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Abstract

Applying machine learning algorithms to automatically infer relationships between concepts from
large-scale collections of documents presents a unique opportunity to investigate at scale how human
semantic knowledge is organized, how people use it to make fundamental judgments (“How similar are
cats and bears?”), and how these judgments depend on the features that describe concepts (e.g., size,
furriness). However, efforts to date have exhibited a substantial discrepancy between algorithm predic-
tions and human empirical judgments. Here, we introduce a novel approach to generating embeddings
for this purpose motivated by the idea that semantic context plays a critical role in human judgment.
We leverage this idea by constraining the topic or domain from which documents used for generating
embeddings are drawn (e.g., referring to the natural world vs. transportation apparatus). Specifically,
we trained state-of-the-art machine learning algorithms using contextually-constrained text corpora
(domain-specific subsets of Wikipedia articles, 50+ million words each) and showed that this proce-
dure greatly improved predictions of empirical similarity judgments and feature ratings of contextually
relevant concepts. Furthermore, we describe a novel, computationally tractable method for improv-
ing predictions of contextually-unconstrained embedding models based on dimensionality reduction of
their internal representation to a small number of contextually relevant semantic features. By improv-
ing the correspondence between predictions derived automatically by machine learning methods using
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vast amounts of data and more limited, but direct empirical measurements of human judgments, our
approach may help leverage the availability of online corpora to better understand the structure of
human semantic representations and how people make judgments based on those.
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1. Introduction

Understanding the underlying structure of human semantic representations is a funda-
mental and longstanding goal of cognitive science (Murphy, 2002; Nosofsky, 1985, 1986;
Osherson, Stern, Wilkie, Stob, & Smith, 1991; Rogers & McClelland, 2004; Smith & Medin,
1981; Tversky, 1977), with implications that range broadly from neuroscience (Huth, De
Heer, Griffiths, Theunissen, & Gallant, 2016; Pereira et al., 2018) to computer science
(Bojanowski, Grave, Joulin, & Mikolov, 2017; Mikolov, Yih, & Zweig, 2013; Rossiello,
Basile, & Semeraro, 2017; Toutanova et al., 2015) and beyond (Caliskan, Bryson, &
Narayanan, 2017). Most theories of semantic knowledge (by which we mean the structure
of representations used to organize and make decisions based on prior knowledge) propose
that items in semantic memory are represented in a multidimensional feature space, and that
key relationships among items—such as similarity and category structure—are determined
by distance among items in this space (Ashby & Lee, 1991; Collins & Loftus, 1975; DiCarlo
& Cox, 2007; Landauer & Dumais, 1997; Nosofsky, 1985, 1991; Rogers & McClelland,
2004; Jamieson, Avery, Johns, & Jones, 2018; Lambon Ralph, Jefferies, Patterson, & Rogers,
2017; although see Tversky, 1977). However, defining such a space, establishing how dis-
tances are quantified within it, and using these distances to predict human judgments about
semantic relationships such as similarity between objects based on the features that describe
them remains a challenge (Iordan et al., 2018; Nosofsky, 1991). Historically, similarity has
provided a key metric for a wide variety of cognitive processes such as categorization, iden-
tification, and prediction (Ashby & Lee, 1991; Nosofsky, 1991; Lambon Ralph et al., 2017;
Rogers & McClelland, 2004; but also see Love, Medin, & Gureckis, 2004, for an example
of a model eschewing this assumption, as well as Goodman, 1972; Mandera, Keuleers,
& Brysbaert, 2017, and Navarro, 2019, for examples of the limitations of similarity as a
measure in the context of cognitive processes). As such, understanding similarity judgments
between concepts (either directly or via the features that describe them) is broadly thought
to be critical for providing insight into the structure of human semantic knowledge, as these
judgments provide a useful proxy for characterizing that structure.

The best efforts to date to define theoretical principles (e.g., formal metrics) that can pre-
dict semantic similarity judgments from empirical feature representations (Iordan et al., 2018;
Gentner & Markman, 1994; Maddox & Ashby, 1993; Nosofsky, 1991; Osherson et al., 1991;
Rips, 1989) capture less than half the variance observed in empirical studies of such judg-
ments. At the same time, a comprehensive empirical determination of the structure of human
semantic representation via similarity judgments (e.g., by evaluating all possible similar-
ity relationships or object feature descriptions) is impossible, given that human experience
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encompasses billions of individual objects (e.g., millions of pencils, thousands of tables, all
different from one another) and tens of thousands of categories (Biederman, 1987) (e.g., “pen-
cil,” “table,” etc.). That is, one obstacle of this approach has been a limitation in the amount
of data that can be collected using traditional methods (i.e., direct empirical studies of human
judgments). Recently, however, the availability of vast amounts of data from the internet,
and machine learning algorithms for analyzing those data, have presented the opportunity to
study at scale, albeit less directly, the structure of semantic representations, and the judgments
people make using these. This approach has shown promise: work in cognitive psychology
and in machine learning on natural language processing (NLP) has used large amounts of
human generated text (billions of words; Bojanowski et al., 2017; Mikolov, Chen, Corrado, &
Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Man-
ning, 2014) to create high-dimensional representations of relationships between words (and
implicitly the concepts to which they refer) that may provide insights into human semantic
space. These approaches generate multidimensional vector spaces learned from the statistics
of the input data, in which words that appear together across different sources of writing
(e.g., articles, books) become associated with “word vectors” that are close to one another,
and words that share fewer lexical statistics, such as less co-occurrence are represented as
word vectors farther apart. A distance metric between a given pair of word vectors can then
be used as a measure of their similarity. This approach has met with some success in pre-
dicting categorical distinctions (Baroni, Dinu, & Kruszewski, 2014), predicting properties of
objects (Grand, Blank, Pereira, & Fedorenko, 2018; Pereira, Gershman, Ritter, & Botvinick,
2016; Richie et al., 2019), and even revealing cultural stereotypes and implicit associations
hidden within the documents (Caliskan et al., 2017). However, the spaces generated by such
machine learning methods have remained limited in their ability to predict direct empirical
measurements of human similarity judgments (Mikolov, Yih, et al., 2013; Pereira et al., 2016)
and feature ratings (Grand et al., 2018). Nevertheless, this work suggests that the multidimen-
sional representations of relationships between words (i.e., word vectors) can be used as a
methodological scaffold to describe and quantify the structure of semantic knowledge and, as
such, can be used to predict empirical human judgments.

Despite these different avenues, neither the “top-down” theoretically principled
approaches, nor “bottom-up” data-driven approaches have yet provided consistently accu-
rate predictions of human judgments regarding the similarity relationships between objects or
their features. Here, we present a novel method that addresses this challenge, by leveraging
the idea that context exerts a critical influence on how people use semantic representations to
make judgments based on them. This is supported by a long tradition of literature in cognitive
psychology, showing that human semantic judgments are influenced by (among many other
factors) the domain-level semantic context in which these judgments are made (e.g., Dillard,
Palmer, & Kinney, 1995; Gentner, 1982; Goldstone, Medin, & Halberstadt, 1997; Medin &
Shaffer, 1978; Miller & Charles, 1991; Nosofsky, 1984), including when evaluating similarity
relationships (Barsalou, 1982; McDonald & Ramscar, 2001; Medin, Goldstone, & Gentner,
1993; Forrester, 1995; Keßler et al., 2007; also see Supplementary Experiments 1—4 & Sup-
plementary Fig. 1). This influence can include task demands (e.g., instructions provided by
experimenters), incidental factors related to the circumstances of the task, and/or features of
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the items to be judged, as well as more subtle effects related to the sequence in which items
are perceived and learned (Carvalho & Goldstone, 2017). For example, when asked to judge
the similarity between a bear and a bull among other animals, people may focus on their
physical characteristics as objects in a natural context (e.g., size), leading to the judgment
that they are similar; however, in the context of financial markets, they may focus instead
of the items’ economic value, leading to the judgment that they are very different. Further-
more, this observed contextual influence on human semantic judgments manifests implicitly
and automatically in natural environments (i.e., with no requirement for external prompts,
such as asking someone to think about the “nature” domain when evaluating the relationship
between two animals) but accounting for this phenomenon remains difficult in laboratory
studies.

