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Abstract

Prior studies have used graph analysis of resting-state magnetoencephalography

(MEG) to characterize abnormal brain networks in neurological disorders. However, a

present challenge for researchers is the lack of guidance on which network construc-

tion strategies to employ. The reproducibility of graph measures is important for their

use as clinical biomarkers. Furthermore, global graph measures should ideally not

depend on whether the analysis was performed in the sensor or source space. There-

fore, MEG data of the 89 healthy subjects of the Human Connectome Project were

used to investigate test–retest reliability and sensor versus source association of

global graph measures. Atlas-based beamforming was used for source reconstruction,

and functional connectivity (FC) was estimated for both sensor and source signals in

six frequency bands using the debiased weighted phase lag index (dwPLI), amplitude

envelope correlation (AEC), and leakage-corrected AEC. Reliability was examined

over multiple network density levels achieved with proportional weight and orthogo-

nal minimum spanning tree thresholding. At a 100% density, graph measures for most

FC metrics and frequency bands had fair to excellent reliability and significant sensor

versus source association. The greatest reliability and sensor versus source associa-

tion was obtained when using amplitude metrics. Reliability was similar between sen-

sor and source spaces when using amplitude metrics but greater for the source than

the sensor space in higher frequency bands when using the dwPLI. These results sug-

gest that graph measures are useful biomarkers, particularly for investigating func-

tional networks based on amplitude synchrony.
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1 | INTRODUCTION

Over the past two decades, graph theoretical analysis of resting-state

brain networks has increasingly been applied to the investigation of a

wide variety of neurological, neuropsychiatric, and neurodevelopmental

conditions (Hallquist & Hillary, 2019; Liu et al., 2017). Brain networks

are often derived from structural connectivity analysis of diffusion ten-

sor imaging (DTI) and functional connectivity (FC) analysis of functional

magnetic resonance imaging (fMRI), magnetoencephalography (MEG),

electroencephalography (EEG), or intracranial EEG (iEEG). Global graph

measures characterize the overall network topology and include mea-

sures of functional integration, functional segregation, and network syn-

chronization capability (Boccaletti, Latora, Moreno, Chavez, &

Hwang, 2006; Rubinov & Sporns, 2010). Nodal graph measures charac-

terize individual node properties and the influence of the nodes on the

network (Rubinov & Sporns, 2010). Many of these measures have been

shown to reflect disease-related abnormalities in the brain networks

of patients with epilepsy (Garcia-Ramos, Song, Hermann, &

Prabhakaran, 2016; Pourmotabbed, Wheless, & Babajani-Feremi, 2020;

Quraan, McCormick, Cohn, Valiante, & McAndrews, 2013), Alzheimer's

disease (Hojjati, Ebrahimzadeh, & Babajani-Feremi, 2019; Khazaee,

Ebrahimzadeh, & Babajani-Feremi, 2015; Stam et al., 2009), schizophre-

nia (Hadley et al., 2016; Jalili & Knyazeva, 2011), autism (Tsiaras

et al., 2011; Zeng et al., 2017), or other disorders. This suggests that

graph measures have the potential to be useful as clinical biomarkers.

A present challenge for researchers is that there are many avail-

able graph measures, FC metrics, and network construction strategies

to choose from. Model-based metrics of FC quantify the linear phase,

amplitude, or power interactions between oscillating signals whereas

model-free metrics based on information theory can quantify both

non-linear and linear interactions (Bastos & Schoffelen, 2015). For

MEG and EEG, the FC can be estimated based on the sensor signals

or after projection of the sensor signals to the source space. In the

sensor space, volume conduction or field spread of common source

activity can introduce spurious inflations in the connectivity estimate

(Nolte et al., 2004). Source reconstruction does not completely miti-

gate this effect because of the imperfect unmixing of the sources,

which results in spatial leakage of source activity (Schoffelen &

Gross, 2009). Therefore, several FC estimation techniques have been

proposed that are robust against the effects of volume conduction,

field spread, and source leakage (Brookes, Woolrich, & Barnes, 2012;

Colclough, Brookes, Smith, & Woolrich, 2015; Nolte et al., 2004;

Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011).

