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The approach of InterCriteriaAnalysis (ICA)was applied for the aimof reducing the set of variables on the input of a neural network,
taking into account the fact that their large number increases the number of neurons in the network, thusmaking themunusable for
hardware implementation. Here, for the first time, with the help of the ICAmethod, correlations between triples of the input param-
eters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may
yield reduction of the total time for training the neural networks, hence, the time for the network’s processing of data and images.

1. Introduction

Working with neural networks presents many difficulties; for
example, the number of neurons in the perception of the
individual values can be too large, and since a proportionally
larger amount of memory and computing power is necessary
to train the networks, this would lead to a longer periods for
training. Therefore, researchers are forced to look for better
methods for training neural networks. Backpropagation is the
most applied such method—in it neural networks are trained
with uplink (applied on a Multilayer Perceptron). There are,
however, many other methods that accelerate the training of
neural networks [1–3], by reducing memory usage, which in
turn lowers the needed amount of computing power.

In the stage of preprocessing, the data at the input of the
neural network can be used as a constant threshold value
to distinguish static from dynamic activities, as it was done
in [4]. This way, the amount of incidental values due to
unforeseen circumstances is reduced.

Another approach is to use a wavelet-based neural
network classifier to reduce the power interference in the
training of the neural network or randomly stumbled mea-
surements [5]. Here the discrete wavelet transform (DWT)
technique is integrated with the neural network to build a
classifier.

Particle Swarm Optimization (PSO) is an established
method for parameter optimization. It represents a
population-based adaptive optimization technique that
is influenced by several “strategy parameters.” Choosing
reasonable parameter values for PSO is crucial for its
convergence behavior and depends on the optimization task.
In [6] a method is presented for parameter metaoptimization
based on PSO and it is applied to neural network training.
The idea of Optimized Particle SwarmOptimization (OPSO)
is to optimize the free parameters of PSO by having swarms
within a swarm.

When working with neural networks it is essential to
reduce the amount of neurons in the hidden layer, which
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also reduces the number of weight coefficients of the neural
network as a whole. This leads to a smaller dimension of the
weight matrices, and hence the used amount of memory. An
additional consequence from this is the decreased usage of
computing power and the shortened training time [7].

Multilayer Perceptrons are often used to model complex
relationships between sets of data. The removal of nonessen-
tial components of the data can lead to smaller sizes of the
neural networks, and, respectively, to lower requirements
for the input data. In [8] it is described that this can
be achieved by analyzing the common interference of the
network outputs, which is caused by distortions in the data
that is passed to the neural network’s inputs. The attempt to
find superfluous data is based on the concept of sensitivity of
linear neural networks. In [9] a neural network is developed,
in which the outputs of the neurons of part of the layers are
not connected to the next layer. The structure thus created
is called a “Network in a Network.” In this way part of the
inputs of the neural network are reduced, which removes
part of the information, and along with it part of the error
accumulated during training and data transfer.The improved
local connection method given in [9] produces a global
collation by fundamental cards in the classification layer.This
layer is easier to interpret and less prone to overloading than
the traditional fully connected layers.

In this paper, we apply the intuitionistic fuzzy sets-
basedmethod of InterCriteria Analysis to reduce the number
of input parameters of a Multilayer Perceptron. This will
allow the reduction of the weight matrices, as well as the
implementation of the neural network in limited hardware,
and will save time and resources in training.

Theneural network is tested after reducing the data (effec-
tively the number of inputs), so as to obtain an acceptable
relation between the input and output values, as well as the
average deviation (or match) of the result.

2. Presentation of the InterCriteria Analysis

The InterCriteria Analysis (ICA) method is introduced in
[10] by Atanassov et al. It can be applied to multiobject
multicriteria problems, where measurements according to
some of the criteria are slower or more expensive, which
results in delaying or raising the cost of the overall process
of decision-making. When solving such problems it may be
necessary to adopt an approach for reasonable elimination of
these criteria, in order to achieve economy and efficiency.

The ICA method is based on two fundamental concepts:
intuitionistic fuzzy sets and index matrices. Intuitionistic
fuzzy sets were first defined by Atanassov [11–13] as an
extension of the concept of fuzzy sets defined by Zadeh [14].
The second concept on which the proposed method relies
is the concept of index matrix, a matrix which features two
index sets.The theory behind the index matrices is described
in [15].