The idea that context plays an important role in evaluating semantic relationships has also
been exposed in current state-of-the-art NLP models, which show that taking local contex-
tual influences into account (i.e., the other 10–20 words that surround a given word) can
improve the performance on tasks such as question answering and ambiguous pronoun com-
prehension (Cheng & Kartsaklis, 2015; Devlin, Chang, Lee, & Toutanova, 2019; Peters et al.,
2018). Here, we extend this idea by implementing a method designed to also take broader
forms of context into account. We assume that when people are generating the text corpora
available on the internet (e.g., magazine articles, Wikipedia entries, etc.), their use of words
is heavily influenced by the context in which they are writing. Here, we present a method
for augmenting training data used by machine learning models to also take into account this
type of global, domain-level semantic context (the topic or domain being considered in the
writings, e.g., National Geographic vs. Wall Street Journal). To do so, we introduce domain-
level semantic contextual constraints (which are intended to parallel the contextual constraints
thought to be in effect for the human authors when they generated those text corpora) in the
construction of the text corpora from which the high-dimensional word embedding spaces
are learned. More specifically, we sought to impose the effects of implicit attention to con-
text hypothesize above by manipulating the domain of articles included in the contextually-
constrained (CC) training corpora, instead of having attention built in as a process model in
the embedding models’ training optimization procedure. Accordingly, we predicted that train-
ing machine learning algorithms on such CC corpora and then using the resulting embeddings
to infer semantic representations and relationships would yield results that align more closely
with empirical measurements made directly from humans. We tested this approach in three
experiments.

The first two experiments demonstrate that embedding spaces learned from CC text
corpora substantially improve the ability to predict empirical measures of human semantic
judgments within their respective domain-level contexts (pairwise similarity judgments in
Experiment 1 and item-specific feature ratings in Experiment 2), despite being trained using
two orders of magnitude less data than state-of-the-art NLP models (Bojanowski et al., 2017;
Devlin et al., 2019; Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013; Pennington
et al., 2014). In the third experiment, we describe “contextual projection,” a novel method for
taking account of the effects of context in embedding spaces generated from larger, standard,
contextually-unconstrained (CU) corpora, in order to improve predictions regarding human
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behavior based on these models. Finally, we show that combining both approaches (applying
the contextual projection method to embeddings derived from CC corpora) provides the
best prediction of human similarity judgments achieved to date, accounting for 60% of total
variance (and 90% of human interrater reliability) in two specific domain-level semantic
contexts.

2. Methods

2.1. Generating word embedding spaces

We generated semantic embedding spaces using the continuous skip-gram Word2Vec
model with negative sampling as proposed by Mikolov, Sutskever, et al. (2013) and Mikolov,
Chen, et al. (2013), henceforth referred to as “Word2Vec.” We chose Word2Vec because
this type of model has been shown to be on par with, and in some cases superior to other
embedding models at matching human similarity judgments (Pereira et al., 2016). Word2Vec
hypothesizes that words that appear in similar local contexts (i.e., in a “window size” of a
similar set of 8–12 words) tend to have similar meanings. To encode this relationship, the
algorithm learns a multidimensional vector associated with each word (“word vectors”) that
can maximally predict other word vectors within a given window (i.e., word vectors from
the same window are placed close to each other in the multidimensional space, as are word
vectors whose windows are highly similar to one another).

We trained four types of embedding spaces: (a) contextually-constrained (CC) models
(CC “nature” and CC “transportation”), (b) context-combined models, and (c) contextually-
unconstrained (CU) models. CC models (a) were trained on a subset of English language
Wikipedia determined by human-curated category labels (metainformation available directly
from Wikipedia) associated with each Wikipedia article. Each category contained multiple
articles and multiple subcategories; the categories of Wikipedia thus formed a tree in which
the articles themselves are the leaves. We constructed the “nature” semantic context training
corpus by collecting all articles belonging to the subcategories of the tree rooted at the “ani-
mal” category; and we constructed the “transportation” semantic context training corpus by
combining the articles from the trees rooted at the “transport” and “travel” categories. This
procedure involved entirely automated traversals of the publicly available Wikipedia article
trees with no explicit author intervention. To avoid topics unrelated to natural semantic con-
texts, we removed the subtree “humans” from the “nature” training corpus. Furthermore, to
ensure that the “nature” and “transportation” contexts were non-overlapping, we removed
training articles that were labeled as belonging to both the “nature” and “transportation”
training corpora. This yielded final training corpora of approximately 70 million words for
the “nature” semantic context and 50 million words for the “transportation” semantic context.
The combined-context models (b) were trained by combining data from each of the two CC
training corpora in varying amounts. For the models that matched training corpora size with
the CC models, we selected proportions of the two corpora that added up to approximately 60
million words (e.g., 10% “transportation” corpus + 90% “nature” corpus, 20% “transporta-
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tion” corpus + 80% “nature” corpus, etc.). The canonical size-matched combined-context
model was obtained using a 50%–50% split (i.e., approximately 35 million words from the
“nature” semantic context and 25 million words from the “transportation” semantic context).
We also trained a combined-context model that included all training data used to generate
both the “nature” and the “transportation” CC models (full combined-context model, approx-
imately 120 million words). Finally, the CU models (c) were trained using English language
Wikipedia articles unrestricted to a particular category (or semantic context). The full CU
Wikipedia model was trained using the full corpus of text corresponding to all English lan-
guage Wikipedia articles (approximately 2 billion words) and the size-matched CU model
was trained by randomly sampling 60 million words from this full corpus.

The primary factors controlling the Word2Vec model were the word window size and the
dimensionality of the resulting word vectors (i.e., the dimensionality of the model’s embed-
ding space). Larger window sizes resulted in embedding spaces that captured relationships
between words that were farther apart in a document, and larger dimensionality had the poten-
tial to represent more of these relationships between words in a vocabulary. In practice, as
window size or vector length increased, larger amounts of training data were required. To
build our embedding spaces, we first conducted a grid search of all window sizes in the set
(8, 9, 10, 11, 12) and all dimensionalities in the set (100, 150, 200) and selected the combi-
nation of parameters that yielded the highest agreement between similarity predicted by the
full CU Wikipedia model (2 billion words) and empirical human similarity judgments (see
Section 2.3). We reasoned that this would provide the most stringent possible benchmark of
the CU embedding spaces against which to evaluate our CC embedding spaces. Accordingly,
all results and figures in the manuscript were obtained using models with a window size of
nine words and a dimensionality of 100 (Supplementary Figs. 2 & 3).

All models were trained using the “genism” Python library’s implementation of the
Word2Vec model (Rehurek & Sojka, 2010). Aside from window size and dimensionality,
all other parameters were kept as the default values from the original Word2Vec publications
(Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013): an initial learning rate of
0.025, elimination of words that appear fewer than five times in the training corpus, a 0.001
threshold for downsampling frequently occurring words, an exponent of 0.75 for shaping the
negative sampling distribution, five negative samples per positive sample, and the skip-gram
training algorithm. Given that the final value of the loss function optimized during training
is not comparable across networks and/or across datasets/training corpora (Mikolov, Chen,
et al., 2013; Mikolov, Sutskever, et al., 2013), we trained every network for a fixed number
of iterations. The resulting vocabulary sizes for each embedding space we constructed were:
148K words for the CC “nature” model, 110K words for the CC “transportation” model, 204K
words for the combined context models (canonical & full), 342K words for the CU Wikipedia
full model, and 125K words for the CU Wikipedia subset model.

For each type of model (CC, combined-context, CU), we trained 10 separate mod-
els with different initializations (but identical hyperparameters) to control for the
possibility that random initialization of the weights may impact model performance.
Cosine similarity was used as a distance metric between two learned word vectors.
Subsequently, we averaged the similarity values obtained for the 10 models into one



M. C. Iordan et al. / Cognitive Science 46 (2022) 7 of 32

aggregate mean value. For this mean similarity, we performed bootstrapped sampling
(Efron & Tibshirani, 1986) of all the object pairs with replacement to evaluate how stable
the similarity values are given the choice of test objects (1,000 total samples). We report
the mean and 95% confidence intervals of the full 1,000 samples for each model evaluation
(Efron & Tibshirani, 1986).

We also compared against two pre-trained models: (a) the BERT transformer net-
work (Devlin et al., 2019) generated using a corpus of 3 billion words (English lan-
guage Wikipedia and English Books corpus); and (b) the GloVe embedding space
(Pennington et al., 2014) generated using a corpus of 42 billion words (freely available online:
https://nlp.stanford.edu/projects/glove/). The pre-trained GloVe model had a dimensionality
of 300 and a vocabulary size of 400K words. For this model, we perform the sampling pro-
cedure detailed above 1,000 times and reported the mean and 95% confidence intervals of
the full 1,000 samples for each model evaluation. The BERT model was pre-trained on a
corpus of 3 billion words comprising all English language Wikipedia and the English books
corpus. The BERT model had a dimensionality of 768 and a vocabulary size of 300K tokens
(word-equivalents). For the BERT model, we generated similarity predictions for a pair of text
objects (e.g., bear and cat) by selecting 100 pairs of random sentences from the corresponding
CC training set (i.e., “nature” or “transportation”), each containing one of the two test objects,
and comparing the cosine distance between the resulting embeddings for the two words in the
highest (last) layer of the transformer network (768 nodes). The average similarity across the
100 pairs represented one BERT “model” (we did not retrain BERT). The procedure was then
repeated 10 times, analogously to the 10 separate initializations for each of the Word2Vec
models we built. Finally, similar to the CC Word2Vec models, we averaged the similarity
values obtained for the ten BERT “models” and performed the bootstrapping procedure 1,000
times and report the mean and 95% confidence interval of the resulting similarity prediction
for the 1,000 total samples.