After construction of the brain networks, weak and insignificant

connections are often removed via topological filtering (Rubinov &

Sporns, 2010). A standard topological filtering approach applies a pro-

portional weight threshold, where a certain percentage (i.e., density) of

the strongest connections is retained and the rest of the connections

are discarded (Rubinov & Sporns, 2010). Another popular approach is

the formation of a minimum spanning tree (MST) that, unlike propor-

tional thresholding, does not require specification of a particular density

and ensures all the nodes remain connected to the network (Stam

et al., 2014). However, MST thresholding typically results in very sparse

networks and is problematic for the computation of several graph mea-

sures (such as those based on triangular connections) (Tewarie, van

Dellen, Hillebrand, & Stam, 2015). A thresholding method has been

introduced as an improvement to the MST and is based on the aggrega-

tion of multiple orthogonal MSTs (OMSTs) to achieve a target density

level (Dimitriadis, Antonakakis, Simos, Fletcher, & Papanicolaou, 2017;

Dimitriadis, Salis, Tarnanas, & Linden, 2017). An open problem for

researchers is choosing which thresholding method to apply as well as

finding the optimal density level.

The reproducibility of the graph measures across multiple scan-

ning sessions is an important criterion for their use as biomarkers, par-

ticularly for the investigation of disease or treatment progression

(Deuker et al., 2009; Welton, Kent, Auer, & Dineen, 2015). Therefore,

the test–retest reliability can provide guidance to researchers on

which network construction strategies to employ. Previous resting-

state studies have examined the test–retest reliability of FC metrics,

nodal graph measures, and global graph measures derived from fMRI

(Ball, Goldstein-Piekarski, Gatt, & Williams, 2017; Dimitriadis, Salis,

et al., 2017; Liao et al., 2013; Shehzad et al., 2009), EEG (Hardmeier

et al., 2014; Kuntzelman & Miskovic, 2017; van der Velde, Haartsen,

& Kemner, 2019), and MEG (Babajani-Feremi, Noorizadeh,

Mudigoudar, & Wheless, 2018; Colclough et al., 2016; Deuker

et al., 2009; Dimitriadis, Routley, Linden, & Singh, 2018; Garces,

Martin-Buro, & Maestu, 2016; Jin, Seol, Kim, & Chung, 2011). How-

ever, to the best of our knowledge, test–retest reliability analysis has

not been performed on global graph measures derived from resting-

state MEG (rs-MEG) in the source space. One of the goals of our

study was to address this gap in the literature.

Our study compared the test–retest reliability of rs-MEG global

graph measures for three FC metrics, in the sensor and source

spaces, and across a wide range of network density levels. The FC

metrics included a metric of phase synchrony (i.e., the debiased

weighted phase lag index [dwPLI]) and metrics of amplitude syn-

chrony (i.e., the amplitude envelope correlation [AEC] and the

leakage-corrected AEC [lcAEC]). The AEC is sensitive to common

source effects while the dwPLI and lcAEC are insensitive. Both the

proportional and OMST methods were used for thresholding in order

to determine which method resulted in a greater reliability at each

density level. In addition to the reliability analysis, the association

between the graph measures of the sensor and source spaces was

also examined. Ideally, measures that characterize the global
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network topology should not depend on whether the analysis was

performed in the sensor or source space. The data used in this study

were provided by the Human Connectome Project (HCP) and consist

of 89 healthy young adults with three sessions of resting-state

recordings for each subject.

2 | METHODS

2.1 | MEG database and preprocessing

This current study included the preprocessed rs-MEG data of the

89 healthy subjects (22–35 years of age, 41 females) provided with

the HCP S1200 data release (Larson-Prior et al., 2013; Van Essen

et al., 2012). The HCP young adult study, led by Washington Univer-

sity and the University of Minnesota, sought to investigate healthy

human brain function and connectivity in a large cohort of twins and

their non-twin siblings (Van Essen et al., 2012). The subjects comprise

19 monozygotic twin pairs, 13 dizygotic twin pairs, and 25 non-twin

individuals who are not diagnosed with any significant neu-

rodevelopmental, neuropsychiatric, or neurologic disorders.

A 248-magnetometer Magnes 3600 MEG system (4D Neuroimag-

ing, San Diego, CA) was used to collect three 6-min sessions of resting-

state data for each subject in an eyes-open condition. The MEG data

were obtained from the online ConnectomeDB database (https://db.hu

manconnectome.org/app/template/Login.vm) after prior preprocessing

was performed using the open-source HCP MEG pipeline (Larson-Prior

et al., 2013). Briefly, the pipeline included the following steps for each

MEG session: artifact-contaminated time segments (e.g., corresponding

to head or eye movements) and noisy MEG sensors (i.e., exhibiting a

high variance ratio or low correlation to neighboring sensors) were

rejected, the data were 60 and 120 Hz band-stop filtered to remove

power line noise, and independent component analysis (ICA) was used

to identify and regress out noise components from the entire scan

based on correspondence to certain artifactual signatures (e.g., eye-

blinks, cardiac interference, or environmental noise). A total of three to

six (interquartile range [IQR]) noise components were regressed out

from the MEG data. After preprocessing, the data consisted of 135–

147 (IQR) 2-s trials and 243–246 (IQR) sensors. The exact details of the

preprocessing can be found in the overview publication (Larson-Prior

et al., 2013) and in the open-source software available online (https://

www.humanconnectome.org/software/hcp-meg-pipelines).

