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Early life is a period of particular susceptibility to respiratory infections and symptoms 
are frequently more severe in infants than in adults. The neonatal immune system is 
generally held to be deficient in most compartments; responses to innate stimuli are 
weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lym-
phocyte responses are limited, leading to poor immune memory and ineffective vaccine 
responses. For mucosal surfaces such as the lung, which is continuously exposed to 
airborne antigen and to potential pathogenic invasion, the ability to discriminate between 
harmless and potentially dangerous antigens is essential, to prevent inflammation that 
could lead to loss of gaseous exchange and damage to the developing lung tissue. We 
have only recently begun to define the differences in respiratory immunity in early life 
and its environmental and developmental influences. The innate immune system may be 
of relatively greater importance than the adaptive immune system in the neonatal and 
infant period than later in life, as it does not require specific antigenic experience. A better 
understanding of what constitutes protective innate immunity in the respiratory tract in 
this age group and the factors that influence its development should allow us to predict 
why certain infants are vulnerable to severe respiratory infections, design treatments to 
accelerate the development of protective immunity, and design age specific adjuvants to 
better boost immunity to infection in the lung.
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inTRODUCTiOn

Respiratory infection is one of the leading causes of mortality in children under 5 years of age (1, 2). 
Early life respiratory viral infections are most commonly caused by rhinovirus, respiratory syncytial 
virus (RSV), influenza, parainfluenza virus, and coronavirus (3). Infection is frequently restricted to 
the upper respiratory tract but may develop into severe lower respiratory tract infection, such as RSV 
bronchiolitis, the leading cause of hospitalization of infants worldwide (4–7). Bacterial pneumonia in 
infants, caused by agents such as Haemophilus influenzae and Streptococcus pneumoniae, is estimated 
to cause a million deaths in infants under 5 years of age annually (8, 9). Maternal antibodies afford 
some protection against infection but wane over the first months of life, and neonates and infants 
respond poorly to vaccination, leaving early life as a window of particular vulnerability to respiratory 
infection (10, 11). Experiences during the crucial neonatal and infant window may shape respiratory 
health in the long term (12–14). Severe RSV infection in infants is associated with the development 
of wheeze and asthma in childhood (15–19) and even respiratory disease that occur late in life, such 
as chronic obstructive pulmonary disease, are associated with early life events (20–24).
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At birth, the neonate emerges from the sheltered intrauter-
ine environment into a plethora of antigenic challenges from 
pathogens, commensals, and harmless environmental antigens. 
Neonatal immunity is, in general, attenuated compared to that 
of adults (4, 25–29). Differences in immunity in early life are 
due to tissue leukopenia, cell intrinsic hyporesponsiveness, and 
inhibitory mechanisms, such as CD71+ immunosuppressive 
erythroid cells and high levels of adenosine in extracellular fluids 
(26, 28–31). Protective Th1 polarized responses and antibodies 
are produced less well in early life than in adults, along with a 
propensity to develop unwanted, Th2 or Th17 biased, or dysregu-
lated inflammation (28, 31–33), for example, following vaccina-
tion or allergen exposure (34, 35). TLR stimulation of cord blood 
leukocytes results in a lower production of proinflammatory, 
Th1-associated cytokines (IL-12p70, TNF-α, IFN-α), and greater 
production of IL-10 and the Th17-promoting IL-6 and IL-23 
when compared to stimulation of adult blood cells, although 
equivalent responses to TLR 7/8 ligand R848 occur (29, 36, 37). 
Over the first few years of life, antiviral and Th1-biasing cytokine 
production increases (38, 39).

In the face of an inexperienced adaptive response, innate 
immunity is likely to play a more dominant role in protection 
against infection in early life than in adulthood. This is supported 
by the findings that many gene polymorphisms associated with 
severe RSV infection in infants encode components of the innate 
immune response (4, 40–43). The importance of TLR signaling 
in early life is illustrated by individuals with genetic deficiencies 
in components of the TLR signaling pathway such as MyD88 
or IRAK-4. These patients are at high risk of bacterial infection 
in childhood, including in the respiratory tract; however, their 
condition improves dramatically with age (44). This review will 
focus on describing our current knowledge of innate immunity in 
the neonatal lung as a first line of defense against infection. Some 
potentially important mechanisms underlying susceptibility to 
lung infection in infants are summarized in Figure 1.