Finally, we compared the performance of our CC embedding spaces against the most com-
prehensive concept similarity model available, based on estimating a similarity model from
triplets of objects (Hebart, Zheng, Pereira, Johnson, & Baker, 2020). We compared against
this dataset as it represents the largest scale attempt to date to predict human similarity judg-
ments in any form and because it generates similarity predictions for all the test objects we
selected in our study (all pairwise comparisons between our test stimuli shown below are
included in the output of the triplets model).

2.2. Object and feature testing sets

To test how well the trained embedding spaces aligned with human empirical judgments,
we constructed a stimulus test set comprising 10 representative basic-level animals (bear, cat,
deer, duck, parrot, seal, snake, tiger, turtle, and whale) for the nature semantic context and 10
representative basic-level vehicles (airplane, bicycle, boat, car, helicopter, motorcycle, rocket,
shuttle, submarine, truck) for the transportation semantic context (Fig. 1b). We also selected
12 human-relevant features independently for each semantic context that have been previously
shown to explain object-level similarity judgments in empirical settings (Iordan et al., 2018;
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Fig 1. Generating contextually-constrained (CC) embedding spaces and testing their predictions of human simi-
larity judgments. (a) Model training. We generated contextually-constrained (CC) embedding spaces using train-
ing sets composed of Wikipedia articles considered relevant to each semantic context (“nature”∼70M words,
“transportation”∼ 50M words). Similarly, we trained contextually-unconstrained (CU) models with the train-
ing set of all English language Wikipedia articles (∼2B words), as well as a size-matched subset of this corpus
(∼60M words). We compared the performance of these models to a CU pre-trained BERT transformer network
(∼3B words corpus) and against GloVe, a CU pre-trained embedding space trained on the Common Crawl cor-
pus (∼42B words). We also compared against a recent, large-scale CU machine learning model (Hebart et al.,
2020; ∼1.5M empirical comparisons). (b) To test models’ prediction of human similarity judgments, we selected
10 representative basic-level objects for each context (10 animals and 10 vehicles) and collected human-reported
similarity judgments between all pairs of objects in each context (45 pairs per context). (c) We computed Pear-
son correlation between human empirical similarity judgments (all 45 pairwise comparisons within each semantic
context, averaged across participants) and similarity predicted by each embedding model (cosine distance between
embedding vectors corresponding to each object in each model). Error bars show 95% confidence intervals for
1,000 bootstrapped samples of the test-set items (see Section 2.7 for details). All differences between CC models
in their preferred context and other models are statistically significant, p ≤ .004.
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(b) (c)

Fig 1. Continued

McRae, Cree, Seidenberg, & McNorgan, 2005; Osherson et al., 1991). For each semantic
context, we collected six concrete features (nature: size, domesticity, predacity, speed, furri-
ness, aquaticness; transportation: elevation, openness, size, speed, wheeledness, cost) and six
subjective features (nature: dangerousness, edibility, intelligence, humanness, cuteness, inter-
estingness; transportation: comfort, dangerousness, interest, personalness, usefulness, skill).
The concrete features comprised a reasonable subset of features used throughout prior work
on explaining similarity judgments, which are commonly listed by human participants when
asked to describe concrete objects (Osherson et al., 1991; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976). Little data have been collected about how well subjective (and poten-
tially more abstract or relational [Gentner, 1988; Medin et al., 1993]) features can predict
similarity judgments between pairs of real-world objects. Prior work has shown that such
subjective features for the nature domain can capture more variance in human judgments,
compared to concrete features (Iordan et al., 2018). Here, we extended this approach to iden-
tifying six subjective features for the transportation domain (Supplementary Table 4).

For each of the twenty total object categories (e.g., bear [animal], airplane [vehicle]), we
collected nine images depicting the animal in its natural habitat or the vehicle in its normal
domain of operation. All images were in color, featured the target object as the largest and
most prominent object on the screen, and were cropped to a size of 500 × 500 pixels each
(one representative image from each category is shown in Fig. 1b).

2.3. Human behavioral experiments

To collect empirical similarity judgments, we recruited 139 participants (45 female, 108
right-handed, mean age 31.5 years) through the Amazon Mechanical Turk online platform in
exchange for $1.50 payment (expected rate $7.50/hour). Prior work has shown that for this
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type of task, interparticipant reliability should be high for a cohort of at least 20 participants
(Iordan et al., 2018). Participants were asked to report the similarity between every pair of
objects from a single semantic context (e.g., all pairwise combinations of 10 vehicles or all
pairwise combinations of 10 animals) on a discrete scale of 1 to 5 (1 = not similar; 5 =
very similar). In each trial, the participant was shown two randomly selected images from
each category side-by-side and was given unlimited time to report a similarity judgment.
Each participant made 45 comparisons (all pairwise combinations of 10 categories from a
single randomly chosen semantic context) presented in a random order. In a pilot experiment
(Supplementary Experiment 6), we ran both a text-only version and an image-only version
of this task using the set of 10 test categories from the nature domain. We found that the
correspondence between ratings obtained in the two versions was extremely high (r = .95),
which suggests that such similarity ratings likely reflect semantic distinctions between items
independent of stimulus modality, rather than purely visual or textual differences. To maxi-
mize salience for the online behavioral task employed in the current experiment, we chose to
present participants with images, rather than words.

To ensure high-quality judgments, we limited participation only to Mechanical Turk work-
ers who had previously completed at least 1,000 HITs with an acceptance rate of 95% or
above. We excluded 34 participants who had no variance across answers (e.g., choosing a
similarity value of 1 for every object pair). Prior work has shown that for this type of task
interparticipant reliability should be high (Iordan et al., 2018); therefore, to exclude partic-
ipants whose response may have been random, we correlated the responses of each partici-
pant with the average of the responses for every other participant and calculated the Pearson
correlation coefficient. We then iteratively removed the participant with the lowest Pearson
coefficient, stopping this procedure when all remaining participants had a Pearson coefficient
greater than or equal to 0.5 to the rest of the group. This excluded an additional 12 partici-
pants, leading to a final tally of n = 44 participants for the nature semantic context and n =
49 participants for the transportation semantic context.

To collect empirical feature ratings, we recruited 915 participants (392 female, 549 right-
handed, mean age 33.4 years) through the Amazon Mechanical Turk online platform in
exchange for $0.50 payment (expected rate $7.50/hour). Prior work has shown that for this
type of task interparticipant reliability should be high for a cohort of at least 20 partici-
pants per feature (Iordan et al., 2018). Participants were asked to rank every object from
a single semantic context (e.g., all 10 vehicles or all 10 animals) along a randomly cho-
sen context-specific dimension (e.g., “How fast/slow is this vehicle?”) on a discrete scale
of 1 to 5 (1 = low feature value, e.g., “slow;” 5 = high feature value, e.g., “fast”). In each
trial, the participant was shown three randomly selected images from a total of nine possi-
ble images representing the object, as well as the name of the object (e.g., “bear”) and given
unlimited time to report a feature rating. Each participant ranked all 10 objects, presented
in a random order, from a single randomly chosen context along a single randomly chosen
dimension.

We used an analogous procedure as in collecting empirical similarity judgments to select
high-quality responses (e.g., restricting the experiment to high performing workers and
excluding 210 participants with low variance responses and 124 participants with answers
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that correlated poorly with the average response). This resulted in 18–33 total participants per
feature (see Supplementary Tables 3 & 4 for details).

All participants had normal or corrected-to-normal visual acuity and provided informed
consent to a protocol approved by the Princeton University Institutional Review Board.

2.4. Predicting similarity judgments from embedding spaces

To predict similarity between two objects in an embedding space, we computed the cosine
distance between the word vectors corresponding to each object. We used cosine distance as a
metric for two main reasons. First, cosine distance is a commonly reported metric used in the
literature that allows for direct comparison to previous work (Baroni et al., 2014; Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013; Pennington et al., 2014; Pereira et al.,
2016). Second, cosine distance disregards the length or magnitude of the two vectors being
compared, taking into account only the angle between the vectors. Some studies (Schakel &
Wilson, 2015) have demonstrated a relationship between the frequency with which a word
appears in the training corpus and the length of the word vector. Because this frequency
relationship should not have any bearing on the semantic similarity of the two words, using a
distance metric such as cosine distance that ignores magnitude/length information is prudent.

