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Abstract

Unmanned aerial vehicles (UAV), or drones, have been used widely in military applications, but more recently civilian
applications have emerged (e.g., wildlife population monitoring, traffic monitoring, law enforcement, oil and gas pipeline
threat detection). UAV can have several advantages over manned aircraft for wildlife surveys, including reduced ecological
footprint, increased safety, and the ability to collect high-resolution geo-referenced imagery that can document the
presence of species without the use of a human observer. We illustrate how geo-referenced data collected with UAV
technology in combination with recently developed statistical models can improve our ability to estimate the distribution of
organisms. To demonstrate the efficacy of this methodology, we conducted an experiment in which tennis balls were used
as surrogates of organisms to be surveyed. We used a UAV to collect images of an experimental field with a known number
of tennis balls, each of which had a certain probability of being hidden. We then applied spatially explicit occupancy models
to estimate the number of balls and created precise distribution maps. We conducted three consecutive surveys over the
experimental field and estimated the total number of balls to be 328 (95%CI: 312, 348). The true number was 329 balls, but
simple counts based on the UAV pictures would have led to a total maximum count of 284. The distribution of the balls in
the field followed a simulated environmental gradient. We also were able to accurately estimate the relationship between
the gradient and the distribution of balls. Our experiment demonstrates how this technology can be used to create precise
distribution maps in which discrete regions of the study area are assigned a probability of presence of an object. Finally, we
discuss the applicability and relevance of this experimental study to the case study of Florida manatee distribution at power
plants.
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Introduction

Aircraft have long been used to conduct environmental

monitoring surveys [1]–[4]. However, aircraft can be hazardous

(especially when monitoring areas that are dangerous to survey,

e.g., flying over forest fires), expensive, and may disturb wildlife,

and the results of an aircraft survey can be misleading if an

unknown proportion of the population being surveyed is not

detected [5], [6]. Unmanned aerial vehicles (UAV), or drones

(Figure 1), have been widely used in military applications.

Recently, civilian applications have emerged, including: traffic

monitoring, law enforcement, oil and gas pipeline threat

detection, and the monitoring of wildlife species [1], [7], [8]

(Figure 2 shows the photograph of an American alligator Alligator

mississippiensis in Lake Okeechobee taken with a UAV). UAV

may have several advantages over manned aircraft for wildlife

surveys, including reduced ecological footprint, increased safety,

and the ability to collect high-resolution geo-referenced imagery

that can document the presence of species without the use of a

human observer. We illustrate how geo-referenced data collected

with UAV technology in combination with recently developed

statistical models can improve our ability to estimate distribution

and abundance of organisms that are temporarily undetectable

and whose distribution is determined by an environmental

gradient (e.g., temperature, vegetation, soil type). We demon-

strate how this technology can be used to estimate abundance

and distribution of organisms that are otherwise difficult to

enumerate. We create precise distribution maps in which discrete

regions (grid cells) of the study area are assigned a probability of

presence of an object even if that object was not observed during

a survey. We discuss how this method can be used to accurately

describe the relationship between water temperature and

manatee distribution in space.

Our study was motivated by our work on the endangered

Florida manatee, Trichechus manatus latirostris (Figure 3). We are

interested in determining the spatial distribution of manatees in

warm-water refugia, such as power plants effluents, where they

aggregate in large numbers during cold weather (i.e., greater than

1,000 manatees have been counted at some power plant sites
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during a survey). In particular, we are interested in quantitatively

evaluating the relationship between water temperature and the

spatial distribution of manatees. By collecting surface-water

temperatures and taking geo-referenced photographs of the site,

it may be possible to elucidate the relationship between

temperature and the presence of individual manatees. Knowledge

of this relationship would be useful in determining warm water

carrying capacity at these aggregation sites. Carrying capacity has

long been a parameter of interest to biologists, ecologists, and

resource managers because of its potential in assessing population

dynamics of the manatee. Before implementing this approach to

monitor manatees at an aggregation site, we conducted a field

experiment to demonstrate the efficacy of our method. In this

approach, we used tennis balls as surrogates for manatees. This

approach entailed collecting images with a UAV of a 30 m 6
30 m grid (each cell in the grid was 1 m 6 1 m) containing a

Figure 1. Unmanned aerial vehicle (UAV).
doi:10.1371/journal.pone.0038882.g001
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known number of tennis balls, each of which had a certain

probability of being hidden or undetectable. We then applied

spatially explicit occupancy models with a Bayesian approach to

the data to estimate the number of balls present in the grid and to

create precise distribution maps of the probability of presence of a

ball in each grid cell.

