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Abstract: For compound fault detection of high-speed rail vibration signals, which presents a difficult
problem, an early fault diagnosis method of an improved empirical mode decomposition (EMD)
algorithm based on quartic C2 Hermite interpolation is presented. First, the quartic C2 Hermite
interpolation improved EMD algorithm is used to decompose the original signal, and the intrinsic
mode function (IMF) components are obtained. Second, singular value decomposition for the IMF
components is performed to determine the principal components of the signal. Then, the signal is
reconstructed and the kurtosis and approximate entropy values are calculated as the eigenvalues of
fault diagnosis. Finally, fault diagnosis is executed based on the support vector machine (SVM). This
method is applied for the fault diagnosis of high-speed rails, and experimental results show that the
method presented in this paper is superior to the traditional EMD algorithm and greatly improves
the accuracy of fault diagnosis.

Keywords: empirical mode decomposition (EMD); fault diagnosis; Hermite interpolation; kurtosis;
approximate entropy

1. Introduction

High-speed trains have developed rapidly in the recent years. Compared to the traditional trains,
high-speed trains have advantages such as fast speed, strong carrying capacity, green environmental
protection, high safety, and good economic benefits. However, when the high-speed train accelerates
and brakes, the rails are prone to severe friction, crushing, and impact. Under harsh working conditions,
the rails easily fail. If these failures are not discovered in time, the defects in the rails can expand
rapidly causing the rails to break, which can result in serious safety concerns such as accidents. Hence
great importance is placed on early fault diagnosis studies of the high-speed rails.

Domestic and foreign scholars have conducted a lot of research on the safety of high-speed
rails. Yin Kai used image detection and other related technologies to detect faults in the rails [1].
Li Haiqing analyzed high-speed rail vibration signals and used an empirical mode decomposition
(EMD) algorithm to extract the rail damage information for fault detection [2]. Xu Peng et al. used
the differential eddy current detection system to detect cracks in high-speed rails and obtained the
amplitude and phase changes from the crack detection signals; then they deduced the relation between
the detection signal and the crack [3]. Xiongxiang Liu used deep convolutional neural networks
to identify the surface defects in the two-dimensional images of the rails [4]. However, the deep
learning model has high computational complexity and limited recognition accuracy, which may lead
to misjudgment. There are other nondestructive testing methods such as magnetic particle testing [5],

Sensors 2019, 19, 3300; doi:10.3390/s19153300 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19153300
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/15/3300?type=check_update&version=4


Sensors 2019, 19, 3300 2 of 20

ray detection [6], and ultrasonic testing [7]. Ultrasonic testing is widely used among them, as its
accuracy is high and it is easily operated. However, for surface micro-cracks, the detection effect is
often affected by the rail surface roughness. At present, the commonly used flaw detection vehicles
can only detect the defects on the rail surface, it is difficult to detect damage inside the rail, as internal
damage is usually extremely serious.

Common faults in rails include damage at the inner rail head, rail surface wear, damage at the rail
waist or bottom [2]. Because of the overload and strong impact during the train running, the fault
mode includes various damage, which may be a single fault mode or a combination of fault modes.
When the rail is in a fault state, its vibration signal will contain abnormal components such as impact
and friction. By analyzing the vibration signal, the fault features of the rail can be obtained at an
early stage.

Many research about the fault features extraction from vibration signals and diagnosis have
been carried out over the years. Algorithms based on the Fourier transform, such as short-time
Fourier transforms, Winger−Ville, and wavelet transforms [8–11], have played important roles, but
the performances of these algorithms is limited due to their lack of adaptability when dealing with
nonlinear nonstationary signals. Huang presented the EMD algorithm, which is a signal processing
method based on the instantaneous frequency [12]. It has strong adaptability to non-stationary signals
and has been widely used. However, the traditional EMD algorithm has problems such as curves
fitting with the overshoot, undershoot, endpoint swing, and mode mixing. Therefore, the research
of EMD focuses on the suppression of the mode mixing and optimization of the sifting procedure.
For mode mixing, scholars usually blame the existence of the intermittent signal, as the frequency
components of the signal are too close and the amplitude of the low-frequency signal is too large [13,14].
The noise-assistant methods are widely used to settle the mode mixing problem. Wu and Huang [15]
added white Gaussian noises to the original signal to strengthen the high frequency component,
which is called Ensemble Empirical Mode Decomposition (EEMD) method. Based on the EEMD,
the complementary ensemble empirical mode decomposition method (CEEMD) [16] and complete
EEMD with adaptive noise method (CEEMDAN) [17] are also the prominent methods to solve the
mode mixing problem. In recent years, extensive efforts have been carried out for mode mixing
prevention [18–21]. For optimization of sifting procedure, Yang used the B-spline interpolation method
to improve the EMD algorithm; though, the signal length was assumed to be infinite and the endpoint
effect was introduced [22]. Zhu W used the piecewise cubic Hermite interpolation method to improve
the envelope process of the EMD algorithm and obtained good results [23]; however, the curve was
bent artificially so that its smoothness was affected. Di Z et al. used the cubic trigonometric cardinal
interpolation method with adjustable shape to carry out EMD algorithm, accompanied with great
complexity [24].