2.5. Contextual projection: Defining feature vectors in embedding spaces

To generate predictions for object feature ratings using embedding spaces, we adapted and
extended a previously used vector projection method first employed by Grand et al. (2018)
and Richie et al. (2019). These prior approaches manually defined three separate adjectives
for each extreme end of a particular feature (e.g., for the “size” feature, adjectives represent-
ing the low end are “small,” “tiny,” and “minuscule,” and adjectives representing the high end
are “large,” “huge,” and “giant”). Subsequently, for each feature, nine vectors were defined
in the embedding space as the vector differences between all possible pairs of adjective word
vectors representing the low extreme of a feature and adjective word vectors representing the
high extreme of a feature (e.g., the difference between word vectors “small” and “huge,” word
vectors “tiny” and “giant,” etc.). The average of these nine vector differences represented a
one-dimensional subspace of the original embedding space (line) and was used as an approx-
imation of its corresponding feature (e.g., the “size” feature vector). The authors originally
dubbed this method “semantic projection,” but we will henceforth refer to it as “adjective
projection” to distinguish it from a variant of this method that we implemented, and that can
also be considered a form of semantic projection, as detailed below.

By contrast to adjective projection, the feature vectors endpoints of which were uncon-
strained by semantic context (e.g., “size” was defined as a vector from “small,” “tiny,”
“minuscule” to “large,” “huge,” “giant,” regardless of context), we hypothesized that end-
points of a feature projection may be sensitive to semantic context constraints, similarly to
the training procedure of the embedding models themselves. For example, the range of sizes
for animals may be different than that for vehicles. Thus, we defined a new projection tech-
nique that we refer to as “contextual semantic projection,” in which the extreme ends of a
feature dimension were chosen from relevant vectors corresponding to a particular context
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(e.g., for nature, word vectors “bird,” “rabbit,” and “rat” were chosen for the low end of the
“size” feature and word vectors “lion,” “giraffe,” and “elephant” for the high end). Similarly
to adjective projection, for each feature, nine vectors were defined in the embedding space
as the vector differences between all possible pairs of an object representing the low and
high ends of a feature for a given context (e.g., the vector difference between word “bird”
and word “lion,” etc.). Then, the average of these new nine vector differences represented
a one-dimensional subspace of the original embedding space (line) for a given context and
was used as the approximation of its corresponding feature for items in that context (e.g., the
“size” feature vector for nature).

To avoid overfitting, and given the high interrater reliability observed for test object feature
ratings (r = .68–.92), the contextual projection endpoints for each feature and context were
chosen by the experimenters as reasonable examples of out-of-sample objects representative
of the low/high value on their corresponding feature in that context (i.e., distinct from the
10 test objects used for each semantic context). All objects used as endpoints across each
feature and semantic context are shown in Supplementary Table 5 (nature semantic context)
and Supplementary Table 6 (transportation semantic context).

Once a feature subspace was defined (either by adjective or contextual projection), the
rating of an object with respect to that feature was calculated by projecting the vector repre-
senting the object in the original embedding space onto the one-dimensional feature subspace
for each context, which resulted in a scalar value (overall range across all models, features,
and contexts: [−0.6, 0.4]):

ratingobject = featureT object

||feature||
To illustrate the relationship with cosine distance in the original embedding space, we note
that the difference between the feature ratings of two words is then equivalent to the nor-
malized cosine distance between the vector difference of those two words in the original
embedding space and the corresponding context-specific feature vector:

dist(ob ject1, ob ject2) = f eatureT (ob ject1 − ob ject2)

|| f eature|| =
= cosineDist (ob ject1 − ob ject2, f eature) · ||ob ject1 − ob ject2||

2.6. Using contextual projection to improve contextually-unconstrained embeddings

To test whether contextual projection may help improve predictions of human sim-
ilarity judgments from CU embeddings, we used a two-step procedure. First, given a
100-dimensional CU embedding space, we used contextual projection to generate 12 human-
relevant feature vectors for each of our two semantic contexts (nature and transportation).
Second, for each semantic context and its corresponding 12-dimensional feature subspace,
we used a separate linear regression procedure to learn optimal weights for each context-
relevant feature that together best predicted empirical similarity judgments. To evaluate this
projection and regression procedure, we performed cross-validated out of sample prediction
of human similarity judgments by repeatedly selecting one of the 10 test objects in each



M. C. Iordan et al. / Cognitive Science 46 (2022) 13 of 32

semantic context (e.g., “snake”) and learning regression weights that best predicted human
similarity judgments using a CU embedding space (i.e., dimensionality reduction from a
100-dimensional CU embedding space to a 12-dimensional contextually- and human-relevant
12 feature subspace defined through contextual projection). To estimate the weights, we used
only empirical trials (pairwise similarity judgments) that did not involve the left-out test
object (36 out of 45 trials per feature: 80% of the empirical data). Subsequently, we used the
learned regression weights to make new predictions on the left-out 20% of the judgments (9
out of 45 trials per feature, each comparison between the left-out object and the other nine
test objects for that particular semantic context).

2.7. Statistics

For the non-pre-trained models, we averaged over n = 10 different learned embedding
representations (10 different initial conditions) to obtain a mean similarity prediction for
each type of model. All error bars reported were 95% confidence intervals using 1,000 boot-
strapped samples of the test-set items with replacement. For each model comparison in each
condition, we used a non-parametric statistical significance estimation procedure to obtain p-
values based on the aforementioned bootstrap sampling (Efron & Tibshirani, 1986): to com-
pare two models, we sampled a correlation value from each one and computed the difference,
repeating 1,000 times, once for each bootstrapped sample to obtain a distribution of differ-
ences; we then estimated the p-value of the difference between the two models as 1 minus the
proportion of values in this distribution that fell above zero. All correlation values reported
are Pearson r correlation coefficients.

3. Results

3.1. Experiment 1: Predictions by embedding models of empirical similarity judgments are
highly sensitive to the semantic context(s) of articles in their training sets

Word embedding spaces are generated by training machine learning models on large
corpora of text, often using deep neural network algorithms. This approach is typically
applied to the largest corpora available, on the assumption that larger datasets will provide
more accurate estimation of the underlying semantic structure. However, aggregating across
multiple domain-level semantic contexts (e.g., National Geographic and Wall Street Journal)
may dilute the sensitivity of resulting embedding spaces to contextually-constrained human
semantic judgments. Thus, we hypothesized that (a) contextually-constraining the corpora
used to train machine learning algorithms to particular domains would improve their ability
to predict empirical similarity judgments; and that (b) cross-contextual contamination in the
training set of embedding models (i.e., including articles from multiple distinct semantic
contexts) would induce a misalignment between distances in embedding spaces and human
similarity judgments, hence lower performance despite increasing the amount of training data.

To test our hypotheses, we collected two sets of Wikipedia articles related to two distinct
domain-level semantic contexts (Fig. 1a): “nature” (∼70 million words) and “transportation”
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(∼50 million words) and trained corresponding embedding spaces for each set using contin-
uous skip-gram Word2Vec models with negative sampling (Mikolov, Sutskever, et al., 2013;
Mikolov, Chen, et al., 2013). We refer to these models as “CC” (CC nature and CC transporta-
tion), since they take into account both local (word- and sentence-level) and global (domain-
and discourse-level) context; we refer to other types of word embedding models (trained by
us or pre-trained) as “CU,” as they were not explicitly trained on CC corpora, although some
may take into account more local context during training.

We compared our two CC embedding spaces to a CU Word2Vec embedding space trained
on all English language Wikipedia articles (∼2 billion words) and to a CU embedding space
trained on a random subset of this training corpus, size-matched to the CC embedding spaces
(∼60 million words). We also tested the performance of two additional existing, state-of-
the-art, pre-trained CU models: GloVe (Pennington et al., 2014) and BERT (Devlin et al.,
2019). BERT was trained on English language Wikipedia and English Books, ∼3 billion
words, is sensitive to local word context (i.e., the 10–20 words that surround a particular
concept), and has been shown to outperform Word2Vec embeddings on several human-related
cognitive tasks involving prediction of semantic knowledge; however, BERT has not been
previously tested on its ability to match human similarity judgments. GloVe was trained on
the enormous Common Crawl corpus (∼42 billion words) and thus provided insight into the
role of corpus size on making predictions about human judgments. Finally, we compared
our performance against a recent CU object similarity model (Hebart et al., 2020), which is
the most comprehensive attempt, to date, of using machine learning models and large-scale
empirical data to predict relationships between semantic concepts.

To test how well each embedding space could predict human similarity judgments, we
selected two representative subsets of ten concrete basic-level objects commonly used in prior
work (Iordan et al., 2018; Brown, 1958; Iordan, Greene, Beck, & Fei-Fei, 2015; Jolicoeur,
Gluck, & Kosslyn, 1984; Medin et al., 1993; Osherson et al., 1991; Rosch et al., 1976) and
commonly associated with the nature (e.g., “bear”) and transportation context domains (e.g.,
“car”) (Fig. 1b). To obtain empirical similarity judgments, we used the Amazon Mechanical
Turk online platform to collect empirical similarity judgments on a Likert scale (1–5) for
all pairs of 10 objects within each context domain. To obtain model predictions of object
similarity for each embedding space, we computed the cosine distance between word vectors
corresponding to the 10 animals and 10 vehicles. To assess how well each embedding space
can account for human judgments of pairwise similarity, we calculated the Pearson correlation
between that model’s predictions and empirical similarity judgments.