The MEG analysis pipeline described in the following sections

was adapted from our previous work (Pourmotabbed et al., 2020). An

overview of the analysis pipeline is shown in Figure 1. In addition to

the prior preprocessing performed using the HCP MEG pipeline, the

MEG data (in the sensor space) were 0.1 Hz high-pass (fourth order,

zero-phase/two-pass Butterworth) and 150 Hz low-pass (sixth order,

zero-phase/two-pass Butterworth) filtered. To avoid edge artifacts,

filtering was performed on the data after concatenation of the 2-s tri-

als into one time segment (Gross et al., 2013). Spherical spline interpo-

lation was used to reconstruct the removed noisy sensors (Perrin,

Pernier, Bertrand, & Echallier, 1989).

2.2 | Source reconstruction of MEG data

Source reconstruction of the preprocessed MEG data was performed

using an atlas-based beamforming approach adapted from previous

MEG studies (Hillebrand et al., 2016; Hillebrand, Barnes, Bosboom,

Berendse, & Stam, 2012; Nissen et al., 2017). Brain source time-series

were reconstructed for the centroids of the 246 (210 cortical and

36 subcortical) regions of interest (ROIs) of the Brainnetome atlas

(Fan et al., 2016). Scalar beamformer weights were computed for each

centroid using a regularized estimate of the broadband (0.1–150 Hz)

data covariance matrix and using lead-fields calculated from

precomputed single-shell volume conductor models (Nolte, 2003) pro-

vided with the HCP data release. The lead-field was projected in the

optimal direction given by the eigenvector of the maximum eigen-

value of the output source power matrix (Sekihara, Nagarajan,

Poeppel, & Marantz, 2004). The beamformer weights are derived such

that the output source power at the location of interest is minimized

subject to the constraint that the signal in the MEG data due to the

source at that location is passed with unit gain (van Veen, van

Drongelen, Yuchtman, & Suzuki, 1997). This forms a linearly con-

strained minimum variance (LCMV) spatial filter that attenuates signal

leakage from other sources that are correlated across the sensors (van

Veen et al., 1997).

The coordinates of the centroids for each subject were deter-

mined from subject-specific 4-mm resolution volumetric grids pro-

vided with the HCP data release. To obtain the volumetric grids, a

template MRI grid in the Montreal Neurological Institute (MNI) space

was nonlinearly warped to the co-registered MRI of each subject. The

template MRI grid was included with the HCP MEG pipeline. The

Brainnetome atlas was used to label each voxel in the template grid,

and, for each ROI, the k-medoids (k = 1) algorithm was performed in

order to locate the voxel (i.e., the centroid) with the least squared

Euclidean distance to all other voxels of the ROI. The centroids were

transformed from the MNI to the individual subject space by indexing

the voxel locations in the template grid to those in the subject-specific

volumetric grid. For construction of the beamformer weights, all the

2-s trials that remained after preprocessing were used to estimate the

broadband data covariance matrix, as per the suggestion made in

Brookes et al. (2008). The covariance matrix was noise-regularized

with a diagonal loading factor equal to 5% of the mean sensor vari-

ance. Noise-regularization increases the signal-to-noise ratio of the

source time-series (Brookes et al., 2008) and accounts for the rank

deficiency due to the ICA preprocessing step and sensor

interpolation.

