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Editorial

Anticipating COVID-19 intensive care unit capacity strain:
A look back at epidemiological projections in France

Incidence dynamics of emerging infectious diseases are
essentially non-linear: in a population with no pre-existing natural
immunity, a horizontally transmitted pathogen spreads more than
linearly (and exponentially in the purely theoretical situation
where each case infects the same number of individuals).
Conversely, healthcare capacities can only grow linearly, which
means that after some time they are bound not to cope with
disease incidence. Quantitative epidemiology and modelling can
shed light on different scenarios on near and medium future trends
and help us better understand the past to describe the present
[1,2].

The COVID-19 pandemic caught the vast majority of countries
unawares in early 2020, thereby challenging public health actors.
In France, the first lockdown was implemented on the 17th of
March 2020. At that time, population RT-qPCR testing was not
sufficient to accurately estimate the size of the epidemic but it was
sufficient to detect a near-exponential growth that had been going
on for weeks. The main questions rose by hospital staff, public
health authorities, and the general public (or the media) revolved
around the date and height of the peak in hospital capacity strain,
the actual cumulative incidence (following the hypothesis of
hidden herd immunity), and the lockdown efficiency. These
created an urgent need for mathematical epidemiology insights.

In a popularisation of science’s perspective, our team released
the first public estimate of the COVID-19 basic reproduction of
COVID-19 in France [3]. We also published an online simulator (on
the 6th of April 2020) to allow users to explore a variety of control
scenarios that could differ from the full lockdown implemented at
the time [4]. This counterfactual exploration made it possible to

context of an implementation of a short lockdowns series. One of
the important goals was to help defining, once the urgency of the
first wave had passed, an optimal strategy (in terms of timing and
intensity, or even age stratification, see e.g., [5,6]) for the use of
non-pharmaceutical interventions (NPIs) that would be less
restrictive than the long and strict national lockdown. Therefore,
contrary to what the media exposure suggested, detailed
mathematical models were intended as a tool for anticipating
and exploring less drastic solutions, at least in terms of their
spatiotemporal application.

Our simulator involves a discrete-time model and is designed to
be as parsimonious as possible while capturing the memory effect
of infectious history [7]. Its inferential statistical component,
which relies on hospital time series, has been refined over time and
adapted to subnational levels as well [8]. Hospital time series are
less subject to fluctuations in the testing effort than screening time
series and their lag behind the events of associated infections is on
average two weeks, which is less than mortality time series. The
projections provided by our framework were used as support to
political decision-makers and hospital service planning, especially
the Montpellier University Hospital.

In Fig. 1, we show a retrospective view of the ICU occupancy
projections we made since early September 2020. Whether it was
based on optimistic or pessimistic assumptions, the closest
simulation of each period anticipated hospitals dynamics 38 days
ahead on average. In two of the seven phases considered, however,
none of the simulated scenarios was compatible with the
observations after one month. In both cases, these were situations
where the signal characterising the effect of newly introduced
measures was still insufficient: the introduction of the national
curfew on the 16th of January 2021, and the third lockdown on the
5th of April 2021. Based on then-current estimates of the number
of reproductions, the most optimistic assumptions overestimated
the future dynamics. Note that in both cases, analyses performed
with the updated data less than two weeks after the dropout
accurately anticipated the following trends.

Let us focus on the projections published in the previous issue of
Anaesthesia Critical Care and Pain Medicine [9]. These investigated
the end of the third lockdown, which was initiated on the 3rd of
April 2021 (with a tolerance until the 5th due to the Easter
weekend) and released in several stages three weeks later. On the
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apprehend the impact of anticipating or delaying the implemen-
tation of non-pharmaceutical measures. It could also be used to
explore the consequence of an earlier lockdown release, e.g., in the
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day the projections were made, on the 29th of April, hospital data
could only reflect the first ten days of the lockdown (there is an
average 14-day delay between infections and critical care
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dmissions [7]). For the first two lockdowns, this period was
ufficient to reach the full effect of the lockdown and, therefore,
ormulate an appropriate working hypothesis to simulate the
urther dynamics. As shown in Fig. 2, the kinetics of the impact of
he third lockdown measures on the estimated temporal repro-
uction number – calculated on daily critical care admissions
ationally – was much slower than the first two, and the virus
irculation minimum was reached only 21 days later (compared to
1 and 9 for the first two).