For animals, estimates of similarity using the CC nature embedding space were highly
correlated with human judgments (CC nature r = .711 ± .004; Fig. 1c). By contrast, esti-
mates from the CC transportation embedding space and the CU models could not recover the
same pattern of human similarity judgments among animals (CC transportation r = .100 ±
.003; Wikipedia subset r = .090 ± .006; Wikipedia r = .152 ± .008; Common Crawl r =
.207 ± .009; BERT r = .416 ± .012; Triplets r = .406 ± .007; CC nature > CC transporta-
tion p < .001; CC nature > Wikipedia subset p < .001; CC nature > Wikipedia p < .001;
nature > Common Crawl p < .001; CC nature > BERT p < .001; CC nature > Triplets p <

.001). Conversely, for vehicles, similarity estimates from its corresponding CC transportation
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embedding space were the most highly correlated with human judgments (CC transportation
r = .710 ± .009). While similarity estimates from the other embedding spaces were also
highly correlated with empirical judgments (CC nature r = .580 ± .008; Wikipedia subset
r = .437 ± .005; Wikipedia r = .637 ± .005; Common Crawl r = .510 ± .005; BERT r =
.665 ± .003; Triplets r = .581 ± .005), the ability to predict human judgments was signifi-
cantly weaker than for the CC transportation embedding space (CC transportation > nature
p < .001; CC transportation > Wikipedia subset p < .001; CC transportation > Wikipedia
p = .004; CC transportation > Common Crawl p < .001; CC transportation > BERT p =
.001; CC transportation > Triplets p < .001). For both nature and transportation contexts,
we observed that the state-of-the-art CU BERT model and the state-of-the art CU triplets
model performed approximately half-way between the CU Wikipedia model and our embed-
ding spaces that should be sensitive to the effects of both local and domain-level context.
The fact that our models consistently outperformed BERT and the triplets model in both
semantic contexts suggests that taking account of domain-level semantic context in the con-
struction of embedding spaces provides a more sensitive proxy for the presumed effects of
semantic context on human similarity judgments than relying exclusively on local context
(i.e., the surrounding words and/or sentences), as is the practice with existing NLP models
or relying on empirical judgements across multiple broad contexts as is the case with the
triplets model.

Furthermore, we observed a double dissociation between the performance of the CC
models according to context: predictions of similarity judgments were most substantially
improved by using CC corpora specifically when the contextual constraint aligned with the
category of objects being judged, but these CC representations did not generalize to other
contexts. This double dissociation was robust across multiple hyperparameter choices for the
Word2Vec model, such as window size, the dimensionality of the learned embedding spaces
(Supplementary Figs. 2 & 3), and the number of independent initializations of the embed-
ding models’ training procedure (Supplementary Fig. 4). Moreover, all results we reported
involved bootstrap sampling of the test-set pairwise comparisons, indicating that the differ-
ence in performance between models was reliable across item choices (i.e., particular animals
or vehicles chosen for the test set). Finally, the results were robust to the choice of corre-
lation metric used (Pearson vs. Spearman, Supplementary Fig. 5) and we did not observe
any obvious trends in the errors made by networks and/or their agreement with human simi-
larity judgments in the similarity matrices derived from empirical data or model predictions
(Supplementary Fig. 6).

To further test the idea that embedding models are highly sensitive to the semantic contexts
present in their training sets, we also evaluated the extent to which cross-contextual contami-
nation induces a misalignment between distances in embedding spaces and human similarity
judgments. We generated new combined-context embedding spaces using different propor-
tions of the training data from each of the two semantic contexts (nature and transportation;
Fig. 2a), both matching for the size of the CC models’ training set (60M words; canonical
combined-context model), as well as using all available training data from the two semantic
contexts (120M words; full combined-context model).
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Fig 2. Combined-context models more poorly predict similarity judgments. (a) Combined-context embedding
spaces were generated by using training data from the nature and transportation semantic contexts in different
proportions (60M words, e.g., 10%–90%, 50%–50%, etc.). A full combined-context embedding space was also
generated using all available training data from both semantic contexts (120M words). (b) When combining train-
ing data from two semantic contexts at different ratios (in increments of 10% training data for each context,
e.g., 10% nature and 90 transportation, 20% nature and 80% transportation, etc.), the resulting combined-context
embeddings recover a proportional amount of information from their preferred/non-preferred semantic contexts.
(c) The canonical and full combined-context models produced distances between concepts that were less aligned
with human judgments in both the nature and the transportation semantic contexts, respectively, compared to the
corresponding CC embedding spaces. Errors signify 95% confidence intervals 1,000 bootstrapped samples of the
test-set items (see Section 2.7 for details).
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As predicted, combined-context embedding spaces’ performance was intermediate
between the preferred and non-preferred CC embedding spaces in predicting human similar-
ity judgments: as more nature semantic context data were used to train the combined-context
models, the alignment between embedding spaces and human judgments for the animal
test set improved; and, conversely, more transportation semantic context data yielded better
recovery of similarity relationships in the vehicle test set (Fig. 2b). We illustrated this perfor-
mance difference using the 50% nature–50% transportation embedding spaces in Fig. 2(c),
but we observed the same general trend regardless of the ratios (nature context: combined
canonical r = .354 ± .004; combined canonical < CC nature p < .001; combined canonical
> CC transportation p < .001; combined full r = .527 ± .007; combined full < CC nature
p < .001; combined full > CC transportation p < .001; transportation context: combined
canonical r = .613 ± .008; combined canonical > CC nature p = .069; combined canonical
< CC transportation p = .008; combined full r = .640 ± .006; combined full > CC nature p
= .024; combined full < CC transportation p = .001).

Crucially, we observed that when using all training examples from one semantic context
(e.g., nature, 70M words) and adding new examples from a different context (e.g., transporta-
tion, 50M additional words), the resulting embedding space performed worse at predicting
human similarity judgments than the CC embedding space that used only half of the training
data. This result strongly suggests that the contextual relevance of the training data used to
generate embedding spaces can be more important than the amount of data itself. Contrary
to common practice, adding more training examples may, in fact, degrade performance if the
extra training data are not contextually relevant to the relationships of interest (in this case,
similarity judgments among items).

Together, these results strongly support the hypothesis that human similarity judgments
can be better predicted by incorporating domain-level contextual constraints into the train-
ing procedure used to build word embedding spaces. Although the performance of the two
CC embedding models on their respective test sets was not equal, the difference cannot be
explained by lexical features such as the number of possible meanings assigned to the test
words (Oxford English Dictionary [OED Online, 2020], WordNet [Miller, 1995]), the abso-
lute number of test words appearing in the training corpora, or the frequency of test words
within the corpora (Supplementary Fig. 7 & Supplementary Tables 1 & 2), although the lat-
ter has been shown to potentially impact semantic information in word embeddings (Richie
& Bhatia, 2021; Schakel & Wilson, 2015). However, it remains possible that more com-
plex and/or distributional characteristics of the words in each domain-specific corpus may be
mediating factors that impact the quality of the relationships inferred between contextually
relevant target words (e.g., similarity relationships). Indeed, we observed a trend in WordNet
meanings toward greater polysemy for animals versus vehicles that may help partially explain
why all models (CC and CU) were able to better predict human similarity judgments in the
transportation context (Supplementary Table 1).

Furthermore, the performance of the combined-context models suggests that combining
training data from multiple semantic contexts when generating embedding spaces may be
responsible in part for the misalignment between human semantic judgments and the rela-
tionships recovered by CU embedding models (which are usually trained using data from
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many semantic contexts). This is consistent with an analogous trend observed when humans
were asked to perform similarity judgments across multiple interleaved semantic contexts
(Supplementary Experiments 1–4 and Supplementary Fig. 1).

3.2. Experiment 2: Contextual projection captures reliable information about interpretable
object feature ratings from contextually-constrained embeddings

A leading theory of semantic representation (and a potential basis for how similarity judg-
ments are made) suggests that objects can be described by a varying number of feature dimen-
sions, which are largely assumed to be recognizable and simple (e.g., size, shape, location,
function, etc.; Iordan et al., 2018; Nosofsky, 1991). However, it remains possible that the true
underlying representation may instead be composed of more abstract combinations of such
simple features, and/or other perhaps uninterpretable features. This would be consistent with
most machine learning models, in which embeddings based on large-scale, unconstrained cor-
pora generally do not yield interpretable features, even when they generate results that capture
some aspects of human performance (Mikolov, Sutskever, et al., 2013; Richie et al., 2019).
One potential explanation for this fact may be that domain-level contextual constraints play
an important role in emphasizing particular features when these are being rated by humans,
whereas this contextual influence is weakened when generating CU embedding spaces (cf.
Experiment 1b). To evaluate this possibility, we tested whether CC embedding spaces would
yield feature ratings for individual objects that are more closely aligned to humans on intu-
itively recognizable dimensions (e.g., size), as well as more relevant to predicting empirical
similarity judgments.