According to the ICAmethod, a set of objects is evaluated
or measured against a set of criteria, and the table with
these evaluations is the input for the method. The number
of criteria can be reduced by calculating the correlations
(differentiated in ICA to: positive consonance, negative

consonance, and dissonance) in each pair of criteria in
the form of intuitionistic fuzzy pairs of values, that is, a
pair of numbers in the interval [0, 1], whose sum is also
a number in this interval. If some (slow, expensive, etc.)
criteria exhibit positive consonance with some of the rest of
the criteria (that are faster, cheaper, etc.), and this degree
of consonance is considered high enough with respect to
some predefined thresholds, with this degree of precision
the decision maker may decide to omit them in the further
decision-making process. The higher the number of objects
involved in themeasurement, themore precise the evaluation
of the intercriteria consonances (correlations).Thismakes the
approach completely data-driven and ongoing approbations
over various application problems and datasets are helping us
better perceive its reliability and practical applicability.

Let us consider a number of 𝐶𝑞 criteria, 𝑞 = 1, . . . , 𝑛, and
a number of 𝑂𝑝 objects, 𝑝 = 1, . . . , 𝑚; that is, we use the
following sets: a set of criteria 𝐶𝑞 = {𝐶1, . . . , 𝐶𝑛} and a set
of objects 𝑂𝑝 = {𝑂1, . . . , 𝑂𝑚}.

We obtain an index matrix M that contains two sets of
indices, one for rows and another for columns. For every p,
q (1 ≤ 𝑝 ≤ 𝑚, 1 ≤ 𝑞 ≤ 𝑛), 𝑂𝑝 in an evaluated object, 𝐶𝑞
is an evaluation criterion, and 𝑎𝑂𝑝,𝐶𝑞 is the evaluation of the
pth object against the qth criterion, defined as a real number
or another object that is comparable according to a relation 𝑅
with all the other elements of the index matrixM.

𝑀 =

𝐶1 ⋅ ⋅ ⋅ 𝐶𝑘 ⋅ ⋅ ⋅ 𝐶𝑙 ⋅ ⋅ ⋅ 𝐶𝑛𝑂1 𝑎𝑂1,𝐶1 ⋅ ⋅ ⋅ 𝑎𝑂1 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑎𝑂1 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑎𝑂1 ,𝐶𝑛
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑂𝑖 𝑎𝑂𝑖 ,𝐶1 ⋅ ⋅ ⋅ 𝑎𝑂𝑖 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑎𝑂𝑖 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑎𝑂𝑖 ,𝐶𝑛
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑂𝑗 𝑎𝑂𝑗,𝐶1 ⋅ ⋅ ⋅ 𝑎𝑂𝑗 ,𝐶𝑘 ⋅ ⋅ ⋅ 𝑎𝑂𝑗 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑎𝑂𝑗 ,𝐶𝑛
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑂𝑚 𝑎𝑂𝑚,𝐶1 𝑎𝑂𝑚 ,𝐶𝑘 𝑎𝑂𝑚 ,𝐶𝑙 ⋅ ⋅ ⋅ 𝑎𝑂𝑚 ,𝐶𝑛 .

(1)

The next step is to apply the InterCriteria Analysis
for calculating the evaluations. The result is a new index
matrix 𝑀∗ with intuitionistic fuzzy pairs ⟨𝜇𝐶𝑘 ,𝐶𝑙 , ]𝐶𝑘,𝐶𝑙⟩ that
represents an intuitionistic fuzzy evaluation of the relations
between every pair of criteria Ck and Cl. In this way the index
matrixM that relates the evaluated objectswith the evaluating
criteria can be transformed to another index matrix𝑀∗ that
gives the relations among the criteria:

𝑀∗ =
𝐶1 ⋅ ⋅ ⋅ 𝐶𝑛𝐶1 ⟨𝜇𝐶1 ,𝐶1 , ]𝐶1,𝐶1⟩ ⋅ ⋅ ⋅ ⟨𝜇𝐶1 ,𝐶𝑛 , ]𝐶1,𝐶𝑛⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐶𝑛 ⟨𝜇𝐶𝑞 ,𝐶1 , ]𝐶𝑞,𝐶1⟩ ⋅ ⋅ ⋅ ⟨𝜇𝐶𝑛 ,𝐶𝑛 , ]𝐶𝑛,𝐶𝑛⟩

(2)

The last step of the algorithm is to determine the degrees
of correlation between groups of indicators depending of the
chosen thresholds for 𝜇 and ] from the user. The correlations
between the criteria are called “positive consonance,” “neg-
ative consonance,” or “dissonance.” Here we use one of the
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Figure 1: Three alternatives for constructing the subset Σ [17].