Materials and Methods

UAV
The University of Florida UAV Research Team has been

actively developing small UAV systems with the explicit use as a

remote sensing platform for natural resources and ecological

monitoring for the last 12 years. The electric-powered Nova 2.1

used in this study was a hand-launched, 2.7 m wingspan aircraft

weighing 4.5 kg, which was hand constructed out of foam,

fiberglass, carbon fiber, and Kevlar, and had a maximum

sustainable airtime of approximately one hour (Figure 1A and

1B). Autonomous flight control was achieved with a ProcerusH
Technologies KestrelTM 2.2 autopilot system aboard the aircraft,

which was linked by a 900 MHz wireless modem to Virtual

CockpitTM 2.6 autopilot software on the ground. Pre-planned fight

paths were uploaded and autonomously executed by the aircraft.

The autopilot system allowed for autonomous takeoffs and

landings, instantaneous flight plan changes, and a user-friendly

interface. The optical payload for the Nova 2.1 consisted of a

commercial-off-the-shelf 10 megapixel OlympusH E-420 digital

single-lens reflex camera with a 25 mm ‘pancake’ lens. The optical

payload was outfitted with its own GPS-aided Inertial Navigation

System (GPS/INS) for improved direct geo-referencing. Synchro-

nization of the camera shutter and the GPS/INS was achieved

with a custom circuit board to timestamp each acquired image

with a navigation data packet. Telemetry files and images

generated during a flight were stored onboard the aircraft via a

1.8 GHz Microsoft Windows XPH micro form factor computer

with an 80 GB solid-state hard drive. The optical payload was

capable of producing images with approximately 5 cm ground

resolution at 200 m flight altitude. In this study, we flew at 200 m

altitude to capture the entire 900-cell experimental grid within a

single image frame, while maintaining sufficient ground resolution

of the tennis balls. Because the individual images captured with the

Nova 2.1 UAV were directly geo-referenced, post-processing of

the imagery allowed researchers to measure individual targets

(e.g., length, area) within an image. This feature allows researchers

to measure an animal without having to physically capture it

(Figure 2).

We note that the application of UAV technology is new and still

involves many restrictions (e.g., obtaining Federal Aviation

Administration (FAA) permission to operate in civil airspace) [1].

However, our own experience has been that as this technology has

become more widely used it also has become increasingly less

difficult to operate a UAV in many areas of the National Airspace

System.

Figure 2. Alligator taken from the Nova UAV in Lake Okeechobee, FL. The alligator was estimated to be 1.7 m in total length. Flight altitude
was 85 m.
doi:10.1371/journal.pone.0038882.g002
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Experimental Design
We created a 30 m630 m grid (each cell was 1 m 61 m) and

placed a tennis ball in each of 329 selected cells; each ball

represented the presence of an object (e.g., a manatee at a power

plant; Figures 3). The spatial distribution of the balls was

determined by a simulated gradient (Figure 4A). In our application

on manatees, the simulated gradient was one of water tempera-

ture; however for other species it could represent other relevant

ecological variables (e.g., vegetation type, soil type, elevation,

salinity). Digital photographs of the balls were taken by the UAV

during three passes flown over the grid at an altitude of 200 m and

an air speed of 16 m/s (Figure 5). Images of the grid were taken

every 2.5 s as the UAV autonomously flew pre-programmed

passes. After each pass, we either covered the ball (hiding it from

view) or allowed it to remain uncovered. The probability of a ball

being covered during each pass was set at 0.50. A single observer,

who had not helped set up the experiment, counted all the objects

seen in photographs taken by the UAV during each of its passes

over the grid.

Data Analyses
We applied three occupancy models to the data:

Model 1 assumed that the probability of occupancy (y) was the

same for all cells in the grid (i.e., it was a nonspatial model); Model

2 modeled y as a function of the environmental gradient; and

Model 3 modeled y as a function of the occupancy status of the

neighboring cells (i.e, an autologistic model [9]).

