, and immune cell infiltration. 
Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell 
activation) were highly correlated. 
Conclusion: This study identifies the prognostic characteristics of ARGs in cervical cancer patients, 
elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of 
immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.   
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1. Introduction 

Cervical cancer represents a major global health challenge, ranking as the fourth leading cause of cancer-related mortality among 
women [1]. This malignancy is particularly prevalent in regions with limited healthcare resources, accounting for approximately 84 % 
of all cases and 88 % of deaths from cancer worldwide [2]. Despite advances in treatment modalities including surgery, concurrent 
chemoradiotherapy, and novel approaches such as vascular-targeted therapy and immunotherapy, outcomes for patients with 
recurrent or metastatic cervical cancer remain poor [3,4]. These innovative therapies have shown promise, yet the long-term benefits 
are limited to a small group of patients, highlighting the critical need for enhancing response rates to immunotherapy. 

Recent research underscores the pivotal role of the tumor microenvironment (TME) in cervical cancer progression and its influence 
on the efficacy of immunotherapy [5]. The TME comprises a complex network of extracellular matrix components, blood vessels, and 
various cellular constituents including immune, stromal, and cancer cells [6]. Angiogenesis, the process of new blood vessel formation, 
is a key aspect of the TME that contributes to the immunosuppressive landscape, facilitating tumor immune evasion [7]. Consequently, 
strategies targeting angiogenesis represent a viable approach for treating advanced stages of the disease. Following promising results 
from the KEYNOTE-826 trial, the combination of the antibody-drug conjugate paporizumab with bevacizumab was approved in late 
2021 as a frontline therapy for recurrent/metastatic cervical cancer. However, the precise mechanisms by which immunotherapy and 
targeted therapy interact remain poorly understood. 

This study aims to elucidate the relationship between angiogenesis and the TME, with a focus on identifying diverse immuno-
phenotypes of cervical cancer. We analyzed the expression of ARGs and their impact on disease prognosis, clinical outcomes, and 
immune response by utilizing data from TCGA, GEO, and UCSC Xena databases. Differential gene expression analysis between normal 
cells and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues was performed, followed by enrichment 
analysis using GO, KEGG, and GSEA methodologies. Key genes and clinical parameters were integrated through univariate/multi-
variate Cox regression and LASSO regression analysis to develop an ARDEGs model. The predictive capability of this model was 
evaluated using Kaplan-Meier analysis, time-dependent ROC analysis, and other statistical tools including the C-index, calibration 
curves, and decision curve analysis. Additionally, treatment responses in immunotherapy cohorts were examined, and the diagnostic 
significance of gene mutations in hub genes was assessed. Our results aim to provide new insights into the potential of immunotherapy 
in treating cervical cancer, offering strategies to anticipate treatment outcomes and improve therapeutic efficacy. 

2. Materials and methods 

2.1. Data acquisition and processing 

Expression profile data for cervical cancer (TCGA-CESC) were retrieved from TCGA using the ’TCGABiolinks’ R package [8]. A total 
of 309 cervical cancer samples (Cancer group) and 3 adjacent non-tumor samples (Normal group) were included after excluding those 
lacking essential clinical information. The data were normalized to Fragments Per Kilobase Million (FPKM), and relevant clinical 
information was sourced from the UCSC Xena database (http://genome.ucsc.edu) [9]. The normalization of count sequencing data in 
the TCGA-CESC dataset was performed using the ‘limma’ package [10]. 

2.2. External validation datasets 

Related datasets, GSE44001 [11], GSE63514 [12], and GSE7803 [13], were downloaded from the GEO [14] using the ‘GEOquery’ 
R package [15]. Specifically, the GSE44001 dataset employed the GPL14951 Illumina HumanHT-12 WG-DASL V4.0 R2 Expression 
BeadChip platform to analyze gene expression in 300 cervical cancer samples. Concurrently, the GSE63514 dataset utilized the 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array to evaluate gene expression in 28 cervical cancer samples 
and 24 matched adjacent normal tissue samples. Additionally, the GSE7803 dataset used the GPL96 [HG-U133A] Affymetrix Human 
Genome U133A Array to assess gene expression in 21 cervical cancer samples and 10 partially matched adjacent normal tissues. Probe 
name annotation for each dataset was meticulously performed using the respective GPL platform files. All samples were included in 
subsequent analyses. These datasets served as validation sets to confirm the reproducibility and reliability of the findings, with 
summarized information presented in Table 1. 

Table 1 
CESC Dataset Information list.   

TCGA-CESC GSE44001 GSE63514 GSE7803 

Platform  GPL14951 GPL570 GPL96 
Species Homo sapiens Homo sapiens Homo sapiens Homo sapiens 
Samples in Normal group 3  24 10 
Samples in CESC group 309 300 28 21 
Reference  [5] [6] [7] 

Abbreviations: TCGA, the cancer genome atlas; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma. 
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2.3. Standardization and merging of datasets 

To identify the potential roles and related biological features and pathways of differential genes in the CESC group versus the 
normal group, we first standardized the datasets TCGA-CESC, GSE44001, GSE63514, and GSE7803 using the R package limma. 
Subsequently, batch effects were removed from the CESC datasets GSE44001, GSE63514, and GSE7803 using the R package sva, 
resulting in a merged GEO dataset. The datasets before and after batch effect removal were compared using box plots and principal 
component analysis(PCA) graphs. 

2.4. Angiogenesis-related genes (ARGs) and data integration 

ARGs were identified via the GeneCards Database (https://www.genecards.org/) [16], using ’Angiogenesis’ as a keyword, 
retaining only those coded as ‘Protein Coding’ with a relevance score greater than 3, culminating in a collection of 365 ARGs. After 
cross-referencing and deduplication, 145 additional ARGs were included from the literature, totaling 510 ARGs (Supplementary 
Table S1). 

2.5. Mutational and CNV analysis 

The somatic mutation dataset, including single nucleotide polymorphisms (SNPs), was obtained from TCGA. Data visualization was 
conducted using the ’maftools’ R package [17]. To examine gene copy number variation (CNV) among CESC patients, we utilized the R 
environment and integrated the data prior to analysis with GISTIC 2.0 [18], employing the default parameters. 

2.6. Cervical cancer-related differentially expressed genes 

To investigate differentially expressed genes (DEGs) between normal and CESC tissues, we utilized data from the GEO dataset. 
DEGs were identified by filtering for |log 2(fold change, FC)| > 0 with P-values <0.05. Genes with logFC >1 and P < 0.05 were 
classified as upregulated, while those with logFC < − 1 and P < 0.05 were classified as downregulated. To discern genes associated with 
CESC pathology, we intersected DEGs with associated response genes (ARGs), and visualized these relationships using a Venn diagram. 
Differential expressions were further depicted through volcano plots generated with the R package, ggplot 2. 