In this paper, the rail vibration signal is decomposed with the quartic C2 Hermite interpolation
method improved EMD algorithm, and the intrinsic mode function (IMF) components are obtained.
Additionally, singular value decomposition [25] (SVD) for the IMF components is performed to
determine the principal components of the signal. Then, through the cross correlation coefficient
calculation between the IMF components and the original signal, the IMF components with larger
correlation coefficients are reconstructed. Then, kurtosis and approximate entropy values of the
reconstructed signal are calculated as fault eigenvalues, and finally, early faults of rails are detected
and identified by support vector machine [26] (SVM) classifier based on eigenvalues.

The contributions of the paper are as follows:

(1) In order to solve the undershoot problem caused by traditional EMD algorithm, a quartic C2

Hermite interpolation algorithm is proposed to make the curve more smooth and flexible.
(2) Adopt a low-cost and simple method of rail fault diagnosis, use the acceleration sensor to obtain

the rail vibration signal, and analyze the signal so as to carry out effective fault diagnosis.
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(3) Use quartic C2 Hermite improved-EMD algorithm to analyze the rail vibration signal and extract
the kurtosis and approximate entropy for fault diagnosis. Experiments show that this method
can diagnose the fault effectively.

The rest of the paper is arranged as follows. Section 2 introduced the traditional EMD algorithm
and its undershoot problem. Aiming at addressing this problem, an improved EMD algorithm
with quartic C2 Hermite [27] interpolation is presented. Section 3 introduced the singular value
decomposition algorithm and the signal reconstruction method used in this paper. Section 4 introduced
the fault features used in this paper, which are kurtosis and approximate entropy, and the whole
rail fault diagnosis process. Section 5 introduced relevant experiments to verify the effectiveness of
the algorithm.

2. Empirical Mode Decomposition

2.1. EMD Principle

The EMD method was proposed by Huang et al. in 1988. This method exhibits outstanding
performance in dealing with non-linear and non-stationary random signals. Therefore, it is widely used
in the fields of signal denoising, signal features extraction, and so on. The EMD method decomposes
the original signal into multiple IMF components based on the local feature time scale [12]. The
conditions that must be met for IMF are as follows:

(1) The numbers of extreme points and zero points must be equal or at most different in one over the
length of the data;

(2) At any data point, the average of the envelope of the local maximum and that of the local
minimum must be zero.

The signal that can be decomposed with the EMD algorithm needs to satisfy the following conditions:

(1) Have at least two extreme points, including a maximum point and a minimum point;
(2) A signal feature time scale is determined by the time interval between extreme points;
(3) Have no extreme points; the first-order or higher-order derivatives of inflection points can be

taken as extreme points.

For a signal named X, the EMD steps are as follows:

(1) Determine all the local extreme points of the signal, use the cubic spline interpolation to fit all
local maximum points to form the upper envelope curve, and fit all local minimum points to
form the lower envelope curve.

(2) Calculate h0(t) = x(t) −
xu

0 (t)+xd
0(t)

2 .
(3) Determine whether h0(t) satisfies the conditions of the IMF. If they are satisfied, then h0(t) is

the first IMF component; otherwise, repeat steps 1 and 2 for h0(t) until the IMF conditions are
satisfied. The IMF component after the first filtration is recorded as s1(t).

(4) Calculate the remaining signal r1(t) = x(t) − s1(t), repeat step 1 to 3 for r1(t) to get the second
IMF component, and in this way, repeat n times loop to get n IMF components. Terminate the
step when the remainder is a monotonic signal or meets a given condition.

2.2. Undershoot

The signal filtration process is the most important part of the EMD algorithm and directly
affects the decomposition results. Traditionally, when the cubic spline curve is used to fit extreme
points to form the envelope curve, the undershoot phenomenon easily occurs. As shown in Figure 1,
the upper envelope curve is fitted by cubic spline interpolation. The ideal upper envelope curve
should satisfy xc(i) ≥ x(i),∀i = 1, 2, · · · , N anywhere. However, there are two places where the
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values of the envelope curve are less than those of the original signal, and this phenomenon is called
“undershoot”. The envelope curve cannot surround the original signal curve completely, resulting in
meaningless IMF components during the decomposition process, or signal distortion during the signal
reconstruction process.
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Figure 1. Undershoot phenomenon.