Each of these models accounts for imperfect detection by the

observer. For the purpose of mapping, it was useful to compute the

conditional probability of occurrence in cell i, yci, which

corresponded to the probability that an object was present in cell

i given that no object was observed there during the survey (i.e., it

was temporarily unavailable). We applied occupancy models [9–

11] to simultaneously estimate the probability of occupancy of an

object at cell i (yi) and the probability of detection of this object at

cell i given that the object was present at cell i during survey j (pij).

To estimate the probability of detection at cell i, repeated surveys

were required at each cell i. These models also assumed that the

occupancy status within each cell did not change between surveys.

Our experimental study area was a grid composed of R = 900

cells. Each cell i had a probability yi of being occupied:

zi * Bernoulli yið Þ ð1Þ

where zi = 1 indicates a cell is occupied, otherwise zi = 0. We

surveyed each of the R cells 3 times during the survey. This

sampling resulted in observations, yij, of detection or non-detection

of objects at each cell i during each survey j. We assumed the

observations arose from a Bernoulli distribution such that:

yij * Bernoulli (zi|p) ð2Þ

where p is the probability of an object being detected at cell i

during survey j. Under each of the models, we held p constant for

all cells and surveys.

We modeled the potential variation in occupancy, yi, in three

different ways. The first was a naı̈ve model (Model 1) with

occupancy detection probabilities being a constant value across all

cells. The logit-linear form of the model is specified as:

yi ~ 1= 1 z exp {b0ð Þð Þ ð3Þ

For Model 2, we modeled the probability of occupancy as a

function of our simulated temperature covariate (Gi), which was

specified for each cell i.

yi ~ 1=(1z exp ({b0{b1|Gi)) ð4Þ

Finally, we incorporated a spatial correlation by using an auto-

logistic model [9], Model 3, which specifies a relationship between

each cell and its neighbors. Here, we defined the neighborhood

Figure 3. Groups of Florida manatees at a power plant in Florida during a cold event.
doi:10.1371/journal.pone.0038882.g003
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(Mi) around a cell i and then averaged the occupancy state (zm) of

the neighbors to be incorporated as a covariate (xi). Thus, the

model was specified as:

yi ~ 1=(1z exp ({b0{b1|xi)) ð5Þ

where

xi~
1

si

X
m [ Mi

zm

0
@

1
A ð6Þ

Thus xi is the average occupancy state of the neighbors of cell i, Mi

is the collection of cells that are neighbors of i, si is the cardinality

of Mi; and zm is the occupancy state of each neighbor.

When detection probability, p is 1, then the occupancy model

can be reduced to a simple logistic regression type model. We

applied a logistic regression with a Bayesian approach to the

maximum count data (after the 3 surveys) and to the true location

of the balls, to estimate the intercept and the slope parameter of

the relationship between the gradient and the probability of

occurrence (triangles and circles in Figure 6). The logistic

regression approach is useful if the objects move among cells

between the surveys and if detection can be assumed to be perfect.

The probability that a cell was occupied by an object given that

no objects were detected after multiple K surveys was noted ŷyic

[10].

Based on the estimates of occupancy and detection from the

model, ŷyic is derived as:

ŷyic ~
ŷyi 1{p̂pij

� �K

1{ŷyi

� �
zŷyi 1{p̂pij

� �K
ð7Þ

The circumflex symbol indicates that these parameters are

estimates. We present ŷyic (Figure 4) to show the estimated

probability of occupancy given that no objects were observed.

All data sets were analyzed with program R version 2.13. We

fitted Models 1, 2, and 3 using a Bayesian approach and Markov

chain Monte Carlo simulation methods [9]; these analyses were

conducted with WinBUGS version 1.4 using the R package

R2WinBUGS. We ran 3 parallel chains, each with 20,000

iterations, and discarded the first 15,000 iterations.

Results and Discussion

The estimated mean number of occupied cells (both with

hidden and not hidden objects) for Model 1 (nonspatial-occupancy

model) was 328 (95% CI: 313, 346, Figure 7). The estimated mean

number of objects for Model 2 (occupancy modeled as a function

of gradient) was 328 (95% CI 313, 347, Figure 7), and for Model 3

(occupancy modeled as a function of the number of neighbors) was

328 (95% CI: 312, 348, Figure 7). The probability of detecting an

object was estimated to be 0.51 (95% CI: 0.47, 0.55) for Model 2.

The count for the first pass alone was 170 objects (Figure 7). The

maximum count among all 3 passes was 284 objects (Figure 7).