2.3 | FC analysis in sensor and source space

The phase lag index (PLI) is an FC metric of phase synchrony that

measures the asymmetry in the distribution of the observed phase dif-

ferences between two oscillating signals (Stam, Nolte, &

Daffertshofer, 2007). Because the PLI is insensitive to interactions

with a zero (modulus π) phase difference, the metric is robust against
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common source activity from volume conduction, field spread, and

source leakage (Stam et al., 2007). The weighted PLI (wPLI) is a variant

of the PLI that is more robust against the influence of common

sources (Vinck et al., 2011). Both the PLI and wPLI are dependent on

the number of trials used to compute them (Vinck et al., 2011). The

debiased wPLI-square estimator (i.e., the dwPLI) is an improvement on

the wPLI that reduces the effects of this sample size bias and is com-

puted at a particular frequency f using the following equation (Vinck

et al., 2011):

dwPLI fð Þ¼
PK

k¼1

P
j≠ kIm sk fð Þ½ �Im sj fð Þ� �

PK
k¼1

P
j≠ k Im sk fð Þ½ �Im sj fð Þ� ��� �� ð1Þ

where sk(f ) is the cross-spectral density (CSD) between the two sig-

nals for trial k, Im[.] denotes the imaginary part operator, and K is the

total number of trials.

The AEC is an FC metric of amplitude synchrony that measures

the linear correlation between the oscillating amplitude envelopes of

two bandlimited signals (O'Neill, Barratt, Hunt, Tewarie, &

Brookes, 2015):

r Ax, Ay ,ð Þ¼ cov Ax,Ayð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Axð Þvar Ayð Þp ð2Þ

where Ax and Ay are the amplitude envelopes of signals x and y,

respectively. The instantaneous amplitude envelope of a band-pass-

filtered signal x at time t can be determined as follows (Kiebel, Tallon-

Baudry, & Friston, 2005; O'Neill et al., 2015):

Ax tð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þð Þ2þ H x tð Þ½ �ð Þ2

q
ð3Þ

where H[.] denotes the Hilbert transform operator. The AEC is sus-

ceptible to the effects of volume conduction, field spread, and source

leakage (Brookes et al., 2012). A pairwise orthogonalization procedure

has been proposed to correct for this susceptibility by removing zero

(modulus π) phase lag interactions between the two signals (Brookes

et al., 2012; Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012).

In this current study, three metrics (i.e., the dwPLI, AEC, and lcAEC)

were used to estimate the FC for both the sensor and the source sig-

nals in the delta (1–4 Hz), theta (4–7 Hz), alpha (8–13 Hz), low beta

(13–20 Hz), high beta (20–30 Hz), and low gamma (30–50 Hz) fre-

quency bands. This resulted in 248-by-248 adjacency matrices in the

sensor space and 246-by-246 adjacency matrices in the source space,

corresponding to 248 MEG sensors and 246 Brainnetome ROIs,

respectively. A description of the three FC metrics examined in this

study and the methods used to compute them is shown in Table 1. To

compute the dwPLI for frequencies from 4 to 50 Hz, the Fourier spec-

trum of each 2-s trial was obtained via the Fast Fourier Transform algo-

rithm with a Hann window and used to calculate the individual trial

CSDs. For frequencies in the delta (1–4 Hz) band, consecutive 2-s trials

were concatenated to form 4-s trials (66–73 [IQR] 4-s trials for all the

F IGURE 1 Overview of the magnetoencephalography (MEG) analysis pipeline. See Section 2 for details
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subjects) before the frequency transformation, ensuring that each trial

contained a sufficient number of cycles (10 cycles on average for the

delta band) for adequate FC estimation. The dwPLI was computed from

the individual trial CSDs (Equation (1)) and averaged over all the fre-

quencies in each of the six bands.

To compute the AEC and lcAEC, all the trials were concatenated

into a single time segment and band-pass filtered (zero-phase/two-

pass finite impulse response, order = 3 cycles of the low frequency

cutoff) into the six frequency bands. For the lcAEC, the band-pass fil-

tered data were leakage corrected using the pairwise orthogonaliza-

tion procedure. The instantaneous amplitude envelopes were

obtained from the entire time segment using the Hilbert transform

(Equation (3)) and then downsampled after low-pass filtering (eighth

order, zero-phase/two-pass Chebyshev Type I) at 0.25 Hz for the

delta band (output sampling rate = 0.625 Hz) and at 0.5 Hz for the

other frequency bands (output sampling rate = 1.25 Hz). Down-

sampling and low-pass filtering optimizes the temporal scale of the

data for amplitude synchrony metrics and was performed according to

the recommendation made in Luckhoo et al. (2012). The AEC and

lcAEC were computed from the linear correlation of the logarithm of

the downsampled amplitude envelopes (Equation (2)). Because

pairwise leakage correction results in an asymmetric adjacency matrix

(Hipp et al., 2012), corresponding elements in the upper and lower tri-

angular matrices were averaged to ensure symmetry for the lcAEC.