The reason for the undershoot phenomenon is that the traditional fitting algorithm with cubic
spline interpolation only satisfies C1 continuous, such that the shape is fixed under the given conditions
and lacks flexibility. So the fitting performance is poor when the non-linear and non-stationary signal
changes greatly.

2.3. Improved EMD Algorithm

In order to solve the drawbacks of the method with cubic spline interpolation, the trigonometric
interpolation method was used to fit the envelope curve [24]. Yang proposed a method with piecewise
cubic spline interpolation; however, the method has poor continuity and only satisfies C1 continuous [22].
Oberlin T proposed a method with which the envelope curve can be constructed directly to replace
the method with cubic spline interpolation [28]; Zhu Weifang used a method with piecewise cubic
Hermite interpolation to fit the envelope curve [23], which mainly used Lagrangian method to get the
minimum value and optimized the derivative value at extreme points. However, this method also
does not satisfy C2 continuous. Some common interpolation methods and their pros and cons are
shown in Table 1.

Table 1. Common interpolation methods and their advantages and disadvantages.

Interpolation Methods Advantages Disadvantages

Cubic Spline (CS) Common algorithm, Overshoot and undershoot,
CTCP [24] good flexibility high computational complexity

B-Spline (BS) [22] Improve the local characteristics of
EMD algorithm

The endpoint extension is
assumed to be infinite, and the

endpoint effect is not considered.

OS [28] Adaptive and better than cubic spline High computational complexity
and poor smoothness.
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Table 1. Cont.

Interpolation Methods Advantages Disadvantages

OPCH [23]

Taking the difference between
extremes as the cost function, the

results are more accurate and
reasonable than cubic spline

Slow computation speed and do
not satisfy C2 continuous

especially when there are many
extreme points and cause

undershooting.

MPCI [29]

Through strict theoretical analysis, it is
proved that it can solve the overshoot

problem caused by the cubic spline
interpolation

Only satisfy C1 continuous, the
curve smoothness is poor and

undershoot.

Piecewise Power Function
Algorithm (PPFA) [30]

It is more flexible than cubic spline
interpolation, and the curve is smooth.

There is a contradiction between
smoothness and flexibility and

undershooting occurs.

In this paper, the EMD algorithm is improved by the quartic C2 Hermite interpolation [27].
Suppose there are n + 1 nodes in the interval [a, b], which satisfy x0 < x1 < · · · < xn, then the traditional
standard cubic Hermite basis function is

ai(t) = 1− 3t2 + 2t3

ai+1(t) = 3t2
− 2t3

bi(t) = t− 2t2 + t3

bi+1(t) = −t2 + t3

(1)

where t = x−xi
xi+1−xi

.
This is convenient for the calculation with the standard cubic Hermite interpolation method,

which is a common method used in engineering. However, the shape of the fitting curve obtained
from this method is fixed, which lacks adaptability and only satisfies C1 continuous. In this paper, a
quartic C2 Hermite interpolation method is presented, which adds a control factor to adjust the shape
of the curve. The basis function is as follows:

Fi(t) = λit4
− 2(λi − 1)t3 + (λi − 3)t2 + 1

Fi+1(t) = −λit4 + 2(λi − 1)t3
− (λi − 3)t2

Gi(t) = λit4
− (2λi − 1)t3 + (λi − 3)t2 + t

Gi+1(t) = −λit4 + (2λi − 1)t3
− (λi − 3)t2

(2)

where λ is a control factor to adjust the shape of the curve.
The basis function satisfies such conditions as follows:

Fi(0) = Fi+1(1) = 1
Fi(1) = Fi+1(0) = 0;
F′i (0) = F′i (1) = F′i+1(0) = F′i+1(1) = 0
Gi(1) = Gi(1) = Gi+1(0) = Gi+1(1) = 0
G′i (0) = G′i+1(1) = 1
G′i (1) = G′i+1(0) = 0
Fi(t) + Fi+1(t) = 1

(3)

The method with quartic Hermite interpolation has the same properties as the one with traditional
cubic Hermite interpolation, but the shape of the curve is more flexible due to the parameter λ.
When the parameter λ equals 0, the curve is standard cubic Hermite spline curve, which satisfies C1

continuous. The quartic Hermite spline curve at the interval of [a, b] is

Ci(x) = Fi(t)yi + Fi+1(t)yi+1 +
.
yiGi(t)∆xi +

.
yi+1Gi+1(t)∆xi, i = 0, 1, · · · , n− 1 (4)
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where yi is the function value of curve,
.
yi is its first derivative value, and ∆xi = xi+1 − xi. If the curve

satisfies C2 continuous, the second derivative must satisfy the condition as follows:

C′′ (x− 0) = C′′ (x + 0) (5)

And the continuous equation by calculation is as follows

λi
(
∆yi + ∆xi∆

.
yi

)
∆x2

i+1 − λi+1
(
∆yi+1 + ∆xi+1∆

.
yi+1

)
∆x2

i

= −∆x2
i+1

(
3∆yi + ∆xi

( .
yi + 2

.
yi+1

))
− ∆x2

i
[
3∆yi+1 + ∆xi+1

( .
yi+2 + 2

.
yi+1

)] (6)

When λ satisfies the constraint condition as in Equation (6), the plotted curve will satisfy C2

continuous and it will be smoother.