Although these models can account for imperfect detection, they

are not designed to account for over counting of objects. In this

case, our observer (ball counter) failed to detect a few objects while

counting from the photos, as expected (1 on the second-pass photo

and 2 on the third-pass photo). What was not expected was over

counting of objects that resembled the tennis balls in the photos (5

on the first-pass photo, 6 on the second-pass photo, and 2 on the

third-pass photo). To reduce this problem we should have

emphasized that a sighted object should not have been reported

as a ball if the observer was not completely confident that it was a

ball. We could also have used multiple observers. Indeed, the

model that we used can correct for undercounting but not for over

counting. However, in our application, there was no evidence that

the over counting introduced substantial bias.

The relationship between the gradient and the probability of

occurrence obtained from Model 2 and the maximum count is

shown in Figure 6. The mean estimates of the probability of

occurrence (solid line in Figure 6) based on Model 2 were greater

than the estimates based on the maximum count (triangles in

Figure 6), but were slightly lower than the true relationship at the

high end of the temperature gradient (circles in Figure 6), although

Figure 4. Estimates of conditional probability of occurrence as
a function of temperature, and the number of neighboring
sites that are occupied. 4A: Temperature gradient (light blue: lower
temperatures; dark red: higher temperatures). 4B: Model 2, conditional
probability of occupancy modeled as a function of temperature (light
blue corresponds to lower probabilities; dark red represents higher
values). 4C: Model 3, conditional probability of occurrence (spatial
model). True locations of the objects are denoted by circles: yellow
circles correspond to the objects available for detection on the first UAV
survey, black circles correspond to the location of the hidden objects
(i.e., those not available for detection).
doi:10.1371/journal.pone.0038882.g004
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the true values were within the 95% credible intervals (dashed lines

in Figure 6). The spatial plots of the estimates of conditional

probability of occurrence for Model 2 closely match the simulated

pattern for the gradient (Figures 4A and 4B). Note that a 95% CI

associated with the probability of occupancy is available for each

grid cell. The pattern for the conditional probability of occurrence

for Model 3 also captured the gradient pattern, but not as

accurately as for Model 2 (Figures 4A and 4C). Interestingly, the

estimates of uncertainty obtained from the three models were

similar (Figure 7). Thus, Models 2 and 3 are more informative (i.e.,

they provide information about spatial distribution whereas Model

1 does not) at almost no cost in terms of precision (note that Model

2 and 3 have 3 parameters, whereas Model 1 has 2 parameters).

Model 2 is most useful if some environmental variable (e.g.,

temperature) that drives the distribution of a target species is

available. If such environmental variable is not available Model 3

can still be used to determine the spatial distribution (by using the

number of neighboring sites that are occupied as a covariate). This

type of model may also be of particular interest in the case of

species that tend to aggregate (e.g., species that demonstrate

‘‘flocking’’ behavior).The results of our experiment suggest that

UAV are an effective means of counting objects (or species) located

in areas that are difficult to survey. In this experiment, objects as

small as a tennis ball were accurately detected in photographs

taken by an UAV at 200 m altitude. Another benefit of this

technology is that the size of the objects can be measured. In

ecological applications, this feature can be useful in distinguishing

young from adults (e.g., in obtaining age-specific estimates of

density), if there is a discernible age-specific difference in size; or in

differentiating among individuals (e.g., using scar patterns on

manatees). Although the use of UAV technology in the monitoring

of wildlife has been described elsewhere [7], to our knowledge the

use of geo-referenced images obtained from a UAV in tandem

with the application of statistical models that account for imperfect

detection has not been evaluated for determining the precise

distribution of hidden objects. In addition to being able to obtain

accurate estimates of occurrence (here the sum of occupied cells

can be used as an approximation of abundance of objects), this

approach can help us understand how a species’ distribution is

affected by environmental gradients (e.g., water temperature,

elevation, or vegetation cover). In this case, relying on a simple

count would have led to 170 tennis balls. In the case of the

manatee, we can determine, based on water temperature and

population density, the carrying capacity of warm-water aggrega-

tion sites, such as power plant discharges, natural springs, and

other passive-thermal basins. Our experiment showed that in some

cases this technology also may allow biologists to assess density and

age-specific distribution as a function of the gradient because adult

and young animals may, in some species, be differentiated by size.