To test how well embedding spaces could predict human feature ratings, we identified 12
context-relevant features for each of the two semantic contexts used in Experiment 1 (see Sec-
tion 2.2 for details) and we used the Amazon Mechanical Turk platform to collect ratings of
each of those features for the 10 test objects in their associated contexts; that is, the 10 animals
were rated on the 12 nature features and the 10 vehicles were rated on the 12 transportation
features (Likert scales 1–5 were used for all features and objects). A full list of features for
each semantic context is given in Supplementary Tables 3 and 4.

To generate feature ratings from embedding spaces, we used a novel “contextual seman-
tic projection” approach. For a given feature (e.g., size), a set of three “anchor” objects was
chosen that corresponded to the low end of the feature range (e.g., “bird,” “rabbit,” “rat”)
and a second set of three anchor objects was chosen that corresponded to the high end of the
feature range (e.g., “lion,” “giraffe,” “elephant”). The word vectors for these anchor objects
were used to generate a one-dimensional subspace for each feature (e.g., “size” line, see Sec-
tion 2.5 for details). Test objects (e.g., “bear”) were projected onto that line and the relative
distance between each word and the low-/high-end object represented a feature rating pre-
diction for that object. To ensure generality and avoid overfitting, the anchor objects were
out-of-sample (i.e., distinct from the 10 test objects used for each semantic context) and were
chosen by experimenter consensus as reasonable representatives of the low/high value on their
corresponding feature.
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Crucially, by selecting different endpoints in each semantic context for features common
across the two semantic contexts (e.g., “size”), this method allowed us to make feature ratings
predictions in a manner specific to a particular semantic context (nature vs. transportation).
For example, in the nature context, “size” was measured as the vector from “rat,” “rabbit,”
etc., to “elephant,” “giraffe,” etc. (animals in the training, but not in the testing set) and in the
transportation context as the vector from “skateboard,” “scooter,” etc. to “spaceship,” “car-
rier,” etc. (vehicles not in the testing set). By contrast, prior work using projection techniques
to predict feature ratings from embedding spaces (Grand et al., 2018; Richie et al., 2019)
has used adjectives as endpoints, ignoring the potential influence of domain-level semantic
context on similarity judgments (e.g., “size” was defined as a vector from “small,” “tiny,”
“minuscule” to “large,” “huge,” “giant,” regardless of semantic context). However, as we
argued above, feature ratings may be impacted by semantic context much as—and perhaps
for the same reasons as—similarity judgments. To test this hypothesis, we compared our con-
textual projection technique to the adjective projection technique with regard to their ability to
consistently predict empirical feature ratings. A complete list of the contextual and adjective
projection endpoints used for each semantic context and each feature is listed in Supplemen-
tary Tables 5 and 6.

We found that both projection techniques were able to predict human feature ratings with
positive correlation values, suggesting that feature information can be recovered from embed-
ding spaces via projection (Fig. 3 & Supplementary Fig. 8). However, contextual projection
predicted human feature ratings much more reliably than adjective projection on 18 out of 24
features and was tied for best performance for an additional 5 out of 24 features. Adjective
projection performed best on a single nature feature (dangerousness in the nature context).
Furthermore, across both semantic contexts, using CC embedding spaces (with either projec-
tion method), we were able to predict human feature ratings better than using CU embedding
spaces for 13 out of 24 features and were tied for best performance for an additional 9 out
of 24 features. CU embeddings performed best on only two nature context features (cuteness
and dangerousness). Finally, we observed that all models were able to predict empirical rat-
ings somewhat better on concrete features (average r = .570) compared to subjective features
(average r = .517). This trend was somewhat enhanced for CC embedding spaces (concrete
feature average r = .663, subjective feature average r = .530). This suggests that concrete
features may be more easily captured and encoded by automated methods (e.g., embedding
spaces), compared to subjective features, despite the latter likely playing a significant role
in how humans evaluate similarity judgments (Iordan et al., 2018). Finally, our results were
not sensitive to the initialization conditions of the embedding models used for predicting fea-
ture ratings or item-level effects (Supplementary Fig. 8 includes 95% confidence intervals
for 10 independent initializations of each model and 1,000 bootstrapped samples of the test-
set items per model). Together, our results suggest that CC embedding spaces, when used in
conjunction with contextual projection, were the most consistent and accurate in their ability
to predict human feature ratings compared to using CU embedding spaces and/or adjective
projection.

To test whether the effects of cross-contextual contamination in the training sets of embed-
ding models extends to the prediction of feature ratings, we used contextual projection in
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Dimension / 
Model

Aquatic Cute Dangerous Domestic Edible Furry Human Intelligent Interesting Predatory Size Speed

Nature .90 .55 .58 .66 .75 .69 .72 .62 .48 .69 .93 .60
Transportation .77 .46 .53 .31 .45 .21 .30 .34 .50 .49 .46 .61
Wikipedia (full) .74 .77 .52 .40 .72 .63 .49 .29 .32 .60 .60 .63

Nature .81 .51 .37 .66 .56 .61 .48 .36 .41 .56 .56 .51
Transportation .66 .26 .36 .50 .48 .29 .28 .60 .49 .41 .41 .29
Wikipedia (full) .46 .48 .68 .33 .22 .26 .25 .37 .46 .46 .47 .29

Nature Context

Contextual Projection

Adjective Projection

Dimension / 
Model

Comfort Cost Dangerous Elevation Interest Open Personal Size Skill Speed Useful Wheeled

Nature .37 .89 .80 .61 .81 .78 .88 .82 .85 .59 .36 .50
Transportation .48 .94 .84 .75 .80 .81 .71 .85 .90 .71 .39 .77
Wikipedia (full) .41 .92 .72 .59 .77 .70 .89 .81 .88 .54 .36 .73

Nature .48 .45 .34 .40 .51 .28 .51 .49 .64 .31 .28 .73
Transportation .35 .52 .35 .32 .27 .31 .48 .36 .45 .65 .33 .75
Wikipedia (full) .27 .48 .61 .35 .41 .35 .57 .33 .80 .55 .32 .71

Transportation Context

Contextual Projection

Adjective Projection

Fig 3. Contextual projection recovers human feature ratings. Pearson correlations between predicted feature rat-
ings using the contextual and adjective projection methods for items in the nature context (animals) and items in
the transportation context (vehicles); and empirically obtained human feature ratings for corresponding semantic
contexts. Across both nature and transportation semantic contexts, using contextual projection generated ratings
that were better aligned with human judgments compared to other models and projection methods for 18 out of
the 24 features considered and tied for best for an additional 5 out of 24 features. Furthermore, contextually-
constrained embeddings (using either projection method) predicted feature ratings best on 13 out of 24 features
and were tied for best performance for an additional 9 out of 24 features. Significance testing was done using 10
independent initializations of the model training procedure and 1,000 bootstrapped samples of the test-set items
each (Supplementary Fig. 8). Bolding and highlights indicate best (or tied for best) performing model in each col-
umn (red—contextually-constrained nature; blue—contextually-constrained transportation; green—contextually-
unconstrained).

conjunction with our canonical combined-context embedding space generated in Experiment
1b (50% nature–50% transportation, 60M words). This procedure yielded feature predictions
that were less well aligned with human feature ratings, compared to the CC models for the
relevant semantic context, but better aligned than the CC models for the irrelevant context, or
the CU models (Fig. 4 & Supplementary Fig. 9).