2.4. The Shape of the Envelope Curve Determination

It is known from Section 2.3 that the shape of the fitting curve with quartic C2 Hermite interpolation
is controlled by the parameter λ, and the curve cluster can be obtained with a different parameter λ.
This paper draws the idea from reference [23] to find the curve whose length is the shortest in the
curve cluster formed by different λ. Generally speaking, excessive length of curve will cause fitting
overshoot. The curve length can be expressed as

L =
n−1∑
i=1

∫ xi+1

xi

√
1 +

.
C(t)2dt, i = 1, 2, · · · n− 1 (7)

The conditions for searching the optimal curve are as follows:

minL

st.



0 < λ < 2

L =
n−1∑
i=1

∫ xi+1
xi

√
1 +

.
C(t)2dt, i = 1, 2, · · · n− 1

Ci(x) = Fi(t)yi + Fi+1(t)yi+1 +
.
yiGi(t)∆xi +

.
yi+1Gi+1(t)∆xi, i = 0, 1, · · · , n− 1

λi
(
∆yi + ∆xi∆

.
yi

)
∆x2

i+1 − λi+1
(
∆yi+1 + ∆xi+1∆

.
yi+1

)
∆x2

i

= −∆x2
i+1

(
3∆yi + ∆xi

( .
yi + 2

.
yi+1

))
− ∆x2

i
[
3∆yi+1 + ∆xi+1

( .
yi+2 + 2

.
yi+1

)]
(8)

After many experiments, it is found that the optimal curves will appear only when λ < 2. If λ is
too large, the smoothness of the curve will be affected. The shape of the curve will be determined by
using the genetic algorithm to find the optimal value of λ. The detailed steps are as follows.

(1) Code the variables λ ∈ (0, 2], use binary coding, and divide the interval into 1024 subintervals.
(2) Calculate the fitness value of each individual according to Equation (8).
(3) Selection operator, elite individual preservation strategy and rotation method selection operator

are used to calculate the probability of each selected individual and the cumulative probability in

the whole population fitness Pi =
f itness(i)∑

population
f itness(i) , Qi =

i∑
j=1

P j.

(4) Set the crossover probability pc, and generates new individuals according to the single-point
crossover rule.

(5) Set the mutation probability pm. The mutation individual is determined randomly and the reverse
mutation operator is used for mutation operation.

(6) Repeat steps (2)~(5) until the termination condition is reached.
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3. Singular Value Decomposition and Signal Reconstruction

The matrix singular value is usually used for signal feature extraction because of its good
stability [20]. The signal matrix named Xm×n is decomposed as follows:

X = UΣVT

= [u1, u2, · · · , un]


δ1

δ2

· · ·

δn

[v,, v2, · · · , vn]
(9)

where U is matrix of left singular vectors and V is matrix of right singular vectors. Σ =

diag(δ1, δ2, · · · , δn) is a singular value matrix and satisfies δ1 ≥ δ2 ≥ · · · ≥ δn.
The percentage of signal components is calculated as

λK =

k∑
i=1

δi

N∑
j=1

δ j

, k = 1, 2 · · ·N (10)

where λk represents the percentage of the first k signal components, and N is the number of IMF
components obtained by EMD. The threshold value of percentage is set to 0.9, which means 90% of
the original signal can be obtained. The IMF components are reordered according to the correlation
coefficient calculated from each IMF and the original signal X. When λk > 0.9, the first k IMF
components are used for signal reconstruction, and the remaining N−k IMF components are abandoned.
The cross-correlation coefficient can be expressed as follows:

γ(X(t), IMFi) =

∣∣∣cov(X(t), IMFi)
∣∣∣√

var(X(t), X(t))•var(IMFj, IMFi)
(11)

where cov () represents the covariance function, var () represents the variance function, X(t) is the
original signal, and IMFi represents the ith IMF component obtained by EMD. The range of the
cross-correlation coefficient is [0,1], which reflects the matching degree between these two signals. The
closer the value is to 1, the closer the component is to the original signal.