ReSPiRATORY iMMUniTY in eARLY LiFe

It is relatively difficult to obtain samples from the lower airways 
of healthy infant subjects, so many studies have been carried out 
in murine and other animal models. Information on the cellular 
composition of the neonatal lung in humans has come from 
analysis of bronchoalveolar lavage fluid composition (46–49), 
immunohistochemistry (50), and more recently, extensive phe-
notypic analysis of leukocyte subsets in pediatric tissues (51–53).

Adaptive immunity
Fetal airways are essentially devoid of lymphocytes, they are 
seeded from birth, and lymphocytes increase as a proportion 
of airway cells over the first few years of life (48, 54). There is 
a relative paucity in CD4+ cells (46, 50), and memory T cells 
are less abundant in infant lungs than in adults, though they 
are more abundant in the lungs than many other tissues (51). 
Tregs are relatively abundant in pediatric tissues and may have a 
higher suppressive capacity than those from adults (28, 51) and a 
transient increase in regulatory T cells, associated with microbial 
colonization, protects from hyperresponsiveness to allergen 

(35). A failure of regulation may underlie excessive inflamma-
tion in infection, as in RSV bronchiolitis (43), and RSV infection 
in early life can increase susceptibility to allergic inflammation 
in the mouse model through an impairment of regulatory T cells 
(4, 55). CD8+ T cells in the lung correlate with disease severity 
in infants with respiratory failure due to respiratory viral infec-
tion (52) and in neonatal mice infected with RSV, a CD8+ T cell 
epitope hierarchy emerges, which is distinct to that of adults 
(56). Distinct phenotypes of adaptive lymphocytes are found in 
early life. A subset of Th cells in human cord blood produce the 
neutrophil chemoattractant interleukin-8 upon activation (57) 
and, during RSV infection, a regulatory phenotype in the neona-
tal B cell compartment may dampen protective immunity (58).

Lung Dendritic Cells (DCs)
There is some evidence that neonatal T  cells have the capac-
ity to mount adult-like protective responses to lung infection. 
Adoptive transfer of neonatal CD4+ T cells into Pneumocystis 
carinii-infected adult SCID mice allowed for adult-level patho-
gen clearance and cytokine production (59, 60), suggesting 
that the neonatal environment in the lung influences T  cell 
responses. This may be due in part to the function of neonatal 
antigen-presenting cells. Neonatal mouse lungs contain rela-
tively fewer conventional DCs (cDCs), which are immature and 
poorly functional (56, 61, 62), although mature functions ex 
vivo have been reported (63). During neonatal RSV infection, 
migratory cDCs are dominated by CD103+ DCs, while the 
CD11b+ contribution increases with age (64). These CD103+ 
DCs are phenotypically immature and poorly functional (65), 
and this may influence the magnitude and epitope hierarchy 
of the CD8+ T cell response (64–66), although these are also 
influenced by T cell intrinsic differences and regulatory T cells 
(56, 67). As well as stimulating protective responses, lung DCs 
in neonates must promote tolerance to harmless environmental 
antigens. CD11b+ cDCs in the lung induce Th2 responses to 
allergens, but transiently express high levels of PD-L1, which 
promotes tolerance, following acquisition of the microbiota 
(35, 68). In contrast to murine studies, the relative frequency of 
different DC subsets in the human lung appears to be relatively 
stable over the life course (53).

In the murine neonatal lung, potent IFN-α-producing pDC 
cells are scarce (61), and there is limited recruitment of pDCs and 
IFN-α production following RSV infection (69).