Type of correlations between the criteria
strong positive consonance [0,95; 1]
positive consonance [0,85; 0,95)
weak positive consonance [0,75; 0,85)
weak dissonance [0,67; 0,75)
dissonance [0,57; 0,67)
strong dissonance [0,43; 0,57)
dissonance [0,33; 0,43)
weak dissonance [0,25; 0,33)
weak negative consonance [0,15; 0,25)
negative consonance [0,15; 0,05)
strong negative consonance [0,05; 0]

Box 1: Type of correlations.

possible approaches to defining these thresholds, namely, the
scale shown in Box 1 [16].

3. InterCriteria Analysis with Triples

The algorithm for identifying intercriteria triples is intro-
duced in [17] by Atanassova et al.

Step 1. Starting from the input dataset of𝑚 objects measured
against 𝑛 criteria, we calculate the total number of 𝑛(𝑛 − 1)/2
intuitionistic fuzzy pairs standing for the intercriteria conso-
nances and plot these pairs as points onto the intuitionistic
fuzzy triangle. Instead of maintaining a pair of two numbers
for each pair of criteria 𝐶𝑖-𝐶𝑗, namely, ⟨𝜇𝑖𝑗, ]𝑖𝑗⟩ we calculate
(see [18]) for each pair the number 𝑑𝑖𝑗:

𝑑𝑖𝑗 = √(1 − 𝜇𝑖𝑗)2 + ]2𝑖𝑗 (3)

giving its distance from the (1; 0) point, that is, the image of
the complete Truth onto the intuitionistic fuzzy triangle. Our
aim is to identify top-down all the 𝑛(𝑛−1)/2 calculated values
that are closest to the (1; 0) and, at the same time, closest to
each other; hence we sort them in ascending order by their
distance to (1; 0); see the example in Table 2.

Step 2. Let us denote with Σ the subset of the closest to (1;
0) triples of criteria. The way we construct the subset Σ may

slightly differ per user preference or external requirement,
with at least three possible alternatives, as listed below (see
Figure 1):

(2.1) Select top 𝑝 or top q% of the 𝑛(𝑛 − 1)/2 ICA pairs
(predefined number of elements of the subset Σ).

(2.2) Select all ICA pairs whose corresponding points are
within a given radius 𝑟 from the (1; 0) point.

(2.3) Select all ICA pairs whose corresponding points fall
within the trapezoid formed between the abscissa, the
hypotenuse, and the two lines corresponding to 𝑦 = 𝛼
and 𝑥 = 𝛽 for two predefined numbers 𝛼, 𝛽 ∈ [0; 1].

Step 3. Check if there are triples of criteria, each pair of
which corresponds to a point, belonging to the subset Σ. If
no, then no triples of criteria conform with the stipulated
requirements. However, if triples are to be found, then we
extend the subset Σ accordingly, by either taking a larger
number 𝑝 or 𝑞 (Substep (2.1)), or a larger radius 𝑟 (Substep
(2.2)), or smaller 𝛼 and/or larger 𝛽 (Substep (2.3)). If now the
subset Σ contains triples of criteria that simultaneously fulfil
the requirements, then go to Step 4.

Step 4. We start top-down with the first pair of criteria, let it
be Ci-Cj, that is, the pair with the smallest 𝑑𝑖𝑗, thus ensuring
maximal proximity of the corresponding point, say, 𝑃𝑖𝑗, to(1; 0)point.Wemay pick the third criterion in the triple either
as 𝐶𝑘 which is the next highest correlating criterion with 𝐶𝑙,
that is, 𝑃𝑖𝑘 with 𝑑𝑖𝑘 (>𝑑𝑖𝑗), or as 𝐶𝑖 which is the next highest
correlating criterion with 𝐶𝑗, that is, 𝑃𝑗𝑙 with 𝑑𝑗𝑙 (>𝑑𝑖𝑗, noting
that it is possible to have 𝑑𝑖𝑘 = 𝑑𝑗𝑙). Then, we check the
distances to (1; 0) of the respective third points 𝑃𝑗𝑘 and 𝑃𝑖𝑙,
taking that triple of criteria Ci-Cj-Ck or Ci-Cj-Cl that has the

min (𝑑𝑖𝑗 + 𝑑𝑖𝑘 + 𝑑𝑗𝑘, 𝑑𝑖𝑗 + 𝑑𝑖𝑙 + 𝑑𝑗𝑙) . (4)

Then for each triple of criteria Ci-Cj-Cx (where 𝑥 ∈ {𝑘, 𝑙}), we
calculate the median point of the so formed triangle, which
is a point plotted in the intuitionistic fuzzy triangle with
coordinates:

⟨𝜇, ]̃⟩ = ⟨𝜇𝑖𝑗 + 𝜇𝑗𝑥 + 𝜇𝑥𝑖
3 , ]𝑖𝑗 + ]𝑗𝑥 + ]𝑥𝑖

3 ⟩ . (5)
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Figure 2: Abbreviated notation of a classical Multilayer Perceptron.