4. Fault Diagnosis Method

4.1. Fault Feature

Kurtosis is a dimensionless parameter that reflects the characteristics of signal distribution

K =
E(x− µ)4

δ4
(12)

where x is the signal to be analyzed, µ is the signal mean value, and δ is the signal standard deviation.
The fault rail vibration signals are usually accompanied by impact components to which the kurtosis is
sensitive [31], so the larger the kurtosis value is, the higher the proportion of impact components in the
signal, therefore the kurtosis can reflect the rail fault.

Approximate entropy can measure the complexity of the signal [32]. The more complex the signal
mode is, the more irregular the signal, and the larger the approximate entropy. The approximate
entropy calculation method is as follows.
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(1) The original signal is called X, which is an m-dimensional vector composed of continuous points
on a time scale

Xi = [x(i), x(i + 1), · · · , x(i + m− 1)], i = 1, · · · , N −m + 1 (13)

(2) Calculate vector distance

d[X(i), X( j)] = max
k=0,··· ,m−1

(∣∣∣x(i + k) − x( j + k)
∣∣∣) (14)

(3) Given a threshold of similar tolerance represented by variable r, calculate each vector distance
and get the number of less than r, which is expressed as Cm

i (r),

Cm
i (r) =

1
N−m Cont(d[X(i), X( j)] < r)

i, j = 1, · · · , N −m + 1, i , j
(15)

(4) Calculate the log values of Cm
i (r) and get their mean value expressed as φm(r),

φm(r) =
1

N −m + 1

N−m+1∑
i=1

ln Cm
i (r) (16)

(5) Calculate the approximate entropy,

ApEn(m, r) = lim
N→∞

(
φm(r) −φm+1(r)

)
(17)

4.2. Fault Diagnosis Steps

The fault diagnosis steps are as follows and the flow chart is shown in Figure 2.

(1) Use an acceleration sensor to obtain the original vibration signal;
(2) Process the vibration signal with the EMD algorithm based on quartic C2 Hermite interpolation

described in Sections 2.3 and 2.4 to obtain the IMF components;
(3) Process the acquired IMF components by using the SVD algorithm to obtain a singular value matrix;
(4) Determine the number of primary components of the signal and reconstruct the signal;
(5) Calculate the kurtosis and approximate entropy of the reconstructed signal as the eigenvalues of

fault diagnosis;
(6) Train the SVM classifier with kurtosis and approximate entropy values of training samples;
(7) Classify by the SVM classifier based on the different eigenvalues.
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Figure 2. Flow chart of fault diagnosis.

5. Experiment

5.1. EMD Envelope Experiment

The algorithms with quartic C2 Hermite interpolation and cubic Hermite interpolation are applied
to the vibration signal processing. Figure 3 shows a part of the vibration signal, where the black curve
is the original signal. The red is the upper envelope curve fitted with cubic Hermite interpolation
algorithm and the blue is the upper envelope curve with the quartic C2 Hermite interpolation algorithm.
It can be seen from Figure 3 that obvious overshoot will appear with the cubic Hermite interpolation
algorithm during non-stationary signal processing, and undershoot phenomenon appear in many
positions (shown in the zoom Figure 3). But the quartic C2 Hermite interpolation algorithm presented
in this paper effectively solves the overshoot and undershoot problem.
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presented in this paper. The IMF components obtained by EMD based on the quartic C2 Hermite
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Figure 4. Intrinsic mode function (IMF) components obtained by the empirical mode decomposition
(EMD) based on the C2 Hermite interpolation algorithm.
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Figure 5. Components spectrograms obtained by EMD based on the C2 Hermite interpolation algorithm.

Mode mixing may appear in the decomposition [12]. Mode mixing means that an IMF component
contains extremely different feature time scales or similar feature time scales distributed in different
IMF components, which is caused by uneven distribution of signal extremums, signal interruption, or
pulse, etc. The common method to solve mode mixing is to add white noise to the signal to suppress
abnormal signal [15,17].

Index of orthogonality (IO) and index of energy conservation (IEC) are important indexes for
evaluating the EMD results. The expressions are presented in Equations (19) and (20). The IO shows
the orthogonality of the IMF component obtained with the EMD algorithm. The closer the value is to 0,
the better the orthogonality between the IMF components. The IEC shows the energy conservation
after signal decomposition. The closer the value is to 1, the higher the energy conservation by EMD.

IO =
T∑

t=0


N∑

i=1

N∑
j=1

fi(t) f j(t)

X2(t)

 (19)

IEC =
∑
t=0

n∑
i=1

∣∣∣ fi(t)∣∣∣2∣∣∣X(t) − r(t)
∣∣∣2 (20)

where X(t) represents the original signal, fi(t) and f j(t) represent the i-th and j-th IMF components by
EMD respectively, and r(t) is a trend item.