2.7. Calculation of angiogenic score 

The single-sample gene-set enrichment analysis (ssGSEA) [19] algorithm effectively quantifies the relative abundance of genes 
within individual dataset samples. This method is crucial for advancing high-throughput genomic studies as it enables a meticulous 
analysis of gene expression levels across an extensive array of biological samples. Consequently, ssGSEA enhances our comprehension 
of the specific contributions of individual genes to cellular functions and disease pathologies, thereby augmenting the prospects for 
developing targeted therapeutic strategies. We applied the ssGSEA algorithm using the GSVA package in R to compute the angiogenesis 
scores of cancer samples from TCGA-CESC and GEO datasets. These scores were derived from the expression matrix of ARGs in each 
sample. Based on their angiogenesis scores, patients were dichotomized into two groups, and expression differences between the 
groups were analyzed using the Mann-Whitney U test, with significance set at P < 0.05. 

2.8. Functional enrichment analysis: GO and KEGG 

Gene Ontology (GO) [20] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [21] analyses were conducted to understand the 
functional impacts of ARDEGs. Using the R package clusterProfiler [22], GO annotation was analyzed, and significant enrichment was 
identified at P < 0.05 with a false discovery rate (FDR) threshold (q-value) of <0.05. The Benjamini-Hochberg method was employed 
for p-value correction during these analyses. 

2.9. Gene Set Enrichment Analysis (GSEA) 

GSEA [23] is used to evaluate the distribution trend of a predefined gene set within a gene list ordered according to their relevance 
to a particular phenotype, thereby assessing the contribution of these genes to the phenotype. In this study, we used the logFC value to 
rank molecules and evaluate their enrichment in the predefined gene sets. The clusterProfiler package was then used to conduct 
enrichment analysis on all phenotype-related genes. The parameters for this GSEA enrichment analysis were as follows: seed set to 
2020, 1000 permutations, minimum of 10 genes per gene set, maximum of 500 genes per gene set, and the p-value adjustment method 
was Benjamini-Hochberg (BH). We obtained the “h.all.v7.4.symbols.gmt” gene set from the Molecular Signatures Database (MSigDB) 
and conducted GSEA analysis to evaluate the expression of genes in the TCGA-CESC dataset. The criteria for significant enrichment 
were P.value < 0.05 and FDR (q.value) < 0.25. 

2.10. Construction of angiogenesis diagnostic model 

To develop a diagnostic model for ARDEGs in the TCGA-CESC dataset, we initially employed the glmnet package [24] to perform 
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LASSO regression [25], using the parameter family = "binomial" with ten-fold cross-validation. The process was iterated over 1000 
cycles to prevent overfitting. LASSO regression, a prevalent machine learning algorithm for building diagnostic models, is based on 
linear regression enhanced by adding a penalty term (lambda × absolute value of the slope). This regularization helps prevent 
overfitting during curve fitting and improves the model’s generalization ability. 

riskScore=
∑

i
Coefficient (hub genei) ∗ mRNA Expression (hub genei)

Subsequently, we extracted the penalty coefficients (lambda) of the ARDEGs from the LASSO regression diagnostic model, and 
calculated the risk score of the ARDEGs diagnostic model, denoted as riskScore. Additionally, we utilized the R package RCircos to 
annotate the locations of the ARDEGs on human chromosomes. 

2.11. Clinical prognosis analysis 

To elucidate the prognostic significance of target genes in cervical cancer, we employed univariate and multivariate Cox regression 
analyses using the TCGA-CESC dataset, incorporating key genes (hub genes and mRNA) and clinical variables to develop a predictive 
Cox regression model. We generated nomograms to estimate 1-, 3-, and 5-year survival probabilities for cervical cancer patients, based 
on multivariate regression scores for each clinical variable. The results were visualized using a risk factor map that depicted the as-
sociation between molecular expression of ARDEGs, risk scores, and patient survival outcomes within the prognostic model. We 
further validated the nomogram’s accuracy and resolution with a calibration curve, correlating actual survival probabilities against 
model predictions under varying conditions, utilizing the ggDCA package in R. 

2.12. Prognostic evaluation using Kaplan-Meier curves 

Our analysis also included Kaplan-Meier curve assessments to analyze survival time and its association with various prognostic 
factors. The Kaplan-Meier method calculated survival probabilities, reflecting ongoing patient survival beyond specified time points. 
Significance was determined for genes impacting survival (P < 0.05). 

2.13. Immune infiltration analysis with CIBERSORT 

CIBERSORT (https://cibersort.stanford.edu/) [26] is an innovative online algorithm that leverages gene expression data to 
accurately estimate the composition of immune cells within tissue samples. This method utilizes a signature matrix that characterizes 
22 distinct human immune cell subtypes—including T cells, B cells, monocytes, and natural killer cells—through their unique gene 
expression profiles. Employing linear support vector regression, CIBERSORT effectively deconvolutes RNA expression data from mixed 
cell populations, enabling precise quantification of the relative abundances of different immune cell types. This algorithm serves as a 
crucial tool for analyzing the distribution and infiltration of immune cells in solid tumors and various complex tissues, thereby 
enhancing our understanding of immune landscapes in diverse pathological contexts. Using the CIBERSORT tool, we evaluated the 
immune cell infiltration in the TCGA-CESC samples based on 22 known immune cell subtype gene expression profiles. This analysis 
highlighted significant differences in immune cell infiltration among the CESC samples. A heatmap was created to illustrate significant 
correlations among these immune cells (P < 0.05). 

2.14. Receiver Operating Characteristic(ROC) curve analysis 

To assess the diagnostic utility of hub gene expression, ROC curves were plotted for the Normal and CESC groups. We evaluated the 
area under the curve (AUC) values, which indicate the sensitivity and specificity of the models; higher AUC values suggest better 
diagnostic performance. 

2.15. Statistical analysis 

All data processing and analyses in this study were performed using R software (Version 4.1.2). For assessing statistical significance 
between two continuous variables, we applied the independent Student t-test for normally distributed data and the Mann-Whitney U 
test (also known as the Wilcoxon rank-sum test) for non-normally distributed data. To evaluate differences between two categorical 
variables, we utilized either the Chi-square test or Fisher’s exact test, depending on the data’s distribution. Correlations among various 
molecules were determined using Spearman’s correlation analysis, unless otherwise specified. We reported all statistical P-values as 
two-sided, adhering to the significance threshold of P < 0.05. 