Retrospective analyses stratified by age and space, including
various contextual variables, will be necessary to shed light on the
interrelated phenomena and their relative contributions to this
particular kinetics. However, some hypotheses can be put forward
such as a delayed effect of school closures in the transmission
chains or weather conditions less favourable to virus transmission.
The fact that the successive lifting of the measures did not give rise
to a rebound (even if a signal attributable to the reopening of
schools could be detected) and gave rise to the most optimistic

ig. 1. COVIDSIM projections of the French COVID-19 ICU bed occupancy confronted to data (September 2020–June 2021).

he solid blue line shows the 7-day rolling averaged nationwide COVID-19 bed occupancy from the Santé Publique France (SI-VIC) database. The shaded areas and the dotted

nes (when provided) correspond respectively to the range spanned by 95% of the COVIDSIM simulations and the median projection of future ICU bed occupancy. Among the

ool of (2.5 on average) scenarios investigated for each period, only the closest to reality is shown and the color of the projection indicates whether the scenario was the most

ptimistic (green), the most pessimistic (pink) or based on intermediate assumptions (orange) within the pool of projections performed the day corresponding to the vertical

ashed orange line on the left. When projections overlap, the former projections are depicted in lighter color. Only the main projections publicly released (in [9], [16], the

rench media, or on social networks) are here shown and no simulation was performed more than a day after that of the last available data point. The blue arrows shows the

uration the current projection accurately anticipates the ICU dynamics within the range of the simulations. Note that the model was improved over time, which explains the

trong confidence interval reduction from the second projection and that each run of the model simulates the whole epidemic curve from January 2020, explaining why the

ferred values are not always centred on the data corresponding to the initial time point of the projection.
ig. 2. ICU-based COVID-19 reproduction number dynamics around lockdown implementations.

he solid curves represent the mean temporal reproduction number Rt estimated by the Wallinga & Tenuis approach [13], in R [14] with the R0 package [15]) from the daily

OVID-19 ICU admissions in France provided by Santé Publique France (7-day rolling averaged to smooth weekly artefacts and 14-day earlier shifted to recover the mean

fection time [7]). The shaded areas correspond to the daily 95% confidence interval of the mean. To compare the dynamics of stimated Rt around each of the three

etropolitan France lockdowns, the times series are here overlapped and synchronised on their associated implementation day (vertical dashed black line), i.e., the 17th of

arch 2020, the 30th of October 2020 and the 5th of April 2021, respectively (though the third lockdown officially began on Apr 3th 2021, interregional mobility was

olerated during the Easter weekend). The horizontal dashed black line represents the Rt = 1 threshold under which the epidemic is under control. We see that the lag between

ckdown implementation and its maximum effect (i.e., the minimum value reached by the estimated Rt shown with a vertical dotted line) doubled for a third lockdown.
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scenario envisaged testifies to the effectiveness of the vaccination
campaign and the low risk of transmission of SARS-CoV-2 in the
open air (possibly amplified by the gradual realisation of the
contribution of the airborne route in its transmission [10]).

Deviations between observations and simulations are always
informative and provide opportunities to improve the model. In
this particular case, the readjustment of the dynamics once the
viral circulation during the 3rd lockdown was well-estimated
suggests that the problem came from the choice of parametric
hypotheses and not from the structure of the model itself. From a
formal point of view, models are analogous to a logical implication:
if condition A is fulfilled, then situation B can be expected to occur.
If the working hypotheses are not satisfied, the scenarios produced
become invalid and the simulations must be updated. This issue
mainly arises when the signal of public health policy change is still
incomplete in the hospital data.

Although at the time the extrapolation of the dynamics using
the latest data was a reasonable choice under the parsimony
principle and leaning on the experience from the two previous
lockdowns, it is important to ask whether models could have done
better. One possibility could have been to access robust early
signals of epidemic trends such as weather variations, population
Ct values [11,12], or random screening in the population. In the
United Kingdom, for example, epidemiological surveillance in
schools, monitoring of contact chains, random population screen-
ing, and sequencing provide valuable sources of signal enrichment
and model parameterisation. However, such complementary,
dense, and stratified datasets are not available for France. Another
option could have been to add even more mechanistic details in the
model, e.g., explicitly capturing school attendance dynamics. This
sounds appealing on paper but is extremely hard to achieve with a
parsimonious model. Indeed, it could be that adding a specific
component to the model perfectly captures the effect of the third
lockdown but very poorly that of the previous ones or even the rest
of the epidemic. More generally, and somehow paradoxically,
moving away from the parsimony principle informs us on specific
trends but also estranges us from the possibility to use data useful
to set up relevant scenarios.

Even if they are not the most accurate in the short term,
parsimonious models can easily explore all the possibilities in the
medium term, a time frame that is of particular interest for
decision-making. In this respect, they are suitable for informing
anticipation strategies, particularly in the context of an epidemic
outbreak, where the health impact of a delay can grow near-
exponentially, even if it means re-evaluating the timetable every
fortnight as the estimates are consolidated. This consolidation can
be accelerated if the spatial heterogeneity of the epidemic allows
delaying the implementation or the lifting of measures depending
on the territory, a source of valuable data to improve the models
and inform decision-making.

Even when they are mechanistic, i.e., here based on the explicit
dynamics of transmission, all models are wrong because they
greatly simplify the studied phenomena. Their ambition is,
therefore, not to predict precisely how many hospitalisations
there will be within a given number of days in a given place, but
rather to know, for example, how much slack can be allowed
without fearing ICU overload or the potential morbimortality
impact of a next wave.
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