This pair gives us the level of ⟨𝜇, ]̃⟩-consonance of the whole
triple. Repeat Step 4 until the number of the triples in the
subset Σ is exhausted.

4. Artificial Neural Networks

The artificial neural networks [4, 19] are one of the tools that
can be used for object recognition and identification. In the
first step, it has to be learned and after that we can use for
the recognitions and for predictions of the properties of the
materials. Figure 2 shows in abbreviated notation of a classic
two-layered neural network.

In the two-layered neural networks, one layer’s exits
become entries for the next one.The equations describing this
operation are

𝑎2 = 𝑓2 (𝑤2𝑓1 (𝑤1𝑝 + 𝑏1) + 𝑏2) , (6)

where

(i) 𝑎𝑚 is the exit of the mth layer of the neural network
for𝑚 = 1, 2;

(ii) 𝑤𝑚 is a matrix of the weight coefficients of the each of
the entries of the𝑚th layer;

(iii) 𝑏 is the neuron’s entry bias;
(iv) 𝑓1 is the transfer function of the 1st layer;
(v) 𝑓2 is the transfer function of the 2nd layer.

The neuron in the first layer receives 𝑝 outside entries.
The neurons’ exits from the last layer determine the neural
network’s exits as 𝑎.

The “backpropagation” algorithm [20] is used for learning
the neural networks. When the multilayer neural network is
trained, usually the available data has to be divided into three
subsets. The first subset, named “Training set,” is used for
computing the gradient and updating the network weights
and biases. The second subset is named “Validation set.”
The error of the validation set is monitored during the
training process. The validation error normally decreases
during the initial phase of training, as does the training set
error. Sometimes, when the network begins to overfit the
data, the error of the validation set typically begins to rise.
When the validation error increases for a specified number
of iterations, the training stops and the weights and biases at
theminimumof the validation error are returned [4].The last
subset is named “test set.” The sum of these three sets has to
be 100% of the learning couples.

For this investigation we use MATLAB and neural net-
work structure 8:45:1 (8 inputs, 45 neurons in hidden layer,

and one output) (Figure 2). The numbers of the weight
coefficients are 9 × 45 = 405.

The proposed method is focused on removing part of the
number of neurons (and weight coefficients) and thus does
not reduce the average deviation of the samples, used for the
learning testing and validating the neural network.

5. Testing

We consider a number of 𝐶𝑞 criteria, 𝑞 = 1, . . . , 𝑛, and a
number of 𝑂𝑝 measurements of cetane number of crude oil,
𝑝 = 1, . . . , 𝑚; that is, we use the following sets: a set of group
of criteria 𝐶𝑞 = {𝐶1, . . . , 𝐶𝑛} and a set of measurements of
cetane number 𝑂𝑝 = {𝑂1, . . . , 𝑂𝑚}.

The ICA method was applied to the 140 crude oil probes,
measured against 8 criteria as listed below:

(I) density at 15∘C g/cm3;
(II) 10% (v/v) ASTM D86 distillation, ∘C;
(III) 50% (v/v) ASTM D86 distillation, ∘C;
(IV) 90% (v/v) ASTM D86 distillation, ∘C;
(V) refractive index at 20∘C;
(VI) H2 content, % (m/m);
(VII) aniline point, ∘C;
(VIII) molecular weight g/mol.

So weworkwith a 140×8 table, and a software application
that implements the ICA algorithm returns the results in the
form of two index matrices (see Tables 1 and 2), containing,
respectively, the membership and the nonmembership parts
of the intuitionistic fuzzy correlations detected between each
pair of criteria (28 pairs).The values in the matrix are colored
in red-yellow-green color scale for the varying degrees of
consonance and dissonance from green (highest values) to
yellow. Naturally, each criterion best correlates with itself,
which gives the respective intuitionistic fuzzy pairs ⟨1; 0⟩, or
1s and 0s, along the main diagonals of Tables 1 and 2.

In Table 3 the relations between the pairs of criteria
obtained by applying the ICA method are shown.

The calculated distance 𝑑𝑖𝑗 for each pair of criteria Ci-
Cj from the (1; 0) point in the intuitionistic fuzzy triangle is
shown in Table 4 (note that 𝑑𝑖𝑗 ∈ [0, √2]).