These methods could also be used to examine changes in the use

Figure 5. Experimental setup taken from the unmanned aerial system (UAV) at an altitude of 200 m. Red circles indicate the corners of
the grid; inset shows a section of the photograph enlarged. Blue circle indicates a tennis ball available for detection.
doi:10.1371/journal.pone.0038882.g005
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of a particular site as it is related to shifts in environmental

conditions (e.g., how changes in temperature or the volume of

warm water at a site affect the number of manatees using that site).

We demonstrated that precise measurements of an environmental

gradient could lead to precise estimation of the predicted

distribution of the objects in question. However, even in the

absence of environmental gradient measurements, we were able to

use the observed distribution of objects (with Model 3) to predict

the probability of occurrence of objects even in locations where the

objects were not observed. This could in fact be an interesting

application for environmental monitoring. For example, given the

distribution of objects and some information about the relationship

between that distribution and the environmental gradient, it

should be possible to determine the configuration of the gradient

Figure 6. Relationship between the temperature gradient and the probability of occurrence. Solid line corresponds to the relationship
between the temperature gradient and the probability of occurrence obtained from Model 2; dashed lines correspond to the 95% CI. Circles
represent the relationship between the temperature gradient and the probability of occurrence based on the true locations of the balls, triangles
indicate the relationship obtained from the maximum count.
doi:10.1371/journal.pone.0038882.g006

Figure 7. Posterior distributions of the number of occupied cells obtained from three models. Model 1 (blue curve); Model 2 (grey curve);
Model 3 (black curve); true abundance of balls (solid line); maximum count of balls after three surveys of the UAV (long dashed line); count after the
first survey of the UAV (short dashed line).
doi:10.1371/journal.pone.0038882.g007
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itself. In other words, information about the distribution of the

objects (e.g., manatees) could be used to infer the spatial

characteristics of the environmental gradient (e.g., temperature;

see similarities between Figures 4A and 4C).

Our simulation demonstrates the efficacy of using UAV

technology in combination with statistical models to understand

and describe relationships between organisms that are difficult to

detect, and environmental factors that influence distribution of

such species. Using these methods, not only can accurate estimates

of distribution be obtained, but the relationship between the

distribution of the individuals and the environment can also be

better estimated. It is worth pointing out a few limitations and

potential for future improvement. Firstly, in our experiment the

probability of detecting balls was 0.5 at each site, in many

situations detection probability can vary in space and time. If such

variation is to be expected, it is possible to account for this

variation in the models. For instance, if visibility is affected by

water clarity or wave actions, detection probability could be

modeled as a function of these visibility covariates [9] [11].

Temporal variation in detection can also be accounted for in the

models [9], [10]. Secondly, the occupancy model that we used in

our analysis assumed closure, i.e., the occupancy status in each cell

did not change among pictures taken by the UAV. Short surveys

(e.g., that are minutes apart) can help meet this assumption. In the

case of species that move extensively, one option is to use spatially

explicit capture mark recapture models that keep track of

individuals (e.g., for instance with manatees individuals may be

distinguished by their color, shape size, and scar patterns). If

animals move extensively but cannot be individually identified, but

detection probability is excellent (e.g., manatees aggregated at a

warm water site with clear water), the logistic regression approach

that we presented can still be applied to determine the relationship

between the temperature gradient and manatee distribution.

Finally, most models to estimate abundance and distribution of

animals from repeated count data, do not account for overcount-

ing, which can lead to bias. Accounting for this type of error in

these models is an active area of research. We anticipate that the

simultaneous progress in model developments and UAV technol-

ogy will lead to improvement in the accuracy of environmental

monitoring. Therefore, it is important for users of this technology

to remain informed about the latest developments in both UAV

engineering and statistical modeling.

In conclusion, we believe that the methods that we described

have great potential for environmental monitoring, especially for

species that are difficult to observe or that live in areas that are

difficult for a human observer to adequately monitor at the faster

speeds and higher altitudes flown by most standard manned-

survey aircraft. Additionally, these methods also could be useful for

other types of environmental monitoring, especially in areas that

are dangerous to survey, such as mapping and detection of forest

fires (e.g., smoke detection), and oil spill monitoring. We expect to

continue to use data collected by UAV in combination with other

environmental variables in monitoring manatees, and hope that

other applications will be developed to improve conservation and

monitoring of other wildlife and plant species.
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