Objective evaluation indicators are used to validate the algorithm presented in this paper, the
result is shown in Table 2. The IO and IEC obtained with the algorithm presented in this paper are
better than those obtained with the traditional cubic Hermite interpolation algorithm and piecewise
cubic Hermite interpolation algorithm.
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Table 2. Calculation results.

Indicators Cubic Hermite Interpolation
Algorithm

Piecewise Cubic Hermite
Interpolation Algorithm Proposed Algorithm

IO 0.08899 0.05211 0.04573
IEC 0.3129 0.6534 0.9123

5.3. The Effect of Noise on the Quartic C2 Hermite Improved Empirical Mode Decomposition Algorithm

The influence of noise on the performance of EMD algorithm is analyzed through simulation
experiments, and the simulation signal is:

s = sin(2π× 20t) + sin(2π× 100t) + noise (21)

The signal is composed of sinusoidal signal with frequency of 20 Hz and 100 Hz superimposed
with noise signal. The sampling frequency is set as 1000 Hz, the signal length is 1 s, and the noise
variance is 0–1. Under different noises, the algorithm proposed in this paper is used to process the signal
respectively. Figure 6 shows the IMF component with noise variance of 0.01, IMF2 is approximately a
sinusoidal signal of 100 Hz, and IMF3 is approximately a sinusoidal signal of 20 Hz. The blue lines in
the figure are IMF decomposed by EMD algorithm, and the gray lines are sinusoidal signals of 100 Hz
and 20 Hz respectively. It can be seen from the figure that the algorithm in this paper can effectively
decompose the signal and extract typical components of the signal.
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Figure 7 shows the spectrum diagrams of each IMF component decomposed when the variances
are 0.01, 0.1, 0.3, 0.5, 0.7, and 1 respectively, and the abscissa is represented by log 10. As can be seen
from the figure, the increase of noise has a certain impact on the EMD decomposition and has a more
significant impact on the high-frequency region. However, signal frequency characteristics are not
affected, even when the noise variance is large.

The noise variance is increased from 0 to 1 with an interval of 0.01, and the EMD decomposition
is carried out and the correlation coefficient is calculated. As shown in Figure 8, the red line is
the correlation coefficient of IMF2 and 100 Hz sinusoidal signal, and the blue line is the correlation
coefficient of IMF3 and 20 Hz sinusoidal signal. It can be seen that, with the increase of noise variance,
the correlation coefficients of both components show a decreasing trend, and the reduction range of
20 Hz signal is significantly smaller than that of the 100 Hz signal. Since EMD algorithm has this
characteristic, EMD algorithm can be used for signal noise reduction. In particular, when the target
signal is distributed in the low-frequency component, the denoising effect is good. If the target signal
frequency is high, the denoising effect is generally poor.
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Figure 8. Correlation coefficient of two components under different noise variances.

5.4. Fault Eigenvalues Extracted from Rail Vibration Signal

The proposed algorithm is applied to vibration signal analysis to validate its effectiveness. The
composition of the test system is shown in Figure 9, the rail is made with 60 kg/m standard steel. The
sensors are mounted on the bottom of the rail so that the effect on train operation and track mechanical
strength is minimal. The sensor used in the experiment is CYD103 piezoelectric acceleration sensor,
its sensitivity is 20 pC/g. The sensor is connected to the YE5853 charge amplifier, which is used to
modulate and transform the signals collected by the acceleration sensor for display on the computer
and subsequent processing. The signal sampling frequency is 50 kHz. The IMF components of the
signal obtained by EMD is as shown in Figure 10.
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Figure 10. IMF components obtained by EMD. (a) IMF 1 to IMF 5, (b) IMF 6 to IMF 10.

Singular value decomposition is performed for the IMF components obtained; the results are
shown in Table 3. Suppose the accumulated percentage of principal components is 90%, then it can be
seen that the percentage of the first eight principal component reaches 92.24%. So the signal can be
reconstructed by using the first eight IMF components.

Table 3. Principal component of signal.

No. Eigenvalues Percentage of Current
Eigenvalue in Total

Accumulated Percentage of the First K
Eigenvalues in Total

1 29.2743 0.294605 0.294605
2 19.65641 0.197814 0.492419
3 12.7543 0.128354 0.620773
4 10.71655 0.107847 0.72862
5 5.604914 0.056406 0.785026
6 4.869944 0.049009 0.834035
7 4.58757 0.046167 0.880203
8 4.177541 0.042041 0.922244
9 3.021806 0.03041 0.952654

10 2.746282 0.027637 0.980292
11 1.95839 0.019708 1

As is shown in Figure 11, the cross correlation coefficient calculations between the IMF components
and the original signal are performed. The first eight IMF components with high cross correlation
coefficient are used for reconstruction.