The next step is to choose the pair Ci-Cj with the smallest
𝑑𝑖𝑗, thus ensuring maximal proximity of the corresponding
point to (1; 0) point. We pick the third criterion in the triple
either as 𝐶𝑘 that is the next highest correlating criterion with
𝐶𝑖, or as 𝐶𝑙 that is the next highest correlating criterion with
𝐶𝑗, taking that triple of criteria Ci-Cj-Ck or Ci-Cj-Cl that has
the min(𝑑𝑖𝑗 + 𝑑𝑖𝑘 + 𝑑𝑗𝑘, 𝑑𝑖𝑗 + 𝑑𝑖𝑙 + 𝑑𝑗𝑙). In Table 5 the pairs
of criteria Ci-Cj in “strong positive consonance,” “positive
consonance,” and “weak positive consonance” are shown.

On the input of the neural network we put the experi-
mental data for obtaining cetane number of crude oil. Testing
is done as at the first step; all the measurements of the 140
crude oil probes against the 8 criteria are analyzed in order to
make a comparison of the obtained results thereafter. For this
comparison to be possible, the predefined weight coefficients
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Table 1: Membership parts of the IF pairs, giving the InterCriteria correlations.

𝜇 (I) (II) (III) (IV) (V) (VI) (VII) (VIII)
(I) 1 0.699 0.770 0.658 0.956 0.176 0.446 0.703
(II) 0.699 1 0.787 0.597 0.676 0.408 0.640 0.775
(III) 0.770 0.787 1 0.777 0.728 0.395 0.665 0.922
(IV) 0.658 0.597 0.777 1 0.627 0.468 0.674 0.771
(V) 0.956 0.676 0.728 0.627 1 0.134 0.404 0.661
(VI) 0.176 0.408 0.395 0.468 0.134 1 0.730 0.473
(VII) 0.446 0.640 0.665 0.674 0.404 0.730 1 0.743
(VIII) 0.703 0.775 0.922 0.771 0.661 0.473 0.743 1

Table 2: Nonmembership parts of the IF pairs, giving the InterCriteria relations.

] (I) (II) (III) (IV) (V) (VI) (VII) (VIII)
(I) 0 0.288 0.217 0.326 0.042 0.822 0.552 0.295
(II) 0.288 0 0.204 0.391 0.312 0.580 0.348 0.213
(III) 0.217 0.204 0 0.212 0.261 0.595 0.325 0.068
(IV) 0.326 0.391 0.212 0 0.359 0.518 0.312 0.215
(V) 0.042 0.312 0.261 0.359 0 0.866 0.596 0.339
(VI) 0.822 0.580 0.595 0.518 0.866 0 0.270 0.527
(VII) 0.552 0.348 0.325 0.312 0.596 0.270 0 0.257
(VIII) 0.295 0.213 0.068 0.215 0.339 0.527 0.257 0

Table 3: Correlations between the pairs of criteria.

Type of InterCriteria Relation Pairs of criteria
Strong positive consonance [0.95; 1] (I-V)
Positive consonance [0.85; 0.95) (III-VIII)
Weak positive consonance
[0.75; 0.85)

(II-III, III-IV, II-VIII,
IV-VIII, I-III)

Weak dissonance [0.67; 0.75) (VII-VIII, III-V, VI-VII,
I-II, I-VIII, II-V, IV-VII)

Dissonance [0.57; 0.67) (III-VII, I-IV, V-VIII,
II-VII, IV-V, II-IV)

Strong dissonance [0.43; 0.57) (IV-VI, VI-VIII, I-VII)
Dissonance [0.33; 0.43) (II-VI, V-VII, III-VI)
Weak dissonance [0.25; 0.33) 0
Weak negative consonance
[0.15; 0.25) (I-VI)

Negative consonance [0.15; 0.05) (V-VI)
Strong negative consonance
[0.05; 0] 0

and offsets that are normally random values between −1 and
1 are now established and are the same in all studies with
coefficients 1.

For the learning process, we set the following parameters:
performance (MSE) = 0.00001; validation check = 25. The
input vector is divided into three different parts: training
(70/100); validation (15/100); and testing (15/100). For target
we use the cetane number ASTM D613.

At the first step of the testing process, we use all the 8
criteria listed above, in order to train the neural network.

After the training process all input values are simulated by
the neural network.

The average deviation of the all 140 samples is 1,8134. The
coefficient 𝑅 (regression 𝑅 values measure the correlation
between outputs and targets) obtained from the MATLAB
program is 0.97434 (see Table 6).

At the next step of the testing process, we make a fork
and try independently to remove one of the columns and
experiment with data from the remaining seven columns.We
compare the results in the next section, “Discussion.” First,
we make a reduction of column 1 (based on Table 5) and put
the data on the input of the neural network.

After the training process all input values are simulated.
The average deviation of all the 140 samples is 1.63 and the
coefficient 𝑅 is 0.9772.