Together, the findings of Experiment 2 support the hypothesis that contextual projection can
recover reliable ratings for human-interpretable object features, especially when used in con-
junction with CC embedding spaces. We also showed that training embedding spaces on cor-
pora that include multiple domain-level semantic contexts substantially degrades their ability
to predict feature values, even though these types of judgments are easy for humans to make



M. C. Iordan et al. / Cognitive Science 46 (2022) 21 of 32

Dimension / 
Model Aquatic Cute Dangerous Domestic Edible Furry Human Intelligent Interesting Predatory Size Speed

Nature .90 .55 .58 .66 .75 .69 .72 .62 .48 .69 .93 .60

Transportation .77 .46 .53 .31 .45 .21 .30 .34 .50 .49 .46 .61
Wikipedia (full) .74 .77 .52 .40 .72 .63 .49 .29 .32 .60 .60 .63

Nature Context

Contextual Projection

Dimension / 
Model Comfort Cost Dangerous Elevation Interest Open Personal Size Skill Speed Useful Wheeled

Nature .37 .89 .80 .61 .81 .78 .88 .82 .85 .59 .36 .50

Transportation .48 .94 .84 .75 .80 .81 .71 .85 .90 .71 .39 .77
Wikipedia (full) .41 .92 .72 .59 .77 .70 .89 .81 .88 .54 .36 .73

Transportation Context

Contextual Projection

Combined .80 .52 .52 .29 .70 .62 .77 .60 .45 .58 .65 .75

Combined .59 .91 .81 .61 .81 .70 .86 .81 .88 .70 .35 .74

Fig 4. Combined-context embedding spaces recover feature ratings less well than CC embedding spaces. Pear-
son correlation between predicted feature ratings using contextual projection applied to the canonical combined-
context embedding space (50% nature – 50% transportation, 60M words) and empirical human feature ratings.
Across both contexts, CC embeddings were best aligned with human judgments on 15 out of the 24 features con-
sidered, while the combined-context embeddings were best or tied for best for only 7 out of 24. Significance test-
ing was done using 10 independent initializations of the model training procedure and 1,000 bootstrapped samples
of the test-set items each (Supplementary Fig. 9). Bolding and highlights indicate best (or tied for best) perform-
ing model in each column (red—contextually-constrained nature; purple—context-combined; blue—contextually-
constrained transportation; green—contextually-unconstrained).

and reliable across individuals, which further supports our contextual cross-contamination
hypothesis.

3.3. Experiment 3: Using contextual projection to improve prediction of human similarity
judgments from contextually-unconstrained embeddings

CU embeddings are built from large-scale corpora comprising billions of words that likely
span hundreds of semantic contexts. Currently, such embedding spaces are a key component
of many application domains, ranging from neuroscience (Huth et al., 2016; Pereira et al.,
2018) to computer science (Bojanowski et al., 2017; Mikolov, Yih, et al., 2013; Rossiello
et al., 2017; Toutanova et al., 2015) and beyond (Caliskan et al., 2017). Our work suggests
that if the goal of these applications is to solve human-relevant problems, then at least some of
these domains may benefit from employing CC embedding spaces instead, which would better
predict human semantic structure. However, retraining embedding models using different text
corpora and/or collecting such domain-level semantically-relevant corpora on a case-by-case
basis may be expensive or difficult in practice. To help alleviate this problem, we propose
an alternative approach that uses contextual feature projection as a dimensionality reduction
technique applied to CU embedding spaces that improves their prediction of human similarity
judgments.
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Previous work in cognitive science has attempted to predict similarity judgments from
object feature values by collecting empirical ratings for objects along different features and
computing the distance (using various metrics) between those feature vectors for pairs of
objects. Such methods consistently explain about a third of the variance observed in human
similarity judgments (Maddox & Ashby, 1993; Nosofsky, 1991; Osherson et al., 1991; Rogers
& McClelland, 2004; Tversky & Hemenway, 1984). They can be further improved by using
linear regression to differentially weigh the feature dimensions, but at best this additional
approach can only explain about half the variance in human similarity judgments (e.g., r =
.65, Iordan et al., 2018).

Here, we test the hypothesis that human similarity judgments can be better predicted from
CU embedding spaces by using contextually relevant features (cf. Experiment 2) together with
the regression methods employed in cognitive psychology experiments that attempt to predict
similarity between objects based on such features (Peterson, Abbott, & Griffiths, 2018). For
a given embedding space, we first used contextual projection to construct a 12-dimensional
subspace corresponding to the 12 object features identified for that particular semantic context
in Experiment 2 (see Supplementary Tables 3 and 4 for details on features and endpoints).
Second, we used linear regression to learn an optimal set of weights between the original
(e.g., 100-dimensional) CU embedding space and the reduced 12-dimensional subspace that
maximized the new (projected) word vectors’ ability to predict human similarity judgments.
To perform and evaluate this two-step dimensionality reduction procedure, we used cross-
validated out of sample training and prediction: we repeatedly selected 1 of the 10 test objects
in each semantic context (e.g., snake) to leave out and learned regression weights that best
predicted human similarity judgments in the empirical trials that did not involve the left-out
object (36 out of 45 trials per feature; 80% of the empirical data). Then, we used the learned
weights to make new predictions on the left-out 20% of the judgments (9 out of 45 trials per
feature, each comparison between the left-out object and the other nine test objects for the
semantic context).

The contextual projection and regression procedure significantly improved predictions of
human similarity judgments for all CU embedding spaces (Fig. 5; nature context, projec-
tion & regression > cosine: Wikipedia p < .001; Common Crawl p < .001; transporta-
tion context, projection & regression > cosine: Wikipedia p < .001; Common Crawl p =
.008). By comparison, neither learning weights on the original set of 100 dimensions in
each embedding space via regression (Supplementary Fig. 10; analogous to Peterson et al.,
2018), nor using cosine distance in the 12-dimensional contextual projection space, which is
equivalent to assigning the same weight to each feature (Supplementary Fig. 11), could pre-
dict human similarity judgments as well as using both contextual projection and regression
together. These results suggest that the improved accuracy of combined contextual projection
and regression provide a novel and more accurate approach for recovering human-aligned
semantic relationships that appear to be present, but previously inaccessible, within CU
embedding spaces.

Finally, if people differentially weight different dimensions when making similarity
judgments, then the contextual projection and regression procedure should also improve pre-
dictions of human similarity judgments from our novel CC embeddings. Our findings not only
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Fig 5. Contextual projection and linear regression significantly improve recovery of human similarity judgments
from embedding spaces (CC and CU). Contextual projection was used to generate 12-dimensional subspaces for
each embedding space corresponding to the 12 features for each semantic context. Linear regression was then
used to learn an optimal mapping between the original embedding space and the 12-dimensional feature subspace
that best predicted human similarity judgments. Graphs show Pearson correlation between human similarity judg-
ments and out-of-sample, cross-validated predicted similarity values obtained using the projection and regression
procedure (80% data used for training, 20% used for testing; averaged across 5 cross-validation folds). (a) Nature
semantic context. (b) Transportation semantic context. Error bars show 95% confidence intervals for 1,000 total
bootstrapped samples of the test-set items (see Section 2.7 for details). All differences between “projection and
regression” bars and corresponding “cosine” bars are statistically significant, p ≤ .020.

confirm this prediction (Fig. 5; nature context, projection & regression > cosine: CC nature
p = .030, CC transportation p < .001; transportation context, projection & regression >

cosine: CC nature p = .009, CC transportation p = .020), but also provide the best prediction
of human similarity judgments to date using either human feature ratings or text-based
embedding spaces, with correlations of up to r = .75 in the nature semantic context and
up to r = .78 in the transportation semantic context. This accounted for 57% (nature) and
61% (transportation) of the total variance present in the empirical similarity judgment data
we collected (92% and 90% of human interrater variability in human similarity judgments
for these two contexts, respectively), which showed substantial improvement upon the best
previous prediction of human similarity judgments using empirical human feature ratings
(r = .65; Iordan et al., 2018). Remarkably, in our work, these predictions were made using
features extracted from artificially-built word embedding spaces (not empirical human feature
ratings), were generated using two orders of magnitude less data that state-of-the-art NLP
models (∼50 million words vs. 2–42 billion words), and were evaluated using an out-of-
sample prediction procedure. The ability to reach or exceed 60% of total variance in human
judgments (and 90% of human interrater reliability) in these specific semantic contexts
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suggests that this computational approach provides a promising future avenue for obtaining
an accurate and robust representation of the structure of human semantic knowledge.

4. Discussion

Our results support the hypothesis that efforts using machine learning methods applied to
large-scale text corpora to study how semantic knowledge is organized can benefit not only
by taking local context into account (as previous approaches have done), but also by tak-
ing domain-level semantic context into account. Specifically, we showed that doing so can
reliably improve prediction of empirically measured human semantic similarity judgments
and object feature ratings. We showed that this can be done by incorporating domain-level
contextual constraints both in the construction of the training corpora (Experiments 1–2)
and/or in the methods used to extract relational information from contextually-unconstrained
embedding spaces (Experiment 3). For the latter, we described a novel, computationally
tractable method (contextual projection) that we successfully applied to (a) predicting accu-
rate feature ratings for human-relevant dimensions of objects; and (b) improving the ability
of contextually-unconstrained embedding models to predict human similarity judgments.

From a psychological and cognitive science perspective, discovering reliable mappings
between data-driven approaches and human judgments may help improve long-standing mod-
els of human behavior for tasks such as categorization, learning, and prediction. Understand-
ing how people carry out such tasks can benefit by the ability to reliably estimate similarity
between concepts, identify features that describe them, and characterize how attention may
impact these measurements—efforts that, for practical reasons, have so far focused on either
artificially-built examples (e.g., sets of abstract shapes) or small-scale subsets of cognitive
space (Iordan et al., 2018; Goldstone et al., 1997; Maddox & Ashby, 1993; Nosofsky, 1985;
Nosofsky, Sanders, & McDaniel, 2018; Osherson et al., 1991). Our work suggests that such
efforts can benefit by the use of machine learning models trained on large-scale corpora, by
taking domain-level information into account when constructing such corpora and/or inter-
preting the relationships among representations within them.