Alveolar Macrophages (AM)
Lung resident macrophages, which include AM and the less 
well-characterized interstitial macrophages (70–72), are an 
important component of the first line of defense in the lung. In 
the steady state, AMs remove debris and maintain a tolerogenic 
environment; during infection, they secrete proinflammatory 
cytokines and contribute to pathogen clearance; and after 
infection, they aid resolution of inflammation (45). AMs 
are the predominant cell type in the neonatal airway, they 
appear in the alveolar compartment from just before birth and 
throughout the first week of life, and are relatively abundant 
and self-renewing, persisting for at least 11  weeks in mice 
(47–50, 73, 74).
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FigURe 1 | Innate immunity to infection in the lung in early life. Alveolar macrophages (AM) are the most numerous leukocyte in the lungs in early life. Reduced 
cytokine production and phagocytic ability in AM in early life compared to those of adults could underlie susceptibility to infection. AM also promote pre- and 
post-natal lung development and remodeling. The respiratory epithelium protects against infection through the production of mucus and antimicrobial peptides. 
Production of type I IFNs may be lower in infant than adult epithelial cells, perhaps permitting greater viral replication. Epithelial cells may interact with innate 
lymphocytes to both initiate and regulate inflammation. Developmental reprograming in the epithelium in early life may also alter the nature of the epithelial response 
to infection. There are low numbers of pDC in the lungs compared to adults. Recruitment of neutrophils to the lung occurs less readily in early life compared to 
adults in some circumstances, but in other situations, excessive recruitment of inflammatory cells can lead to lung inflammation, tissue damage, and impairment of 
gaseous exchange. Immaturity and lower numbers of dendritic cells, the environment as well as intrinsic differences in T cells in early life may result in the 
development of skewed helper T cell responses and an altered epitope hierarchy in CD8+ T cells. Innate immunity in the lung in early life is influenced by acquisition 
of the microbiota, exposure to microbial products and other environmental factors, as well as the infant genome. Adapted by permission from Macmillan Publishers 
Ltd: Nature Reviews Immunology (45), copyright 2014.
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Stimulation of cultured cells has been used to interrogate the 
relative antimicrobial functions of neonatal and adult AMs. LPS 
stimulation of rodent or ovine AMs results in similar or even 
enhanced upregulation of TNF-α and CXC-chemokines in neona-
tal compared to adult cells (75–77), though others demonstrated 
a reduced translocation of NF-κB to the nucleus of AM from neo-
natal mice (78). Enhanced phagocytosis by neonatal compared 
to adult rat AM has been observed (75), but others have reported 
impaired phagocytosis and subsequent killing of yeast particles 
in neonatal rhesus monkey AMs; and impaired phagocytosis of 
opsonized red blood cells in neonatal rat AMs in comparison 
to adults (79, 80). In a murine model of Pneumocystis infection, 

neonatal AMs were delayed in their expression of activation 
markers in vivo in comparison to adults (81). Similarly, during 
murine neonatal RSV infection, there was reduced and delayed 
AM activation compared to adult infection (82), but intranasal 
IFN-γ was able to promote AM maturation (82). Little is known 
about responses in human infant AMs. Cultured cells obtained 
by bronchoalveolar lavage from infants <2 years of age produce 
lower IL-1 and TNF-α following LPS stimulation compared with 
cells from children aged 2–17 (54). The apparent contradictions 
in the data on AM function in early life may reflect differences 
in the species, age, experimental conditions, and assays used. 
Various macrophage functions are likely to mature at different 
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rates. Neonatal and adult AMs are likely to behave differently in 
their respective lung environments, which is a limitation of these 
in vitro studies.

Respiratory epithelial Cells
The respiratory epithelium is the principal site of replication of 
respiratory viruses. It is in close communication with AM and acts 
an immune sentinel producing inflammatory mediators, such as 
type I and III interferons, mucus, and antimicrobial proteins (45, 
83). Relatively little is known about the immunological functions 
of the airway epithelium in early life. In cultured tracheobron-
chial epithelial cells from Rhesus macaques of different ages 
(infant, juvenile, and adult), IL-8 production on exposure to LPS 
positively correlated with age (84). Furthermore, epithelial cells 
from juveniles housed in filtered air produced higher cytokine 
responses than those in conventional housing suggesting the 
microbial richness of the environment may influence epithelial 
responsiveness. The same group demonstrated that infant Rhesus 
monkey primary epithelial cell cultures are more permissive for 
the H1N1 influenza virus than those from adult airways, while 
producing less IL-1α (85).