At the next step, we alternatively perform reduction of
column 3 (according to Table 5), and put the data on the input
of the neural network.

After the training process all input values are simulated.
The average deviation of the all 140 samples is 1.8525 and
the coefficient 𝑅 is 0.97256. After that we can proceed with
columns 5, 2, 8, and 4.

Now, at the next step, we proceed with feeding the neural
network with 6 inputs, with the reduction of both columns,
3 and 5, according to the data from Table 5. The average
deviation of all the 140 samples is 1.7644 and the coefficient 𝑅
is 0.97089. In the same way we can reduce the inputs: 1 and 5,
1 and 3, 2 and 3, 3 and 8, 3 and 4, and 4 and 8, simultaneously.

At the next step, we reduce the number of inputs with
one more, that is, we put on the input of the neural network
experimental data from 5 inputs, with removed columns 1, 3,
and 5.The average deviation of all the 140 samples is 1.857 and
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Table 4: Distance 𝑑𝑖𝑗 for each pair of criteria Ci-Cj.

𝑑 (I) (II) (III) (IV) (V) (VI) (VII) (VIII)
(I) 0 0.416 0.316 0.473 0.061 1.165 0.783 0.419
(II) 0.416 0 0.295 0.561 0.450 0.829 0.501 0.310
(III) 0.316 0.295 0 0.307 0.377 0.849 0.467 0.104
(IV) 0.473 0.561 0.307 0 0.518 0.742 0.452 0.314
(V) 0.061 0.450 0.377 0.518 0 1.225 0.843 0.480
(VI) 1.165 0.829 0.849 0.742 1.225 0 0.382 0.745
(VII) 0.783 0.501 0.467 0.452 0.843 0.382 0 0.363
(VIII) 0.419 0.310 0.104 0.314 0.480 0.745 0.363 0

Table 5: Distance 𝑑𝑖𝑗 for pair of criteria Ci-Cj in positive consonance.

𝐶𝑖 𝐶𝑗 𝑚𝑖𝑗 𝑑𝑖𝑗 𝐶𝑘 𝑚𝑖𝑘 𝑑𝑖𝑘 𝑑𝑗𝑘 𝐶𝑙 𝑚𝑗𝑙 𝑑𝑖𝑙 𝑑𝑗𝑙 min(𝑑𝑖𝑗+𝑑𝑖𝑘+𝑑𝑗𝑘,𝑑𝑖𝑗 + 𝑑𝑖𝑙 + 𝑑𝑗𝑙)
Chosen triple of

criteria ⟨𝜇, ]̃⟩
(I) (V) 0.956 0.061 (III) 0.770 0.319 0.377 (III) 0.728 0.319 0.377 0.756 𝐶(I)-𝐶(V)-𝐶(III) ⟨0.818; 0.173⟩
(III) (VIII) 0.922 0.104 (II) 0.787 0.295 0.310 (II) 0.775 0.295 0.310 0.709 𝐶(III)-𝐶(VIII)-𝐶(II) ⟨0.828; 0.162⟩
(II) (III) 0.787 0.295 (VIII) 0.775 0.310 0.104 (IV) 0.777 0.561 0.307 0.709 𝐶(II)-𝐶(III)-𝐶(VIII) ⟨0.828; 0.162⟩
(III) (IV) 0.777 0.307 (I) 0.770 0.319 0.473 (VIII) 0.771 0.104 0.314 0.725 𝐶(III)-𝐶(IV)-𝐶(VIII) ⟨0.823; 0.165⟩
(II) (VIII) 0.775 0.310 (I) 0.699 0.416 0.418 (IV) 0.771 0.561 0.314 1.144 𝐶(II)-𝐶(VIII)-𝐶(I) ⟨0.726; 0.265⟩
(IV) (VIII) 0.771 0.314 (VII) 0.674 0.452 0.363 (VII) 0.743 0.452 0.363 1.129 𝐶(IV)-𝐶(VIII)-𝐶(VII) ⟨0.729; 0.261⟩
(I) (III) 0.770 0.316 (VIII) 0.703 0.418 0.104 (V) 0.728 0.061 0.377 0.753 𝐶(I)-𝐶(III)-𝐶(V) ⟨0.818; 0.173⟩

Table 6: Correlation coefficients for pair of criteria Ci-Cj according to Pearson.