2.4 | Graph theoretical analysis

Four global graph measures (i.e., the global efficiency [GE], character-

istic path length [CPL], transitivity [T], and synchronizability [S]) were

computed for the adjacency matrices of the three FC metrics and six

frequency bands in the sensor and source spaces. This was performed

for network density levels ranging from 2.5 to 100% in 2.5% steps

using the standard proportional weight thresholding method and using

the OMST thresholding method. For proportional thresholding, each

density level indicates the percentage of the strongest connections of

the adjacency matrix to retain (Rubinov & Sporns, 2010). The rest of

connections are discarded by setting their weights equal to

0 (Rubinov & Sporns, 2010). The procedure for the OMST

thresholding method involves aggregation of multiple OMSTs to

achieve the target density level and is described in detail elsewhere

(Dimitriadis, Antonakakis, et al., 2017; Dimitriadis, Salis, et al., 2017).

Unlike proportional thresholding, the OMST thresholding method

ensures that all the nodes remain connected to the network

(Dimitriadis, Antonakakis, et al., 2017).

The GE and CPL are measures of functional integration, which

indicates the ability of the brain to combine information from distrib-

uted brain regions (Rubinov & Sporns, 2010). Short paths imply a

greater potential for functional integration between brain regions

(Rubinov & Sporns, 2010). The GE is mainly influenced by short paths

(Rubinov & Sporns, 2010) and is defined as the mean inverse shortest

path length between all node pairs (Latora & Marchiori, 2001):

GE¼ 1
N N�1ð Þ

XN

i¼1

X
j≠ i

1
dij

ð4Þ

where N is the total number of nodes and dij is the shortest path

length between nodes i and j. The connection weights were trans-

formed to lengths by computing their inverse (Boccaletti et al., 2006),

and the shortest path length (aka distance) between each node pair

was derived from the length matrix using Dijkstra's algorithm. The

CPL is mainly influenced by long paths (Rubinov & Sporns, 2010) and

is defined as the mean shortest path length between all node pairs

(Watts & Strogatz, 1998):

CPL¼ 1
N N�1ð Þ

XN

i¼1

X
j≠ i

dij ð5Þ

The shortest path length between nodes that became discon-

nected from the network because of the proportional threshold was

set to infinity and excluded from computation of the CPL.

The T is a measure of functional segregation, which indicates the

ability for distributed processing to occur in the brain (Rubinov &

Sporns, 2010), and is defined as follows (Newman, 2003; Onnela,

Saramaki, Kertesz, & Kaski, 2005):

T¼
PN

i¼12tiPN
i¼1ki ki�1ð Þ

ð6Þ

where ti is the sum of the geometric mean of the connection weights

of all the triangles around node i and ki is the degree (i.e., number of

nonzero connections) of node i. The T is an improvement on the mean

clustering coefficient (CC) that is not disproportionately influenced by

nodes with a small number of neighbors (Newman, 2003).

TABLE 1 Description of the three functional connectivity metrics examined in this study and the methods used to compute them

Abbreviation Connectivity metric Type Leakage-corrected

Frequency

transform Toolbox Reference

dwPLI Debiased weighted

phase lag index

Phase synchrony Yes Fourier FieldTrip Stam et al. (2007) and Vinck

et al. (2011)

AEC Amplitude envelope

correlation

Amplitude

synchrony

No Hilbert MEG-ROI-nets O'Neill et al. (2015)

lcAEC Leakage-corrected

amplitude envelope

correlation

Amplitude

synchrony

Yes, pairwise

orthogonalization

Hilbert MEG-ROI-nets Brookes et al. (2012), Hipp

et al. (2012), and O'Neill

et al. (2015)
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The S is a spectral graph measure that quantifies the synchroniza-

tion capability of a network and is defined as the ratio of the second

smallest eigenvalue λ2 of the Laplacian matrix to the largest eigen-

value λN (Arenas, Díaz-Guilera, Kurths, Moreno, & Zhou, 2008;

Khambhati, Davis, Lucas, Litt, & Bassett, 2016):

S¼ λ2
λN

ð7Þ

The Laplacian matrix is computed as L = D � W, where W is the

adjacency matrix, D is the diagonal matrix of nodal strengths, and the

strength of a node is the sum of all of that node's connection weights

(Arenas et al., 2008).