In humans, type I IFNs are detected at only low levels in the 
airways of RSV-bronchiolitic infants. This may be due to inhibi-
tion of the host anti-viral response by the viral non-structural 
proteins but alternatively may reflect the timing of sampling, 
and an IFN-induced gene signature is detectable in blood 
(86–88). Pediatric nasal and airway epithelial cells cultured 
from bronchial brushings are readily infected with RSV (89–91) 
and poor induction of type I IFNs by RSV is reflected in these 
cultures (92, 93). Instead, the type III interferon IL-29 (IFN-λ) 
is detected both in the airways of bronchiolitic infants and in 
cultures of RSV infected airway epithelial cells, and IL-29 pre-
treatment of cultured epithelial cells attenuates RSV growth (92, 
93). Epithelial cells are probably a key source of inflammatory 
cytokines in respiratory tract secretions of infants with acute 
RSV (92, 94, 95), including the type-2 immunity promoting 
cytokine IL-33 (96). The cells used in many in vitro experiments 
on pediatric respiratory epithelial cells were originally taken 
from the conducting airway and data surrounding lower airway 
and ATII cells in early life is even sparser.

Antimicrobial proteins are a first line of defense at barrier sites 
and are produced primarily by epithelial cells and innate leuko-
cytes, particularly neutrophils (97, 98). In the lung, they include 
surfactants as well as S100s, β-defensins, and cathelicidin and 
they may provide protection against important infant respira-
tory infections, including RSV (99–102). Cathelicidin has direct 
antiviral activity against RSV, can prevent infection in vitro and 
in vivo and in children hospitalized with bronchiolitis, those with 
low serum cathelicidin were significantly more likely to have RSV 
infection and a longer hospital stay (97, 103–107).

innate Lymphocytes
Neonatal murine lungs show no quantitative deficiency in γδ 
T cells as a proportion of CD3+ T cells (61, 108). Exposure to 
allergen in neonatal mice can stimulate innate ILC2 lymphocytes, 
a major source of type 2 cytokines (109). Colonization by the 
microbiota in neonates protects against the accumulation of 

potentially pro-inflammatory mucosal iNKT  cells in the lung 
and gut (110). Colonization of the gut of neonatal mice can also 
lead to intestinal DC mediated upregulation of CCR4 on IL-22 
producing ILC3, which allows their migration into the lungs of 
neonatal mice, and promotes protection against bacterial pneu-
monia (111).

neutrophils
Recruitment of innate leukocytes and, in particular, neutro-
phils, is likely to play an important role in the innate response 
to infection in the neonatal lung following microbial recogni-
tion. Both TLR4 gene and protein expression are present in 
the murine lung in the fetus and increase with age through to 
adulthood (112, 113). TLR2 expression is also present in the 
human fetal lung and increases with gestational age (114). It 
appears that there is an immaturity of chemokine production at 
baseline in the respiratory mucosa. Expression of CXCL2 is low 
in neonatal mice compared with adults (115) and in uninfected 
infants (newborn to 18 months), the concentration of IL-8 in 
nasal washes positively correlates with age (116). There is a 
dramatically reduced and delayed neutrophil influx in neonatal 
lung in response to administration of LPS or bacteria in com-
parison to adult animals (75, 117–119). In the neonatal murine 
lung, infection with the paramyxovirus Sendai virus results in a 
minimal early influx of neutrophils and low production of pro-
inflammatory cytokines compared with the adult lung; simi-
larly in murine RSV infection, early pro-inflammatory cytokine 
production is impaired (108, 115). Diminished recruitment of 
neutrophils may also be due to an impaired chemotaxic ability 
of infant neutrophils (25, 120, 121).

In severe RSV bronchiolitis in infants, neutrophils can account 
for the majority of cells recovered from the airways, associated 
with increased neutrophil elastase (122–125) and IL-8 (94, 126), 
although others have reported a lower inflammatory cytokine 
response in infants with severe vs mild RSV bronchiolitis (127). 
There is a considerable influx of neutrophils into S. pneumoniae-
infected lungs of neonatal and adult mice, with the neonatal 
influx even occurring at a lower bacterial dose (128). It is unclear 
under what circumstances the neonatal lung will produce an 
equivalent or exacerbated inflammatory response compared to 
that of adults, whether this simply requires a high level of stimula-
tion or whether additional factors are involved.

FACTORS inFLUenCing THe 
DeveLOPMenT AnD MATURATiOn OF 
LUng iMMUniTY

Despite the apparent absence of a mature adult-like immune 
system, neonates are able to produce effective immune responses 
that defend against infection and indeed excessive inflammation 
can occur. The neonate must strike a balance between protection 
against infection and potential damage to the developing lung 
and may use alternative mechanisms of protection against infec-
tion to those that predominate in adults.