𝐶𝑖 𝐶𝑗
Correlation
coefficient
𝐶𝑖-𝐶𝑗

𝐶𝑘
Correlation
coefficient
Ci-Ck

Cl

Correlation
coefficient

Cj-Cl

max(correlation coefficient Ci-Cj+
correlation coefficient Ci-Ck;
correlation coefficient Ci-Cj+
correlation coefficient Cj-Cl)

Chosen triple
of criteria

(I) (V) 0,989 (III) 0,616 (III) 0,495 1,605 (I-V-III)
(III) (VIII) 0,971 (IV) 0,819 (II) 0,797 1,789 (III-VIII-IV)
(VI) (VII) 0,831 (VIII) 0,024 (VIII) 0,576 1,406 (VI-VII-VIII)
(III) (IV) 0,819 (VIII) 0,971 (VIII) 0,796 1,789 (III-IV-VIII)

the coefficient 𝑅 is 0.97208 (see Table 6). In the same way are
removed the parameters 2, 3, and 8 and 3, 4, and 8.

Finally, we experiment with the reduction of the fourth
column, feeding the neural network with only 4 inputs. After
the reduced columns 1, 2, and 4, the fourth reduced column
is column 5. After the simulation the average deviation of the
all 140 samples is 2.19 and the coefficient 𝑅 obtained from the
MATLAB program is 0.95927.

6. Discussion

In support of the method, Tables 6, 7, and 8 present the
correlation coefficients between the different criteria. The
tables also present the maximal values of the coefficient sums
per criteria. In the last column, the triples of selected criteria
are given, as sorted in the descending way by the correlation
coefficient Ci-Cj.

In Table 9 compilations between ICA approach and corre-
lation analysis according to Pearson, Kendall, and Spearman
are shown.

The selected pairs, based on the four methods, are identi-
cal in the first row. In the second row three of the methods
yield identical results (ICA, Kendall, and Spearman), and
the only difference is in the selected criteria as calculated
by the Pearson method. In the third row, the situation is
the same. Here the triples are the same with precision of
ordering. Only the triple of correlation criteria calculated by
the Pearsonmethod is different. In the fourth row, the triples
are quite similar. The triples calculated by ICA and Pearson
are identical. The triple determined by Kendall correlation
coincides with the first row of the table.The last triple, defined
by the Spearman correlation, coincides with the second and
third row of the triples defined by the correlation analyses of
ICA, Pearson, and Spearman.

So far, such a detailed comparison between the four
methods has been conducted over medical [21, 22] and
petrochemical [23] data. It was observed that considerable
divergence of the ICA results from the results obtained by the
rest of themethods is only found when the input data contain
mistakes, as a result of misplacing the decimal point with at
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Table 7: Correlation coefficients for pair of criteria Ci-Cj according to Kendall.

Ci Cj

Correlation
coefficient
Ci-Cj

Ck

Correlation
coefficient
Ci-Ck

Cl

Correlation
coefficient

Cj-Cl

max(correlation coefficient Ci-Cj+
correlation coefficient Ci-Ck;
correlation coefficient Ci-Cj+
correlation coefficient Cj-Cl)

Chosen triple
of criteria

(I) (V) 0,915 (III) 0,557 (III) 0,470 1,472 (I-V-III)
(III) (VIII) 0,858 (II) 0,582 (II) 0,566 1,440 (III-VIII-II)
(II) (III) 0,582 (VIII) 0,566 (VIII) 0,566 1,147 (II-III-VIII)
(I) (III) 0,557 (V) 0,915 (VIII) 0,858 1,472 (I-III-V)

Table 8: Correlation coefficients for pair of criteria Ci-Cj according to Spearman.

Ci Cj

Correlation
coefficient
Ci-Cj

Ck

Correlation
coefficient
Ci-Ck

Cl

Correlation
coefficient

Cj-Cl

max(correlation coefficient Ci-Cj+
correlation coefficient Ci-Ck;
correlation coefficient Ci-Cj+
correlation coefficient Cj-Cl)

Chosen triple
of criteria

(I) (V) 0,988 (III) 0,728 (III) 0,641 1,716 (I-V-III)
(III) (VIII) 0,962 (II) 0,762 (II) 0,753 1,724 (III-VIII-II)
(II) (III) 0,762 (VIII) 0,753 (VIII) 0,962 1,724 (II-III-VIII)
(II) (VIII) 0,753 (III) 0,762 (III) 0,962 1,715 (II-VIII-III)

Table 9

ICA Pearson Kendall Spearman
(1) (I-V-III) (I-V-III) (I-V-III) (I-V-III)
(2) (III-VIII-II) (III-VIII-IV) (III-VIII-II) (III-VIII-II)
(3) (II-III-VIII) (VI-VII-VIII) (II-III-VIII) (II-III-VIII)
(4) (III-IV-VIII) (III-IV-VIII) (I-III-V) (II-VIII-III)

least one position to the left or to the right. We anticipate in
the future a theoretical research for checking the validity of
this practical observation. If it proves to be true, then ICA,
together with the rest three types of analysis, will turn into a
criterion for data correctness.