3. Results 

3.1. Figure legends 

To meticulously elucidate our methodology for investigating the biological characteristics of cervical cancer using bioinformatics 
techniques, we have developed a detailed analysis flowchart (Supplementary Fig. 1). 
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3.2. Merging of GEO datasets 

Initially, we processed the cervical cancer datasets GSE44001, GSE63514, and GSE7803 to remove batch effects, resulting in the 
merged dataset named GEO dataset. We then compared the datasets before and after batch effect removal using distribution boxplots 
and Principal Component Analysis (PCA) graphs (Supplementary Fig. 2). The results from the distribution boxplots and PCA graphs 
indicate that the batch effects in the samples of the GEO dataset were effectively eliminated after the batch removal process. 

3.3. Analysis of the DEGs in cervical cancer 

We performed a differential expression analysis on the TCGA-CESC dataset using the limma package to identify DEGs between the 
normal and CESC groups. Our analysis revealed that 5083 genes met the criteria of absolute log fold change (|logFC|) greater than 1 
and P-value less than 0.05. Specifically, we identified 2167 genes as significantly upregulated (logFC >1) and 2916 genes as signif-
icantly downregulated (logFC < − 1) in the CESC samples compared to normal tissue. We visualized these changes using a volcano plot 
as depicted in Fig. 1A. Furthermore, to identify ARDEGs, we intersected the DEGs and ARGs that also met the criteria of |logFC|>0 and 
P < 0.05 within the TCGA-CESC dataset, resulting in 202 ARDEGs. These intersections are represented in a Venn diagram (Fig. 1B). 
Additionally, we employed the heatmap function from the R package ‘heatmap’ to illustrate the expression differences between the 
normal and CESC groups for these 202 ARDEGs. To further refine our list of ARDEGs, we intersected these 202 ARDEGs with 1942 
prognostic molecules identified in cervical cancer, ultimately identifying 30 significant ARDEGs. This intersection is also illustrated in 
a Venn diagram (Fig. 1C). 

3.4. GO and KEGG Pathway Enrichment Analysis of ARDEGs 

To elucidate the biological processes (BP), molecular functions (MF), cellular components (CC), and pathway associations of the 30 
ARDEGs in cervical cancer, comprehensive GO (Table 2) and KEGG (Table 3) enrichment analyses were conducted. We applied 
stringent criteria for these analyses, selecting enrichment entries with both P-values and q-values less than 0.05. The results were 
visually represented through bubble charts (Fig. 2A–B), circular network diagrams (Fig. 2C–D), and histograms (Fig. 2E–F). 

In terms of BP, the ARDEGs predominantly contributed to the regulation of the JAK-STAT signaling cascade (GO:0046425), Notch 
signaling in cardiac development (GO:0061314), cellular response to hypoxia (GO:0001666), and the positive regulation of apoptosis 
execution phase (GO:1900119). For CC, notable enrichments included the secretory granule lumen (GO:0034774), ruffles 
(GO:0001726), ruffle membrane (GO:0032587), and lamellipodium membrane (GO:0031258). 

MF analysis revealed significant enrichment in Notch binding (GO:0005112), receptor-ligand activity (GO:0048018), platelet- 
derived growth factor receptor binding (GO:0005161), and growth factor receptor binding (GO:0070851). Additionally, KEGG 
pathway analysis identified significant enrichments in critical signaling pathways including the PI3K-Akt (hsa04151), MAPK (hsa 
04010), and focal adhesion pathways (hsa04510), as well as those related to rheumatoid arthritis (hsa05323), ECM-receptor in-
teractions (hsa04512), bladder cancer (hsa 05219), IL-17 signaling (hsa 04657), and melanoma(hsa0521). 

3.5. GSEA and GSVA enrichment analysis of the TCGA-CESC dataset 

We applied GSEA to evaluate the associations between gene expression profiles and biological processes, cellular components, and 
molecular pathways in the Normal and CESC groups within the TCGA-CESC dataset. Our analysis revealed significant enrichment of 
gene expression in key oncogenic pathways including PI3K-AKT, WNT, NOTCH, and Hedgehog among others, as depicted in Fig. 3A–E 
and summarized in Table 4. 

Fig. 1. Differential Gene Expression Analysis in Cervical Cancer (A) Volcano plot illustrating the distribution of DEGs within the TCGA-CESC 
dataset. (B) Venn diagram depicting the intersections between ARGs and DEGs identified within the TCGA-CESC dataset. (C) Venn diagram of 
DEGs and prognostic molecular ARGs in the TCGA-CESC dataset. 
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To further differentiate the molecular profiles between the Normal and CESC groups, we conducted GSVA of the TCGA-CESC 
dataset (Fig. 3F). This analysis highlighted significant differences in the enrichment of the Hedgehog pathway and several other 
gene sets, illustrating distinct gene expression patterns between CESC and normal cervical tissues. 

3.6. Development of an ARDEGs diagnostic model using LASSO regression analysis 

To assess the diagnostic potential of 30 ARDEGs within the TCGA-CESC dataset, we employed LASSO regression analysis to develop 
an ARDEGs diagnostic model, as depicted in Fig. 4A. The model’s risk factors were categorized using a novel risk factor graph (Fig. 4B), 
which is split into two sections: risk grouping (determined through the Cox regression prognostic model and stratified by the median) 
and survival outcomes (illustrated using a dot plot of survival time and outcomes from TCGA-CESC clinical samples). 

We identified 15 key ARDEGs: BAIAP2L1, FGFR3, NRP1, E2F1, CA9, SPP1, DLL4, VAV3, ITGA5, PTX3, EMCN, NDRG2, EFNA1, 
CXCL8, and JUN. Enhancing the LASSO penalty’s absolute value (lambda × slope) improved the model’s generalizability and miti-
gated overfitting, as demonstrated by the LASSO variable trajectory map (Fig. 4C). This map illustrated how gene inclusion varied 
inversely with the lambda coefficient of the LASSO penalty term. 

Further analysis revealed significant differences in the expression levels of the ARDEGs diagnostic model between high- and low- 
scoring patient groups diagnosed with cervical cancer (P < 0.001), as shown in Fig. 4D. Additionally, we constructed a correlation 
Laplace diagram to further elucidate the relationship between ARDEG expression and the risk scores derived from the diagnostic model 
(Fig. 4E). 

We stratified the prediction scores from 15 ARDEGs in TCGA-CESC samples into High/Low groups, and assessed expression 
variability using the Wilcoxon signed-rank test, as shown in Fig. 5A. Our findings indicated significant differences in the expression of 
ARDEGs including NRP1, E2F1, CA9, SPP1, DLL4, ITGA5, PTX3, NDRG2, EFNA1, CXCL8, and JUN between the groups (P < 0.001). 