It is important to acknowledge that the results we report focus on a narrow set of stimuli
(20 objects) representing only two semantic contexts (nature and transportation), involving a
simple task (similarity judgments), and comparisons of performance to artificial neural net-
works of a particular form trained on a particular type of materials (words). The extent to
which our findings generalize to other semantic domains, tasks, and types of models or data
used to train them (e.g., images) remains a subject for future work. Nevertheless, we believe
that our findings reflect a fundamental feature of human cognitive function: the influence of
context on semantic processing, and, in particular, on similarity judgments. Decades of work
have suggested that both attention and context play an important role in similarity judgments,
and that such judgments are a fundamental building block for higher level cognitive processes
(e.g., categorization and inference; Ashby & Lee, 1991; Nosofsky, 1991; Rogers & McClel-
land, 2004; Lambon Ralph et al., 2017). While some have challenged the generality of this
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claim (e.g., see Love et al. (2004) for an example of a model eschewing this assumption, as
well as Goodman (1972), Mandera et al. (2017), and Navarro (2019) for examples of the limi-
tations of similarity as a measure in the context of cognitive processes), at the least this debate
highlights the potential value of developing more powerful tools for studying the structure of
human semantic knowledge. The work we have presented here contributes to this goal by
leveraging the development of machine learning methods to study semantic structure at scale,
and by bringing these into closer contact with what is observed from human performance.

Our selection of two particular semantic domains (nature and transportation) highlights
another important set of questions: what defines the forms of context of which people may
make use, what is their scope, and how can they be determined empirically? While many
may seem intuitively evident, such as the two we used, there are no doubt countless others,
that may vary by degree, interact with one another, and be used in subtle ways. For example,
while it may seem odd to ask which is more similar to a car, a dog or a wolf, many people
would respond “dog,” suggesting that domesticity was used as the context for the judgment.
Similarly, text corpora can be “carved” in multiple ways (for example, by selecting different
root nodes in the Wikipedia article tree) and exploring such carvings remains an interesting
direction for future work. Additionally, how representations of context are invoked for a par-
ticular use remains an important focus of work. For some domains, previous work has shown
that exposure to relevant content—either for humans (e.g., judgments pertaining to different
corpora, Kao, Ryan, Dye, & Ramscar, 2010; also see Supplementary Experiments 1–4) or for
computational models (e.g., bioinformatics, Pakhomov, Finley, McEwan, Wang, & Melton,
2016)—may improve performance for tasks or applications that involve those domains specif-
ically. Crucially, our work shows evidence that this phenomenon extends beyond restricted,
highly specialized application domains (such as biomedical research) to simple forms of
semantic judgments involving common basic-level concepts (e.g., “dog”). As noted above,
contextual effects on relationships can be subtle (both when accounting for and independent
of word homonymy) and models designed to estimate them may or may not always benefit
from context-dependent information (Peterson et al., 2018; Richie & Bhatia, 2021). As such,
the automatic identification of relevant semantic domains, as well as quantifying the interac-
tion between semantic judgments (e.g., similarity relationships) across domains, is an impor-
tant direction for future work. Additionally, the contextual projection method we put forward
and its reliance on object exemplars, rather than adjectives (Grand et al., 2018; Richie et al.,
2019) to reliably predict relative human feature ratings, suggests a potential future applica-
tion in the development of a computational, embedding-based, scalable account of semantics
for gradable adjectives both within a particular context, as well as in a context-independent
manner (Toledo & Sassoon, 2011).

From a neuroscience perspective, it is unlikely that humans retrain their long-standing
semantic representations every time a new task demands it; instead, attention is thought to
alter the context in which learned semantic structure is processed, both in behavior and in
the brain (Bar, 2004; Çukur, Nishimoto, Huth, & Gallant, 2013; Miller & Cohen, 2001;
Rosch & Lloyd, 1978). Recent advances in neuroimaging have allowed embedding-based
neural models of semantics to probe how concepts are processed across the human brain
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(Huth et al., 2016; Huth, Nishimoto, Vu, & Gallant, 2012) and to generate decoders of mental
representations that can predict human behavior from neural responses (Pereira et al., 2018).
Thus, increasing alignment between such embedding spaces and human semantic structure
will help further our understanding of the structural underpinnings of semantic knowledge
(Keung, Osherson, & Cohen, 2016; Lambon Ralph et al., 2017). As such, our results suggest
a novel neuroscientific avenue for investigating the mechanisms of how context dynamically
shifts human behavior and neural responses across large-scale semantic structure.

From a natural language processing (NLP) perspective, embedding spaces have been used
extensively as a primary building block, under the assumption that these spaces represent
useful models of human syntactic and semantic structure. By substantially improving align-
ment of embeddings with empirical object feature ratings and similarity judgments, the meth-
ods we have presented here may aid in the exploration of cognitive phenomena with NLP.
Both human-aligned embedding spaces resulting from CC training sets, and (contextual) pro-
jections that are motivated and validated on empirical data, may lead to improvements in
the performance of NLP models that rely on embedding spaces to make inferences about
human decision-making and task performance. Example applications include machine trans-
lation (Mikolov, Yih, et al., 2013), automatic extension of knowledge bases (Toutanova et al.,
2015), text summarization (Rossiello et al., 2017), and image and video captioning (Gan et al.,
2017; Gao et al., 2017; Hendricks, Venugopalan, & Rohrbach, 2016; Kiros, Salakhutdinov, &
Zemel, 2014).

In this context, one important finding of our work concerns the size of the corpora used
to generate embeddings. When using NLP (and, more broadly, machine learning) to investi-
gate human semantic structure, it has generally been assumed that increasing the size of the
training corpus should increase performance (Mikolov , Sutskever, et al., 2013; Pereira et al.,
2016). However, our results suggest an important countervailing factor: the extent to which
the training corpus reflects the influence of the same relational factors (domain-level semantic
context) as the subsequent testing regime. In our experiments, CC models trained on corpora
comprising 50–70 million words outperformed state-of-the-art CU models trained on billions
or tens of billions of words. Furthermore, our CC embedding models also outperformed the
triplets model (Hebart et al., 2020) that was estimated using ∼1.5 million empirical data
points. Together, this demonstrates that data quality (as measured by contextual relevance)
may be just as important as data quantity (as measured by total number of training words)
when building embedding spaces intended to capture relationships salient to the specific task
for which such spaces are employed. This finding may provide further avenues of exploration
for researchers building data-driven artificial language models that aim to emulate human
performance on a plethora of tasks.

Recently, new approaches have been proposed that aim to incorporate contextual influ-
ences into artificial language models, such as BERT (Devlin et al., 2019), ELMO (Peters
et al., 2018), and multisense embeddings (Cheng & Kartsaklis, 2015). Although such mod-
els have been shown to perform well on natural language tasks such as question answering,
next sentence prediction, and ambiguous pronoun comprehension, these models focus on the
effects of local context (i.e., the 10–20 words that surround a particular concept or the encom-
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passing paragraph). By comparison, our approach also takes into account the effects of global,
discourse-level semantic effects (e.g., the topic or domain being considered in the writings).
For example, BERT (Devlin et al., 2019) is considered state of the art for the tasks listed
above and outperformed the context-free Word2Vec and GloVe embedding models at predict-
ing empirical similarity judgments. However, it could not match the performance of our CC
models, despite using significantly more training data than our Word2Vec embedding models
(3 billion vs. 50–70 million words, Fig. 1). This provides strong evidence that predictions of
NLP models can be further improved by taking additional account of global, discourse-level
context. This is consistent with observations from studies in cognitive science over the past
40 years (Barsalou, 1982; Dillard et al., 1995; Forrester, 1995; Gentner, 1982; Keßler et al.,
2007; Medin & Shaffer, 1978; Medin et al., 1993; Miller & Charles, 1991; Nosofsky, 1984;
Goldstone et al., 1997; McDonald & Ramscar, 2001).

More broadly, the methods and findings we report here may help strengthen the link
between human semantic space (how we organize knowledge and use it to interact with the
world) and machine learning methods meant to automate tasks useful and directly relevant
to humans (e.g., NLP). Improvements in predicting similarity between concepts in specific
semantic contexts, as well as an efficient method of increasing the prediction performance of
existing embedding models for predicting empirical semantic judgments (contextual projec-
tion), together validate a set of computational tools that allow for more accurate and robust
representations of human semantic knowledge. These advances are likely to be helpful in the
future in understanding the underlying structure of human semantic representations and in
efforts to build artificial systems that can emulate and/or better interact with semantic repre-
sentations.
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