As we stated above, reducing the number of input
parameters of a classical neural network leads to reduction
of the weight matrices, resulting in implementation of the
neural network in limited hardware and saving time and
resources in training. For this aim, we use the intuitionistic
fuzzy sets-based approach of InterCriteria Analysis (ICA),
which gives dependencies between the criteria and thus helps
us reduce the number of highly correlating input parameters,
yet keeping high enough the level of precision.

Table 10 summarizes the most significant parameters
of the process of testing the neural network with different
numbers of inputs, gradually reducing the number in order
to discover optimal results. These process parameters are
the NN-specific parameters “average deviation,” “regression
coefficient R,” and “number of the weight coefficients.”

The average deviation when we use 8 input vectors is
1.8134 with number of weight coefficients 405. By reducing
the number of the inputs the number of weight coefficients
is also decreased which theoretically is supposed to reduce
the matching coefficient. In this case the removal of col-
umn 1 (and therefore one input is removed) causes further

decreasing the average deviation of 1.6327. The additional
information (without column 5) used for training the neural
network is very little, and the total Mean Square Error is less.
The result is better compared to the formerly used attempt by
training the neural network with 8 data columns.

Whenwe use 7 columns (and 7 inputs of neural networks)
excluding some of the columns gives better result than the
previous one.This shows that, while maintaining the number
of weight coefficients and reducing themaximal membership
in the intercriteria IF pairs, the neural network receives an
additional small amount of information which it uses for
further learning.

Best results (average deviation = 1.5716) are obtained by
removing the two columns (6 inputs without inputs 1 and 3)
with the greatest membership components of the respective
d.

In this case, the effect of reducing the number of weight
coefficients from 360 to 315 and the corresponding MSE is
greater than the effect of the two columns.

The use of 5 columns (without columns 1, 3, and 5) leads
to a result which is less than the previous, that is, 1.857. This
shows that with reducing the number of weight coefficients
(and the total MSE) and the information at the input of the
neural network a small amount of information is lost with
which the network is trained. As a result, the overall accuracy
of the neural network is decreased.
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Table 10: Table of comparison.

Number of inputs Average
deviation

Regression
coefficient R

Number of the weight
coefficients

8 inputs 1.8134 0.97434 405
7 inputs without input 1 1.6327 0.9772 360
7 inputs without input 3 1.8525 0.97256 360
7 inputs without input 5 1.6903 0.9734 360
7 inputs without input 2 2.1142 0.96511 360
7 inputs without input 8 1.7735 0.97511 360
7 inputs without input 4 1.9913 0.96932 360
6 inputs without inputs 3, 5 1.7644 0.97089 315
6 inputs without inputs 1, 5 1.8759 0.97289 315
6 inputs without inputs 1, 3 1.5716 0.97881 315
6 inputs without inputs 2, 3 2.0716 0.96581 315
6 inputs without inputs 3, 8 1.9767 0.97213 315
6 inputs without inputs 3, 4 1.9792 0.97163 315
6 inputs without inputs 4, 8 2.0174 0.96959 315
5 inputs without inputs 1, 3, 5 1.857 0.97209 270
5 inputs without inputs 2,3, 8 2.0399 0.96713 270
5 inputs without inputs 3, 4, 8 2.0283 0.96695 270
4 inputs without inputs 1, 2, 4, 5 2.217 0.95858 225
4 inputs without inputs 2, 3, 4, 8 2.1989 0.95927 225

The worst results (average deviation = 2.217) are obtained
in the lowest number of columns—4. In this case, columns
1, 2, 4, and 5 are removed. Although the number of weight
coefficients here is the smallest, the information that is used
for training the neural network is less informative.

7. Conclusion

In the paper we apply the newest leg of theoretical research
on InterCriteria Analysis to a dataset with the measurements
of 140 probes of crude oil against 8 physicochemical criteria.
On the first step we put all data from these measurements in
the input of a classical neural network. After performing ICA
analysis of the pairwise intercriteria correlations, we apply the
recently developed method for identification of intercriteria
triples in attempt to reduce the inputs of the neural network,
without significant loss of precision.This leads to a reduction
of the weight matrices, thus allowing implementation of the
neural network on limited hardware and saving time and
resources in training.

Very important aspect of the testing of the neural network
after reducing some of the data (resp., the number of inputs)
is to obtain an acceptable correlation between the input and
output values, as well as the average deviation (or match) of
the result.
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