2.5 | Statistical analysis of graph measures

The test–retest reliability of the graph measures across the three

MEG sessions for each FC metric, frequency band, and network den-

sity level in the sensor and source spaces was evaluated with the

intraclass correlation coefficient (ICC) (McGraw & Wong, 1996;

Shrout & Fleiss, 1979). The ICC(3,1) corresponds to a two-way mixed

effects model and was used as a measure of the test–retest reliability

as per the suggestion made in Chen et al. (2018). For each graph mea-

sure, a two-way analysis of variance (ANOVA) model was fit to an

89-by-3 design matrix with rows representing individual subjects and

columns representing individual MEG sessions. The ICC(3,1) was com-

puted from the ANOVA model using the following equation

(McGraw & Wong, 1996; Shrout & Fleiss, 1979):

ICC¼ MSR�MSE
MSRþ k�1ð ÞMSE

ð8Þ

where MSR is the mean square for rows, MSE is the residual mean

square, and k is the number of MEG sessions. Although the ICC is theo-

retically bounded by 0 and 1, negative values can still occur in practice

and are reported in this study for clarity (Chen et al., 2018). Following

the common practice in previous studies on the test–retest reliability of

graph measures (Hardmeier et al., 2014; Jin et al., 2011; Kuntzelman &

Miskovic, 2017), the reliability was scored as poor (ICC < 0.4), fair

(0.4 ≤ ICC < 0.6), good (0.6 ≤ ICC < 0.75), or excellent (ICC ≥0.75). 95%

confidence intervals were estimated for the ICC values using the cluster

bootstrap procedure with 10,000 repetitions (Field & Welsh, 2007;

Ukoumunne, Davison, Gulliford, & Chinn, 2003).

A permutation procedure was used to test whether the reliability

of the graph measures at each network density level was significantly

different (p < .05) between the proportional and OMST thresholding

methods. An empirical null distribution for the difference between the

ICC of the two thresholding methods was generated by randomly per-

muting the elements of the design matrix across the two methods,

computing the ICC for each method, and taking the difference

between the two ICC values. This was repeated 10,000 times. The p-

values of the permutation test were false discovery rate (FDR)-

adjusted for 40 density levels (Benjamini & Hochberg, 1995). An over-

all optimal density level of 100% was chosen based on the reliability

scores of the graph measures at the different density levels.

Rather than applying a threshold with the same density to the adja-

cency matrices of all the MEG sessions, other studies have proposed

using a data-driven thresholding approach based on maximizing the

global cost efficiency (GCE) to determine an optimal density for each

session independently (Achard & Bullmore, 2007; Bassett et al., 2009;

Dimitriadis, Salis, et al., 2017). The ICC(3,1) and the permutation proce-

dure described previously were used to compare the graph measure reli-

ability obtained at a 100% density level to the reliability obtained using

the GCE approach for both the proportional and OMST thresholding

methods. Before computation of the graph measures, an optimal density

was chosen for each MEG session and thresholding method by maximiz-

ing the GCE over density levels ranging from 2.5 to 100% in 2.5% steps.

The p-values of the permutation test were FDR-adjusted for three

pairwise comparisons (Benjamini & Hochberg, 1995).

At a density level of 100%, the Spearman rank correlation was

used to test for a significant association (p < .05) between the graph

measures of the sensor and source spaces for each FC metric and fre-

quency band. Before computing the rank correlation, the graph mea-

sures were averaged across all the MEG sessions for each subject.

The p-values of the correlation were FDR-adjusted for four graph

measures, three FC metrics, and six frequency bands (Benjamini &

Hochberg, 1995).

2.6 | Software implementation

The data analysis was implemented using in-house software developed

in the MATLAB R2018b environment (MathWorks Inc., Natick, MA) and

adapted from the following open-source toolboxes. The FieldTrip tool-

box v20180905 (Oostenveld, Fries, Maris, & Schoffelen, 2011) was used

to preprocess the MEG data, perform beamformer source reconstruc-

tion, and compute the dwPLI. The MEG-ROI-nets toolbox v2.0

(Colclough et al., 2015) was used to compute the AEC and lcAEC. The

Brain Connectivity Toolbox v20170115 (Rubinov & Sporns, 2010) was

used to apply the proportional weight thresholding method and com-

pute the GE, CPL, and T. A custom MATLAB function, adapted from the

topological filtering networks toolbox (Dimitriadis, Salis, et al., 2017),

was written to apply the OMST thresholding method. The Statistics and

Machine Learning Toolbox of MATLAB R2018b was used to perform

the statistical analysis of the graph measures. Custom MATLAB func-

tions were written to implement the S, ICC, and GCE.