Subsequent differential expression analysis demonstrated notable variance in the levels of these 15 ARDEGs between normal and 
CESC tissues within the TCGA-CESC cohort (Fig. 5B). Specifically, genes such as BAIAP2L1, NRP1, E2F1, DLL4, and EMCN exhibited 
substantial expression differences (P < 0.01), while FGFR3, CA9, SPP1, VAV3, ITGA5, PTX3, NDRG2, and EFNA1 also showed sig-
nificant differences (P < 0.05). 

Further analysis explored the interrelationships among the ARDEGs within the TCGA-CESC dataset, revealing statistically signif-
icant correlations, particularly between BAIAP2L1 and DLL4, ITGA5, PTX3 (P < 0.01) and between E2F1 and NDRG2 (P < 0.05), as 
illustrated in Fig. 5C. Additionally, we mapped the chromosomal locations of these ARDEGs on a circular chromosome diagram 
(Fig. 5D), highlighting that JUN, VAV3, and EFNA1 are located on chromosome 1, with BAIAP2L1 on chromosome 7. 

We generated ROC curves for 15 ARDEGs across normal and CESC samples from the TCGA-CESC dataset (Supplementary Fig. 3). 

Table 2 
GO enrichment analysis results of ARDEGs.  

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

BP GO:0045765 regulation of angiogenesis 10/29 383/18670 1.66e-10 2.33e-07 1.33e-07 
BP GO:0043062 extracellular structure organization 10/29 422/18670 4.27e-10 2.33e-07 1.33e-07 
BP GO:1901342 regulation of vasculature development 10/29 422/18670 4.27e-10 2.33e-07 1.33e-07 
BP GO:0030198 extracellular matrix organization 9/29 368/18670 2.88e-09 1.18e-06 6.70e-07 
BP GO:0048146 positive regulation of fibroblast proliferation 5/29 51/18670 1.41e-08 4.59e-06 2.62e-06 
CC GO:0034774 secretory granule lumen 5/30 321/19717 1.13e-04 0.004 0.002 
CC GO:0001726 ruffle 4/30 172/19717 1.28e-04 0.004 0.002 
CC GO:0060205 cytoplasmic vesicle lumen 5/30 338/19717 1.44e-04 0.004 0.002 
CC GO:0031983 vesicle lumen 5/30 339/19717 1.46e-04 0.004 0.002 
CC GO:0005925 focal adhesion 5/30 405/19717 3.33e-04 0.005 0.003 
MF GO:0048018 receptor ligand activity 8/29 482/17697 7.41e-07 7.11e-05 3.69e-05 
MF GO:0050839 cell adhesion molecule binding 8/29 499/17697 9.62e-07 7.11e-05 3.69e-05 
MF GO:0005161 platelet-derived growth factor receptor binding 3/29 15/17697 1.78e-06 7.11e-05 3.69e-05 
MF GO:0005178 integrin binding 5/29 132/17697 2.20e-06 7.11e-05 3.69e-05 
MF GO:0070851 growth factor receptor binding 5/29 134/17697 2.37e-06 7.11e-05 3.69e-05 

Abbreviations: ARDEGs, Angiogenesis-related differentially expressed genes; GO: Gene Ontology; BP, biological process; CC, cellular component; 
MF, molecular function. 

Table 3 
KEGG enrichment analysis results of ARDEGs.  

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

KEGG hsa04510 Focal adhesion 8/25 201/8076 9.63e-08 1.38e-05 8.42e-06 
KEGG hsa05323 Rheumatoid arthritis 6/25 93/8076 2.94e-07 2.10e-05 1.29e-05 
KEGG hsa04512 ECM-receptor interaction 5/25 88/8076 6.13e-06 2.02e-04 1.24e-04 
KEGG hsa 05219 Bladder cancer 4/25 41/8076 6.70e-06 2.02e-04 1.24e-04 
KEGG hsa04151 PI3K-Akt signaling pathway 8/25 354/8076 7.07e-06 2.02e-04 1.24e-04 

Abbreviations: ARDEGs, Angiogenesis-related differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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The diagnostic accuracy of these ARDEGs was notably high in distinguishing between normal and CESC conditions. Specifically, 
BAIAP2L1 demonstrated an Area Under the Curve (AUC) of 0.999, followed by DLL4 with an AUC of 0.966, NRP1 with an AUC of 
0.938, FGFR3 with an AUC of 0.931, and CA9 with an AUC of 0.923. Similarly, VAV3 (AUC = 0.919), EFNA1 (AUC = 0.906), and PTX3 

Fig. 2. GO and KEGG Pathway Enrichment Analysis of ARDEGs (A) GO analysis of ARDEGs and (B) KEGG analysis of ARDEGs. Results for the 
bubble diagram display. (C) Circular network diagram display of ARDEGs GO analysis and (D) KEGG pathway analysis results. (E) ARDEGs bar 
graph of GO analysis and (F) KEGG pathway analysis results. The screening criteria for the GO and KEGG enrichment entries were P < 0.05 and q 
< 0.05. 
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Fig. 3. GSEA and GSVA Enrichment Analysis of the TCGA-CESC dataset (A) GSEA for the four principal biological pathways. (B-E) Marked 
enrichment observed in the PI3K-AKT, WNT, NOTCH, and Hedgehog pathways, respectively. (F) GSVA analysis differentiating the Normal and CESC 
groups within the dataset. Blue denotes samples from normal cervical tissue (Normal group), while red indicates samples from cervical cancer 
patients (CESC group). The screening criteria for significant enrichment for GSEA and GSVA were P < 0.05 and q < 0.25. 
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Table 4 
GSEA analysis of TCGA-CESC.  

Description setSize enrichmentScore NES pvalue p.adjust qvalues 

WP_PI3KAKT_SIGNALING_PATHWAY 339 − 0.421338455 − 1.583611504 0.002717391 0.028535354 0.02189818 
KEGG_WNT_SIGNALING_PATHWAY 150 − 0.382701026 − 1.339565238 0.03652968 0.145911047 0.111972902 
REACTOME_SIGNALING_BY_NOTCH 234 0.367222844 1.453964692 0.003367003 0.029921885 0.022962212 
WP_HEDGEHOG_SIGNALING_PATHWAY 43 − 0.650532216 − 1.890314928 0.001694915 0.028535354 0.02189818 
NABA_CORE_MATRISOME 274 − 0.63471233 − 2.343163134 0.00140056 0.028535354 0.02189818 
REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION 260 − 0.483379036 − 1.774962916 0.001402525 0.028535354 0.02189818 
WP_FOCAL_ADHESION 198 − 0.473607215 − 1.698359252 0.001453488 0.028535354 0.02189818 
KEGG_FOCAL_ADHESION 199 − 0.520045063 − 1.865867367 0.001457726 0.028535354 0.02189818 
NABA_ECM_GLYCOPROTEINS 195 − 0.656522896 − 2.349950105 0.001466276 0.028535354 0.02189818 
REACTOME_MUSCLE_CONTRACTION 205 − 0.607228932 − 2.179930265 0.001466276 0.028535354 0.02189818 
KEGG_CALCIUM_SIGNALING_PATHWAY 177 − 0.484610146 − 1.725678237 0.001485884 0.028535354 0.02189818 
WP_MYOMETRIAL_RELAXATION_AND_CONTRACTION_PATHWAYS 156 − 0.509049892 − 1.787618711 0.001519757 0.028535354 0.02189818 
REACTOME_DISEASES_OF_GLYCOSYLATION 142 − 0.49027598 − 1.701442089 0.001552795 0.028535354 0.02189818 
REACTOME_CARDIAC_CONDUCTION 137 − 0.588974012 − 2.03917596 0.001557632 0.028535354 0.02189818 
REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2_ 131 − 0.557798893 − 1.920741604 0.0015625 0.028535354 0.02189818 