According to a large number of investigations, the main failure forms of high-speed rails in China
are rail surface peeling and corrugation, which is shown in Figure 12.
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• Rail surface peeling damage

During train operation, due to the large braking, sliding friction is produced by the locked wheels
on the rail surface, causing the local temperature to rise rapidly. When the rail cools, the raw surface of
the hard and brittle metal gets damaged, resulting in the rail surface peeling phenomenon due to the
large cyclical impact between the wheel and rail.

As shown in Figure 13, the signal waveform and frequency spectrum of a typical normal rail
surface are mainly distributed in the low frequency part, usually less than 500 Hz. However, for the
rail surface with peeling damage, the signal has an obvious distribution in the high frequency band,
as shown in Figure 14, and the main frequency increases significantly at 1000 Hz. By calculation, its
kurtosis value is 42.3 and approximate entropy is 0.332, which can effectively identify the rail faults.
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Figure 13. Analysis of a normal rail vibration signal. (a) Waveform; (b) frequency spectrum. 
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• Corrugation damage

Undulating wear is the roughness of the rail surface along the longitudinal direction, which appears
most often in mountain areas. The causes are complex, involving rolling contact mechanics, material
friction, vehicle coupling dynamics, and vibration load, vibration frequency, material characteristics,
foundation, etc.

As shown in Figure 15, the signal under undulating wear usually generates abnormal vibration in
the frequency region corresponding to the middle frequency band and the undulating frequency band.
Since the excitation frequency is the same as the natural frequency of the rail, resonance happens, so
the signal has a large amount of energy. Its kurtosis value is 32.8 and approximate entropy is 0.735.
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• Fault identification

A large number of experiments show that the fault signals’ kurtosis and approximate entropy
calculated from corresponding reconstructed signals are both too large. The approximate entropy of
fault signals is usually greater than 0.4 and the kurtosis is usually greater than 20. In this experiment,
100 sets of sample signals are used for identification and classification. The classification results based
on the SVM and the fault identification accuracy of the proposed method in the paper are shown
in Figures 16 and 17, respectively. It can be seen that all signal types can be identified effectively
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except one, which is taking the corrugation damage fault as a normal one. The reason may be the
influence of the rail surface roughness. When the kurtosis and approximate entropy calculated from
original signals are directly used for identification and classification, there appear eight classification
errors totally; the reason may be the influence of surface roughness. Therefore this kind of direct
classification accuracy is very low. Besides, three classification errors appear with EMD algorithm
based on the traditional cubic Hermite interpolation and the piecewise cubic Hermite interpolation. So
it can be concluded that the method presented in this paper improves classification accuracy obviously.
Figure 18 shows the accuracy of feature extraction and SVM recognition proposed in this paper by the
eight methods mentioned in Table 1, which are CS (Cubic Spline), CTCP (Cubic Trigonometric Cardinal
Precise spline [24]), BS (B-Spline [22]), OS (Direct constrained optimization [28]), OPCH (Optimized
Piecewise Cubic Hermite [23]), MPCI (Monotone Piecewise Cubic Interpolation [29]), PPFA (Piecewise
Power Function Algorithm [30]). By comparison, it is found that the comprehensive accuracy of this
algorithm is superior to other algorithms.

Sensors 2019, 19, x 17 of 20 

Sensors 2019, 19, x www.mdpi.com/journal/sensors 

0 100 200 300 400 500 600 700
-60

-40

-20

0

20

40

60

Ac
ce

le
ra

tio
n 

(g
)

Time (ms)

 

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
ce

le
ra

tio
n 

(g
)

Frequency (Hz)

 
(a) (b) 

Figure 15. Analysis of a rail vibration signal with corrugation damage. (a) Waveform; (b) frequency 
spectrum. 

• Fault identification 

A large number of experiments show that the fault signals’ kurtosis and approximate entropy 
calculated from corresponding reconstructed signals are both too large. The approximate entropy of 
fault signals is usually greater than 0.4 and the kurtosis is usually greater than 20. In this 
experiment, 100 sets of sample signals are used for identification and classification. The classification 
results based on the SVM and the fault identification accuracy of the proposed method in the paper 
are shown in Figures 16 and 17, respectively. It can be seen that all signal types can be identified 
effectively except one, which is taking the corrugation damage fault as a normal one. The reason 
may be the influence of the rail surface roughness. When the kurtosis and approximate entropy 
calculated from original signals are directly used for identification and classification, there appear 
eight classification errors totally; the reason may be the influence of surface roughness. Therefore 
this kind of direct classification accuracy is very low. Besides, three classification errors appear with 
EMD algorithm based on the traditional cubic Hermite interpolation and the piecewise cubic 
Hermite interpolation. So it can be concluded that the method presented in this paper improves 
classification accuracy obviously. Figure 18 shows the accuracy of feature extraction and SVM 
recognition proposed in this paper by the eight methods mentioned in Table 1, which are CS (Cubic 
Spline), CTCP (Cubic Trigonometric Cardinal Precise spline [24]), BS (B-Spline[22]), OS (Direct 
constrained optimization [28]), OPCH (Optimized Piecewise Cubic Hermite [23]), MPCI (Monotone 
Piecewise Cubic Interpolation [29]), PPFA (Piecewise Power Function Algorithm [30]). By 
comparison, it is found that the comprehensive accuracy of this algorithm is superior to other 
algorithms. 