3 | RESULTS

3.1 | Graph measure reliability for OMST versus
proportional thresholding

The ICC versus density response of the graph measures in the source

space for the theta and alpha bands is shown in Figures 2 and 3,
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respectively. The response in the source space for the other fre-

quency bands and in the sensor space for all the frequency bands fol-

lows similar trends and is provided as supplementary material

(Figures S1–S10).

In the 20–100% density range, there was not a large variation in

the ICC of the GE, CPL, and T across the different density levels for

any of the 36 parameters (three FC metrics and six frequency bands

in the sensor and source spaces). Likewise, the reliability of the GE,

CPL, and T was not significantly different between the proportional

and OMST thresholding methods at any of the levels in the 20–100%

density range. However, at low density levels (<10%), the reliability of

the GE and CPL for a small number of the parameters (six for the GE,

four for the CPL) was significantly greater for the OMST than for the

proportional thresholding method. Examples of this include, in the

source space, the reliability of the GE for the lcAEC in the theta band

and the reliability of the CPL for the AEC in the theta band.

In the 20–100% density range, the ICC versus density response

of the S varied considerably for the different parameters. For some of

the parameters, the reliability was not significantly different between

the OMST and proportional thresholding methods while, for other

parameters, the reliability was significantly lower or greater for the

OMST than for the proportional thresholding method. However, at

levels in the lower (<20%) density range, the reliability of the S for

26 out of the 36 parameters was significantly greater for the OMST

than for the proportional thresholding method. Examples of this

include, in the source space, the reliability of the S for the lcAEC in

the theta band and the reliability of the S for the dwPLI and lcAEC in

the alpha band.

For most of the parameters (24 for the GE, 33 for the CPL, 19 for

the T, 23 for the S), the reliability score at a 100% density level was

better than or the same as the score at lower density levels. There-

fore, an overall optimal density level of 100% was chosen and used

for the results presented in the following sections (Sections 3.2 and

3.3). The ICC values (along with their 95% bootstrap confidence inter-

vals) for all the density levels and for the GCE-proportional and GCE-

OMST approaches are provided as supplementary material in a

CSV file.

A comparison of the ICC of the graph measures computed using

the no threshold (i.e., 100% density), GCE-proportional, and GCE-

OMST thresholding approaches in the source space for the lcAEC is

shown in Figure 4. Figures showing the comparison for the other FC

metrics in the source space and for all the FC metrics in the sensor

space are provided as supplementary material (Figures S11–S15). The

optimal density (median [IQR] across all the MEG sessions) deter-

mined from the GCE-proportional and GCE-OMST approaches is pro-

vided as supplementary material (Table S1). For all the parameters, the

F IGURE 2 Intraclass correlation coefficient (ICC) of the four graph measures computed using three functional connectivity metrics in the
source space for the theta band across different network density levels achieved using the proportional weight and orthogonal minimum
spanning tree (OMST) thresholding methods. The blue and red shaded areas represent 95% bootstrap confidence intervals for the ICC values. The
yellow shaded area represents ICC values that were significantly different (p < .05, false discovery rate [FDR]-adjusted) between the proportional
and OMST thresholding methods. Similar plots are provided as supplementary material (Figures S1–S10) for all the frequency bands in the sensor

and source spaces
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reliability of the GE and CPL and, for 27 out of the 36 parameters, the

reliability of the T were not significantly different between any of the

three thresholding approaches. For most of the parameters, the reli-

ability of the S was significantly lower for the GCE-proportional

approach than for both the no threshold (11 for the dwPLI, 1 for the

AEC, and 10 for the lcAEC) and GCE-OMST (10 for the dwPLI, 3 for

the AEC, and 7 for the lcAEC) approaches. For some of the parame-

ters (3 for the dwPLI and 7 for the lcAEC), the reliability of the S was

significantly greater for the no threshold than for the GCE-OMST

approach. However, for only 2 of the AEC parameters, the reliability

of the S was significantly lower for the no threshold than for the GCE-

OMST approach, and there was no significant difference between the

no threshold and GCE-OMST approaches for the rest of the 10 AEC

parameters.

3.2 | Comparison of the graph measure reliability
for the FC metrics

The ICC of the graph measures in the sensor and source spaces for

the different FC metrics and frequency bands at a 100% density level

is shown in Table 2. In the source space, the ICC ranged from 0.17 to

0.85, with a mean ± SD of 0.62 ± 0.16. For each FC metric except for

the dwPLI in the delta band, the reliability of the GE, CPL, and T

ranged from fair to excellent. For all the FC metrics, the reliability of

the S ranged from poor to good. The ICC of the S was lower than that

of the GE, CPL, and T for all the FC metrics except for the dwPLI in

the delta and low gamma bands.