Abbreviations: GSEA, Gene Set Enrichment Analysis. 
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(AUC = 0.902) also exhibited high diagnostic performance. NDRG2 (AUC = 0.899), SPP1 (AUC = 0.871), ITGA5 (AUC = 0.841), JUN 
(AUC = 0.780), and CXCL8 (AUC = 0.770) demonstrated moderate diagnostic accuracy. 

3.7. Prognostic Clinical Manifestations of ARDEGs in cervical cancer 

To elucidate the association between the expression of the 15 ARDEGs and the onset of cervical cancer, we conducted univariate 
and multivariate Cox regression analyses using clinical data from the TCGA-CESC dataset. The initial statistical analysis of these data is 
detailed in Table 5. 

The findings from the Cox regression analyses are illustrated through forest plots (Fig. 6A). Additionally, we developed a 

Fig. 4. Development of an ARDEGs Diagnostic Model (A) Diagram of the LASSO regression diagnostic model for ARDEGs within the TCGA-CESC 
dataset. (B) Risk factor visualization illustrating the ARDEGs in the diagnostic model. (C) Trajectory diagram of variables within the LASSO 
regression for the ARDEGs diagnostic model. (D) Comparative diagram depicting group classifications in the ARDEGs diagnostic model. (E) Lollipop 
plots representing ARDEGs and their implications in the diagnostic model. 
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nomogram to ascertain the prognostic significance of these models, as depicted in Fig. 6B. We further executed prognostic calibration 
analyses for 1-, 3-, and 5-year intervals based on the Cox regression variables, presenting the results in calibration curves (Fig. 6C–E). 
These curves plot survival probabilities from actual data against predictions along the horizontal axis, with the model’s accuracy at 
various forecast intervals denoted by lines and points in diverse colors. The proximity of these lines to the gray ideal line reflects the 
prediction’s precision. 

Moreover, we utilized Decision Curve Analysis (DCA) to assess the clinical utility of the Cox regression prognostic model over 1- 

Fig. 5. Expression of ARDEGs in the TCGA-CESC Dataset (A) Comparative analysis of ARDEGs between different groups (CESC vs. Normal) in the 
TCGA-CESC diagnostic model. Blue denotes samples from the normal control group, whereas red indicates samples from the cervical cancer (CESC) 
group. (B) Differential expression of ARDEGs across risk categories (high vs. low) within the TCGA-CESC dataset. Blue signifies the low-risk 
expression group, and red denotes the high-risk expression group within the disease cohort. (C) Heatmap illustrating the correlation of ARDEGs 
between the groups (CESC vs. Normal) in the TCGA-CESC dataset. (D) Circular plots depicting the chromosomal distribution of ARDEGs. NS, non- 
significant. *P < 0.05, **P < 0.01, ***P < 0.001. 
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year (Fig. 6F), 3-year (Fig. 6G), and 5-year (Fig. 6H) horizons. The DCA plots demonstrate the net benefits across various threshold 
probabilities, with the model’s effectiveness indicated by a broader x-value range, suggesting superiority over scenarios with all- 
positive or all-negative assumptions. 

3.8. Prognostic performance assessment of ARDEGs 

Kaplan-Meier (KM) survival curves were constructed for the fifteen autophagy-related differentially expressed genes (ARDEGs) 
exhibiting statistical significance (P < 0.05) (Fig. 7A-N). Notably, elevated expression levels of pivotal genes including BAIAP2L1, 
NRP1, SPP1, DLL4, ITGA5, PTX3, EFNA1, and CXCL8 were significantly correlated with diminished overall survival (OS) rates. These 
findings underscore the prognostic relevance of ARDEGs in cervical squamous cell carcinoma (CESC) and highlight their potential as 
prognostic biomarkers in clinical assessments. 

3.9. Mutation analysis of ARDEGs in CESC patients 

To systematically analyze the somatic mutations in 15 ARDEGs (BAIAP2L1, FGFR3, NRP1, E2F1, CA9, SPP1, DLL4, VAV3, ITGA5, 
PTX3, EMCN, NDRG2, EFNA1, CXCL8, JUN) associated with CESC, we conducted a mutation analysis on CESC patient samples from 

Table 5 
Univariate and Multivariate Cox regression.  

Characteristics Total(N) Univariate analysis  Multivariate analysis 

Hazard ratio (95 % CI) P value Hazard ratio (95 % CI) P value 

BAIAP2L1 306      
Low 153 Reference     
High 153 1.835 (1.134–2.969) 0.013  2.228 (1.314–3.777) 0.003 
FGFR3 306      
Low 153 Reference     
High 153 0.574 (0.358–0.922) 0.022  0.716 (0.411–1.246) 0.237 
NRP1 306      
Low 153 Reference     
High 153 1.791 (1.113–2.882) 0.016  1.688 (0.945–3.013) 0.077 
E2F1 306      
Low 153 Reference     
High 153 0.581 (0.362–0.931) 0.024  0.678 (0.402–1.145) 0.146 
CA9 306      
Low 153 Reference     
High 153 1.547 (0.969–2.469) 0.068  1.009 (0.591–1.725) 0.972 
SPP1 306      
Low 153 Reference     
High 153 1.787 (1.104–2.892) 0.018  1.330 (0.776–2.281) 0.299 
DLL4 306      
Low 153 Reference     
High 153 1.816 (1.131–2.915) 0.014  1.226 (0.713–2.109) 0.461 
VAV3 306      
Low 153 Reference     
High 153 0.574 (0.358–0.920) 0.021  0.711 (0.412–1.227) 0.221 
ITGA5 306      
Low 153 Reference     
High 153 2.374 (1.458–3.866) <0.001  1.298 (0.715–2.353) 0.391 
PTX3 306      
Low 153 Reference     
High 153 1.984 (1.226–3.212) 0.005  1.453 (0.830–2.544) 0.191 
EMCN 306      
Low 153 Reference     
High 153 0.587 (0.365–0.943) 0.028  0.555 (0.321–0.959) 0.035 
NDRG2 306      
Low 153 Reference     
High 153 0.577 (0.361–0.923) 0.022  0.577 (0.327–1.019) 0.058 
EFNA1 306      
Low 153 Reference     
High 153 1.937 (1.207–3.107) 0.006  1.890 (1.123–3.182) 0.017 
CXCL8 306      
Low 153 Reference     
High 153 2.426 (1.497–3.934) <0.001  1.725 (1.012–2.941) 0.045 
JUN 306      
Low 153 Reference     
High 153 1.743 (1.092–2.783) 0.020  1.481 (0.868–2.526) 0.149 