Exposure to microbial products from the environment, the 
microbiota, or infection may be beneficial in terms of their ability 
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to promote immune maturation and more adult like innate and 
adaptive immunity (28, 30). Treatment with TLR agonists CpG 
or LPS during RSV infection alters the CD8+ T  cell response 
toward a more adult-like immunodominance (66) and treatment 
of neonatal mice with CpG prior to RSV infection shifts the 
secondary response to re-infection away from a type 2 response 
(129). Furthermore, administration of BCG shifts lung CD4+ 
responses away from a Th2 bias and cDC from BCG treated lungs 
promote Th1 responses (61).

The microbiota is acquired from the mother at birth and in early 
life and an adult-like microbiome is established by around 3 years 
of age (130). The composition of the microbiota and microbial 
richness of the environment in which children develop have been 
linked to susceptibility to severe respiratory infections and the 
development of wheeze and asthma (131–133). Environmental 
microbial exposure may influence lung health by establishing the 
set-point of immunological responsiveness of the lung, as seen by 
the attenuation of allergic lung inflammation by airway exposure 
to LPS or endotoxin rich dust samples (133, 134). Additionally, 
commensal bacteria may influence neonatal respiratory immu-
nity indirectly. For example, sensing of commensal bacteria by 
gut DCs promotes resistance to bacterial pneumonia in neonatal 
mice (111). Factors that shape the microbiota, such as delivery by 
cesarean section and antibiotic use in early life and pregnancy, are 
likely to profoundly influence the developing immune system (14, 
135). Other environmental factors that regulate the balance of 
immunity in the infant respiratory tract may include diet, vitamin 
D status, breast feeding, maternal immunity, and exposure to 
environmental pollutants.

Significant stages of lung development occur both before 
and after birth and hyporesponsiveness to immune stimuli may 
have evolved to protect the developing lung from the disruptive 
and damaging effects of inflammation (136, 137). This is evi-
denced in mouse models of chorioamnionitis, where exposure 
of the fetal lung to LPS results in abnormal development of the 
distal airways (138, 139). In addition, IL-1β expression in the 
fetal or newborn lung impairs normal postnatal development 
(140). Reciprocally, the developmental programmes active in 
resident lung cells, which drive cell growth and differentiation 
may also influence immune responses (141, 142). Macrophages 
take on important roles in lung development and remodeling 
including septation and vascularization of the alveoli after 
birth (137, 143). Macrophages associate with sites of branch-
ing morphogenesis where they assume a tissue remodeling 
phenotype and promote development through production of 
growth factors and matrix metalloproteases (143). Polarization 
of macrophages away from this phenotype might, therefore, 

be a mechanism by which pro-inflammatory signals disrupt 
lung development (138, 140). As with lung macrophages, the 
respiratory epithelium will be subject to lung developmental 
programmes extending into the postnatal period, which regu-
late epithelial cell proliferation and differentiation, and these 
may potentially also alter epithelial immunological function. 
Foxa2 is an epithelially expressed member of the forkhead fam-
ily of transcription factors. In the developing lung, it regulates 
epithelial differentiation and controls goblet cell hyperplasia. It 
also has immunoregulatory functions and limits type-2 immu-
nity through inhibition of the cysteinyl LT signaling pathway 
(83, 141, 144).

COnCLUSiOn

The mechanisms that regulate inflammatory responses to micro-
bial stimulation in the lung need to be more fully elucidated. 
Increasing our knowledge of how the developing immune 
system responds to infectious challenge is of importance for 
development of neonatal vaccines and treatments for exag-
gerated respiratory inflammation during infection. In certain 
circumstances, the immune system in early life is capable of 
adult-level responses, and perhaps boosting responses in at-risk 
infants—in treatment for acute infectious disease or as adjuvant 
for vaccination—would be a beneficial protective strategy. 
Additionally, selectively harnessing the protective innate mecha-
nisms that are already expressed at adult or greater than adult 
levels in the neonate could be a safe therapeutic method. Thus, 
while early life is clearly a period of immunological vulnerability 
for the developing lung, it is also an opportunity for effective 
intervention strategies, which could benefit respiratory health 
not only in infancy, but into adulthood.
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