 
Figure 16. Classification result based on support vector machine (SVM) of the proposed method. 

Figure 16. Classification result based on support vector machine (SVM) of the proposed method.
Sensors 2019, 19, x 18 of 20 

Sensors 2019, 19, x www.mdpi.com/journal/sensors 

0 20 40 60 80 100

Sample

 Normal  Peeling damage  Corrugation damage  False

Normal

Peeling

Corrugation

 
Figure 17. Identification accuracy of the proposed method. 

99

81

94 91 88 90 92
85

0

20

40

60

80

100

Ac
cu

ra
cy

Proposed
Method

CS BSCTCP OS OPCH MPCI PPFA

%

Algorithms  
Figure 18. Identification accuracy of different algorithms. 

6. Conclusions 

Addressing the difficulties in rail compound fault diagnosis and the undershoot problem in 
vibration signal analysis based on the traditional EMD algorithms, an EMD algorithm based on the 
quartic C2 Hermite interpolation is presented in this paper. It replaces the traditional cubic Hermite 
interpolation algorithm and improves the performance of the EMD algorithm, and the undershoot 
problem in signal filtration based on the EMD algorithm is reduced effectively. As described, the 
principle components of the signal can be determined and reconstructed after SVD and cross 
correlation coefficient calculation. Then kurtosis and approximate entropy of the reconstructed 
signal are calculated as fault eigenvalues, which are used to classify the fault based on the SVM. 
Experimental results show that the EMD algorithm based on quartic C2 Hermite interpolation 
presented in this paper improves classification accuracy greatly. 

Figure 17. Identification accuracy of the proposed method.



Sensors 2019, 19, 3300 18 of 20

Sensors 2019, 19, x 18 of 20 

Sensors 2019, 19, x www.mdpi.com/journal/sensors 

0 20 40 60 80 100

Sample

 Normal  Peeling damage  Corrugation damage  False

Normal

Peeling

Corrugation

 
Figure 17. Identification accuracy of the proposed method. 

99

81

94 91 88 90 92
85

0

20

40

60

80

100

Ac
cu

ra
cy

Proposed
Method

CS BSCTCP OS OPCH MPCI PPFA

%

Algorithms  
Figure 18. Identification accuracy of different algorithms. 

6. Conclusions 

Addressing the difficulties in rail compound fault diagnosis and the undershoot problem in 
vibration signal analysis based on the traditional EMD algorithms, an EMD algorithm based on the 
quartic C2 Hermite interpolation is presented in this paper. It replaces the traditional cubic Hermite 
interpolation algorithm and improves the performance of the EMD algorithm, and the undershoot 
problem in signal filtration based on the EMD algorithm is reduced effectively. As described, the 
principle components of the signal can be determined and reconstructed after SVD and cross 
correlation coefficient calculation. Then kurtosis and approximate entropy of the reconstructed 
signal are calculated as fault eigenvalues, which are used to classify the fault based on the SVM. 
Experimental results show that the EMD algorithm based on quartic C2 Hermite interpolation 
presented in this paper improves classification accuracy greatly. 

Figure 18. Identification accuracy of different algorithms.

6. Conclusions

Addressing the difficulties in rail compound fault diagnosis and the undershoot problem in
vibration signal analysis based on the traditional EMD algorithms, an EMD algorithm based on the
quartic C2 Hermite interpolation is presented in this paper. It replaces the traditional cubic Hermite
interpolation algorithm and improves the performance of the EMD algorithm, and the undershoot
problem in signal filtration based on the EMD algorithm is reduced effectively. As described, the
principle components of the signal can be determined and reconstructed after SVD and cross correlation
coefficient calculation. Then kurtosis and approximate entropy of the reconstructed signal are calculated
as fault eigenvalues, which are used to classify the fault based on the SVM. Experimental results show
that the EMD algorithm based on quartic C2 Hermite interpolation presented in this paper improves
classification accuracy greatly.
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