Abbreviations: CI, confidence interval. 
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Fig. 6. Prognostic Clinical Manifestations of ARDEGs in Cervical Cancer (A) Univariate regression analysis is visually summarized in ARDEG forest 
plots. (B) The corresponding nomograms provide a detailed graphical representation. (C-E) Calibration curves for the Cox regression prognostic 
model are shown for 1-year (C), 3-year (D), and 5-year (E) time points, illustrating model accuracy over these periods. (F–H) DCA for the Cox 
regression prognostic model is presented for 1-year (F), 3-year (G), and 5-year (H) intervals, highlighting the clinical utility of the model. 
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the TCGA-CESC dataset using the R package maftools. Our findings reveal that the predominant mutations in the dataset were missense 
mutations, which constituted the majority of alterations. Additionally, the mutation spectrum of the 15 ARDEGs in these patients 
predominantly consisted of single nucleotide polymorphisms (SNPs), with fewer instances of insertions and deletions. Notably, the 
most frequent single nucleotide variant (SNV) among CESC patients was C > T, followed by C > G. Furthermore, we investigated the 
copy number variations (CNVs) in these 15 ARDEGs within the same cohort. By downloading and processing CNV data and applying 
GISTIC 2.0 for analysis, we visualized our results, which identified significant amplifications and deletions in the ARDEGs. Notably, 
PTX3, EFNA1, and E2F1 exhibited the highest amplification frequencies, whereas FGFR3, SPP1, and EMCN were most frequently 
deleted (Supplementary Fig. 4). 

Comprehensive Analysis of Immune Cell Infiltration Dynamics in Cervical Cancer via CIBERSORT and ssGSEA. 
In this study, we leveraged the expression profiles of 15 ARDEGs in cervical cancer samples to compute Activity Scores (As) for each 

patient using the ssGSEA algorithm. Following this, the CIBERSORT algorithm was applied to delineate the landscape of immune cell 

Fig. 7. Kaplan-Meier Curves Illustrating Overall Survival Associated with ARDEGs (A–N) The blue represents the low expression (Low-expression 
group), while the red represents the cervical cancer patient sample (High-expression group). OS, Overall survival. KM curve, Kaplan-Meier curve. *P 
< 0.05, **P < 0.01, ***P < 0.001. 
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infiltration based on the expression data, stratifying the patients into high and low As groups (Fig. 8A). 
Detailed immunoprofiling revealed distinct differences in the infiltration patterns of specific immune cells. Statistically significant 

variances were observed particularly in naive B cells, angiogenesis-associated macrophages (M0), activated mast cells, and resting 
mast cells, with p-values <0.001. Additionally, notable disparities were also found in the expression levels of CD8+ T cells and 
angiogenic M1 macrophages between the high and low As groups, with p-values of <0.01 and <0.05 respectively (Fig. 8B). 

To further elucidate the interaction between ARDEGs and immune cell infiltration, correlation heat maps were utilized, demon-
strating a pronounced association between ITGA5 expression and the prevalence of activated mast cells in both high and low As groups 
(Fig. 8C). These findings highlight the critical interplay between specific ARDEGs and immune cell populations, potentially offering 
new insights into the mechanisms driving immune evasion and tumor progression in cervical cancer. 

Fig. 8. Comprehensive Analysis of Immune Infiltration in Cervical Cancer Utilizing CIBERSORT (A) The histogram illustrates the immune infil-
tration levels for 22 distinct types of immune cells, highlighting their distribution and prevalence. (B) The comparison chart delineates the relative 
abundance of these immune cells, providing a clear visual representation of their infiltration levels. (C) The heat map offers a detailed correlation 
analysis between aberrantly regulated differentially expressed genes (ARDEGs) and immune cell expressions. Positive correlations, depicted as red 
circles, indicate a direct relationship between gene expression and immune cell infiltration, with the intensity of the association reflected by the size 
of the circles. Conversely, blue circles signify negative correlations, with the circle size proportionate to the strength of the inverse relationship. 
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3.10. Analysis of immunotherapy outcomes based on an angiogenesis risk scoring model 

To further analyze the predictive capability of the angiogenesis risk scoring model for immunotherapy, we downloaded cervical 
cancer-related angiogenesis scores (Angiogenesis score, As) from the TCIA database. We employed the ggplot function in R to create 
boxplots depicting the differences in As among different patient risk groups within the TCGA-CESC dataset. The results showed sig-
nificant disparities between the high-risk and low-risk groups across four types of Immune Profiles Scores (IPS). These include IPS, IPS- 
PD1/PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2 + CTLA4 (Supplementary Fig. 5), with all four IPS being significantly 
higher in the high-risk group (p < 0.05). This indicates that the risk score can effectively predict the prognosis of immunotherapy. 

3.11. Clinical Correlation Analysis of Prognostic ARDEGs 

We conducted a detailed examination of the expression levels of prognostic ARDEGs to ascertain their correlation with clinical 
outcomes in CESC) patients. This study analyzed the association between the expression profiles of selected predictive ARDEGs and 
various clinicopathological features linked to distinct prognoses. We also explored how these expression patterns influenced key 
prognostic indicators such as tumor progression-free interval (PFI), disease-specific survival (DSS), and overall survival (OS) in cervical 
cancer tissues. 

Our findings revealed that higher expression levels of specific prognostic ARDEGs—including BAIAP2L1, NRP1, E2F1, CA9, SPP1, 
DLL4, ITGA5, PTX3, EMCN, and CXCL8—were significantly correlated with improved OS in patients (P < 0.05) as shown in Fig. 9A. 
Similarly, significant associations were observed between the expression of these genes and DSS (P < 0.05), presented in Fig. 9B. 
Furthermore, the expression profiles of BAIAP2L1, NRP1, SPP1, DLL4, ITGA5, and PTX3 were significantly linked with extended PFI 
(P < 0.05), depicted in Fig. 9C. 

Fig. 9. Clinical Correlation Analysis of Prognostic ARDEGs Prognosis of ARDEGs and (A) OS, (B) DSS, (C) PFI. NS, non-significant. *P < 0.05, **P <
0.01, ***P < 0.001. 
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Fig. 10. Analysis of Hub Gene Expression in Normal and CESC Datasets (A) Comparative analysis of ARDEGs expression in CESC versus normal 
tissue samples from the GEO dataset. (B) Heatmap illustrating the correlation of ARDEGs across the different groups (CESC/Normal) within the GEO 
dataset. (C-J) ROC curve analysis of significantly differentially expressed genes in the GEO dataset, including: (C) E2F1, (D) NDRG2, (E) SPP1, (F) 
FGFR3, (G) CA9, (H) ITGA5, (I) EFNA1, and (J) NRP1. NS, non-significant (P ≥ 0.05). *P < 0.05, **P < 0.01, ***P < 0.001. 
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These results underscore the potential of ARDEGs as biomarkers for prognostic evaluation in cervical cancer, suggesting that their 
differential expression may serve as a valuable predictor of patient outcomes. 

3.12. Analysis of Hub Gene Expression in Normal and CESC datasets 

We evaluated the expression profiles of 15 ARDEGs across normal and CESC samples within GEO datasets. Our analysis identified 
significant differential expressions: FGFR3, E2F1, CA9, SPP1, and NDRG2 displayed marked differences (P < 0.001), while ITGA5 
showed substantial variance (P < 0.01). Additionally, the expressions of NRP1 and EFNA1 were significantly different (P < 0.05) 
(Fig. 10A). 

A correlation heatmap was constructed to investigate the relationships among the ARDEGs in the GEO dataset (Fig. 10B). Notably, 
FGFR3 showed significant correlations with VAV3, NDRG2, and EFNA1 (P < 0.01), as well as with ITGA5, EMCN, and JUN (P < 0.05) 
in the TCGA-CESC dataset. 

Further, ROC curve analysis affirmed the diagnostic potential of the differential expressions among these genes. Specifically, E2F1 
(AUC = 0.854, Fig. 10C), NDRG2 (AUC = 0.757, Fig. 10D), SPP1 (AUC = 0.738, Fig. 10E), and FGFR3 (AUC = 0.728, Fig. 10F) 
demonstrated diagnostic relevance in distinguishing between normal and CESC samples in the GEO dataset. Meanwhile, CA9 (AUC =
0.685, Fig. 10G), ITGA5 (AUC = 0.650, Fig. 10H), EFNA1 (AUC = 0.625, Fig. 10I), and NRP1 (AUC = 0.611, Fig. 10J) exhibited lower 
diagnostic values in the TCGA-CESC dataset. 

4. Discussion 

Cervical cancer ranks as the fourth most common cause of cancer-related mortality among women worldwide and is a significant 
oncological challenge. Recent advancements in novel treatment modalities, such as immunotherapy, have notably enhanced survival 
rates. However, the prognosis for patients with recurrent or metastatic cervical cancer remains dismal. The tumor microenvironment 
(TME) plays a critical role in tumorigenesis and significantly influences the efficacy of immunotherapy. A pivotal feature of the TME is 
its capacity for angiogenesis, initiated by angiogenic factors released by tumor cells [27]. Furthermore, angiogenesis induces tumors to 
evade immune monitoring by shaping the immunosuppressive microenvironment. Angiogenic factors can also activate immune cells 
that suppress the immune system, such as tumor-associated macrophages and T-regulatory cells, or suppress immune effectors and 
antigen-presenting cells. These suppressive immune cells may promote angiogenesis, resulting in a malignant pattern of reduced 
immune activity [28]. These findings suggest a link between angiogenesis and innate immunity. Accumulating evidence indicates that 
targeting angiogenesis and immunotherapy are potential therapeutic strategies for cervical cancer [29]. 

Previous reports have focused exclusively on single ARGs or specific immune cell subtypes, without considering their associations. 
Therefore, we focused on holistically understanding the relationship between ARGs and TME by Bioinformatics method. 

To the best of our knowledge, this study represents the inaugural exploration of ARDEGs and their influence on prognostic clinical 
outcomes and immunological responses in cervical cancer. We conducted comprehensive analyses using GO, KEGG, and GSEA to 
elucidate the functional roles of ARDEGs in this disease context. Our functional enrichment analysis of ARDEGs in CESC revealed 
significant involvement in biological processes and signaling pathways that are pivotal for cancer progression. Notably, the Notch 
signaling pathways, which were enriched among the ARDEGs, are known for their roles in cell proliferation, differentiation, and 
apoptosis [30]. The Notch pathway is crucial for cell fate determination and has been shown to contribute to tumorigenesis through its 
influence on angiogenesis and the maintenance of cancer stem cells [31]. Similarly, The PI3K-Akt signaling pathway, another enriched 
pathway, is a critical mediator of cell survival and proliferation, and its aberrant activation is a hallmark of many cancers [32]. In 
conclusion, The significant correlation of these ARDEGs with patient prognosis further emphasizes their clinical relevance and po-
tential utility as biomarkers for diagnosis and prognostication in CESC. 

Therefore, we investigated ARDEGs in cervical cancer, identifying key biomarkers—NRP1, E2F1, CA9, SPP1, DLL4, ITGA5, PTX3, 
NDRG2, EFNA1, BAIAP2L1, and EMCN—that are crucial for understanding the disease’s aggressive clinical traits and immune evasion. 
We employed LASSO regression analysis to construct a diagnostic model that segregates patients into high and low angiogenesis 
subgroups based on their risk scores. The expression profiles of these ARDEGs significantly differed between the subgroups and 
compared to the CESC groups. Further, our ROC analysis confirmed that the hub genes’ expression could diagnose cervical cancer with 
high specificity and sensitivity. To evaluate the prognostic significance of these biomarkers, we developed a risk prognostic model, 
constructed a comprehensive nomogram, and performed decision curve analysis to confirm the clinical utility of this prognostic 
approach. The calibration curves at 1, 3, and 5 years demonstrated strong agreement between the predicted and actual survival rates, 
underscoring the nomogram’s discriminatory and calibration capacities. This study not only delineates the diagnostic potential of 
ARDEGs in cervical cancer but also highlights the added clinical value of our model in enhancing patient outcomes through tailored 
therapeutic strategies. 

We further examined the impact of hub gene expression levels on OS, DSS, and PFI in cervical cancer. We discovered significant 
associations between the expression levels of the hub genes BAIAP2L1, NRP1, SPP1, DLL4, ITGA5, and PTX3 with OS, DSS, and PFI (P 
< 0.05). Notably, elevated expression of these genes serves as a robust predictive biomarker for reduced OS, DSS, and PFI in cervical 
cancer patients. BAIAP2L1 is notably overexpressed in various malignancies including breast cancer [33], ovarian cancer [34], gastric 
cancer [35], lung cancer [36], and hepatocellular cancer [37], where its higher expression correlates with advanced disease stages and 
metastasis [33,34,38,39]. Similarly, NRP1, which is abundantly expressed across a range of tumors such as glioma [40], bladder cancer 
[41] and cervical cancer [42], is linked with unfavorable outcomes. These findings align with prior research, reinforcing the critical 
role of NRP1 in processes such as embryonic angiogenesis and neurogenesis—mechanisms essential for cell migration, proliferation, 
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survival, and apoptosis [43-45]. Furthermore, recent studies underscore the importance of NRP1 in modulating immunoregulatory 
receptors, noting its upregulation in tumor-associated Tregs, which impacts the efficacy and stability of the immune response [46]. 
NRP1 plays a pivotal role in inhibiting the immunological memory of CD8+T cells during anti-tumor responses, while simultaneously 
enhancing Treg function. The binding of NRP1 to semaphorin-3A suppresses the motility and the tumor-targeted destructive capa-
bilities of cytotoxic T lymphocytes [47]. Frequently, NRP1 is linked with a wide array of inhibitory receptors including CTLA-4, Tim-3, 
and LAG-3, defining a subset of dysfunctional PD-1hi CD8+ tumor-infiltrating lymphocytes. Inhibiting NRP1 can boost the efficacy of 
anti-PD-1 therapies and suppress tumor angiogenesis, thus amplifying the overall anti-tumor immune response [48]. Additionally, 
SPP1, a secreted phosphoprotein, targets and modulates matrix metalloproteinases within cancerous tissues. Its fundamental bio-
logical functions involve regulating cell growth, proliferation, migration, apoptosis, and immune responses. Elevated SPP1 expression 
in cervical cancer correlates with increased disease occurrence and progression by modulating immune cell infiltration levels, rein-
forcing prior findings [49]. DLL4, a principal Notch ligand, is critically involved in tumor angiogenesis, activation of cancer stem cells, 
tumor progression, and metastasis [50–52]. Similarly, ITGA5, a fibronectin receptor prevalent across various malignancies, is essential 
for tumor development, metastasis, and drug resistance. It promotes tumor growth through activation of the FAK/AKT signaling 
pathway, consistent with our observations [53,54]. ITGA5 also enhances angiogenesis and correlates with adverse outcomes in cer-
vical cancer patients [55]. Furthermore, PTX3, a soluble inflammatory mediator in TME and an innate immunomodulator, is asso-
ciated with immune escape and plays a significant role in apoptosis and inflammation regulation [56,57]. Recent research has 
established that in colorectal cancer, PTX3 significantly enhances protumor immunity by promoting M2-like macrophage polarization, 
an effect mediated by stromal cells [58]. 

The malignant properties of tumor cells are closely linked with immune cell infiltration, mediated by central hub genes. Utilizing 
the CIBERSORT algorithm, we analyzed the correlation between the expression profiles of 22 immune cell types in high- and low- 
scoring groups of cervical cancer patients. Our findings revealed significant differences in the expression levels of four specific im-
mune cell types: naive B cells, M0 angiogenic cells, activated mast cells, and resting mast cells (P < 0.001). This suggests that 
angiogenesis is potentially linked to the tumor microenvironment (TME) and may regulate the initiation and progression of tumors. 
Tumor-infiltrating mast cells have been associated with resistance to anti-PD-1 therapies, as indicated in previous studies [59]. Our 
analysis further explores the relationship between 15 ARDEGs and the significant infiltration of immune cells, revealing that hub genes 
are closely linked to 6 out of the 22 examined immune cell types. Notably, a strong correlation was observed between ITGA5 expression 
and the density of infiltrating immune cells, particularly activated mast cells. ITGA5 is known to promote angiogenesis, which cor-
relates with lower survival rates in patients with cervical cancer. Additionally, mast cells contribute to the generation of 
pro-inflammatory environments and play pivotal roles in various biological processes including angiogenesis, immune modulation, 
tissue repair, and remodeling in tumor settings [60]. As one of the earliest immune cells recruited to solid tumors, mast cells are 
implicated in facilitating angiogenesis during the initial stages of cervical carcinogenesis [61]. Research has found that ITGA5 can 
facilitate the recruitment and activation of monocytes, tumor-associated macrophages (TAMs), Th2 cells, and M2 cells within the 
tumor microenvironment [62]. It can serve as a cellular ‘anchor’, promoting the aggregation, adhesion, and migration of certain 
immune cells, and altering the composition of the tumor microenvironment. 

Therefore, the combination of antiangiogenic therapy with immunotherapy may represent a promising approach for treating 
cervical cancer. Our analysis of the angiogenesis risk-scoring model’s predictive capacity for immunotherapy outcomes revealed 
significant disparities between high-risk and low-risk groups across four Immune Profiling Scores (IPS): IPS, IPS-PD1/PD-L1/PD-L2, 
IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2+CTLA4 (P < 0.05). These findings suggest that the risk score is a potential predictor of 
immunotherapy prognosis. 

Despite the promising findings of this study, it is important to acknowledge its limitations. Firstly, the research did not incorporate 
wet-lab experiments to validate the bioinformatics predictions, which are essential for confirming the functional roles of ARDEGs in 
cervical cancer. Secondly, the sample size, particularly for the CESC cohort, was relatively small, which may limit the generalizability 
of the results. Thirdly, the absence of clinical validation analysis means that the prognostic and diagnostic models developed here 
require further testing in independent patient cohorts to confirm their utility in a clinical setting. Lastly, the use of multiple datasets 
could introduce batch effects, despite efforts to mitigate these through standardization and batch correction. These factors should be 
considered when interpreting the results and planning future research directions. 

5. Conclusion 

In conclusion, this study has pinpointed pivotal ARDEGs in CESC, elucidating their potential roles in biological processes and 
signaling pathways through GO and KEGG enrichment analyses. Utilizing LASSO regression, we successfully constructed a diagnostic 
model based on ARDEGs. Furthermore, a prognostic model was developed and validated via a nomogram and decision curve analysis, 
underscoring its clinical applicability. The immune infiltration analysis revealed significant variances in immune cell subtypes within 
CESC, offering profound insights into the tumor microenvironment. The ROC curve analysis affirmed the diagnostic precision of the 
identified hub genes. Collectively, these findings significantly enhance our understanding of the contributions of angiogenic genes to 
the pathophysiology of cervical cancer. 
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