In the sensor space, the ICC ranged from 0.30 to 0.83, with a

mean ± SD of 0.61 ± 0.15. For the dwPLI, the reliability of the GE,

CPL, and T ranged from fair to excellent in the theta, alpha, and high

beta bands and from poor to fair in the delta, low beta, and low

gamma bands. For the AEC and lcAEC, the reliability of the GE, CPL,

and T ranged from fair to excellent in all the frequency bands. The reli-

ability of the S was fair for the dwPLI and ranged from poor to good

for the AEC and lcAEC. The ICC of the S was lower than that of the

GE, CPL, and T for all the FC metrics except for the dwPLI in the delta,

theta, low beta, high beta, and low gamma bands.

In the sensor and source spaces, the ICC of all the graph measures

was mostly greater for the AEC and lcAEC than for the dwPLI except

for in the alpha band. For the dwPLI, the ICC was mostly greater for

the source than for the sensor space in the low beta, high beta, and

low gamma bands. However, the ICC for the dwPLI was greater for

the sensor than for the source space in the delta band. The ICC was

largely similar for the AEC and lcAEC both within and across the sen-

sor and source spaces. A graphical comparison of the mean ICC, aver-

aged across the graph measures, for the three FC metrics in the

sensor and source spaces is shown in Figure 5.

F IGURE 3 Intraclass correlation coefficient (ICC) of the four graph measures computed using three functional connectivity metrics in the
source space for the alpha band across different network density levels achieved using the proportional weight and orthogonal minimum
spanning tree (OMST) thresholding methods. The blue and red shaded areas represent 95% bootstrap confidence intervals for the ICC values. The
yellow shaded area represents ICC values that were significantly different (p < .05, false discovery rate [FDR]-adjusted) between the proportional
and OMST thresholding methods
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F IGURE 4 Intraclass correlation coefficient (ICC) of the four graph measures for the leakage-corrected amplitude envelope correlation
(lcAEC) in the source space obtained using no threshold (i.e., 100% density) and obtained using the global cost efficiency (GCE) approach for both
the proportional weight and orthogonal minimum spanning tree (OMST) thresholding methods. The error bars represent 95% bootstrap
confidence intervals for the ICC values. Similar bar graphs are provided as supplementary material (Figures S11–S15) for all the functional
connectivity metrics in the sensor and source spaces

TABLE 2 ICC of the four graph measures (calculated at a 100% density level) for the three functional connectivity metrics and six frequency
bands in the sensor and source spaces

Source space Sensor space

Delta Theta Alpha lBeta hBeta lGamma Delta Theta Alpha lBeta hBeta lGamma

dwPLI dwPLI

GE .174 .500 .846* .634* .699* .610* GE .466 .526 .825* .303 .426 .357

CPL .177 .505 .809* .654* .642* .530 CPL .390 .490 .768* .549 .574 .340

T .192 .530 .848* .626* .659* .528 T .408 .584 .828* .373 .463 .336

S .219 .341 .618* .427 .486 .579 S .492 .518 .549 .480 .431 .519

AEC AEC

GE .614* .750* .595 .704* .680* .631* GE .589 .748* .708* .732* .673* .713*

CPL .652* .786* .725* .792* .761* .683* CPL .618* .792* .811* .799* .773* .744*

T .639* .767* .648* .736* .716* .632* T .603* .762* .731* .751* .691* .694*

S .447 .477 .520 .621* .574 .365 S .326 .459 .663* .651* .527 .518

lcAEC lcAEC

GE .638* .773* .640* .728* .704* .635* GE .594 .747* .681* .724* .660* .679*

CPL .688* .812* .809* .835* .823* .702* CPL .627* .816* .833* .798* .789* .715*

T .641* .765* .650* .737* .712* .626* T .596 .749* .693* .738* .668* .667*

S .379 .395 .505 .623* .583 .569 S .325 .503 .654* .667* .533 .588

Note: Bold entries denote fair to excellent test–retest reliability (ICC ≥0.4). An asterisk denotes good to excellent test–retest reliability (ICC ≥0.6).

Abbreviations: AEC, amplitude envelope correlation; CPL, characteristic path length; dwPLI, debiased weighted phase lag index; GE, global efficiency; ICC,

intraclass correlation coefficient; lcAEC, leakage-corrected amplitude envelope correlation; S, synchronizability; T, transitivity.
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3.3 | Sensor versus source association of the graph
measures

The Spearman rank correlation of the graph measures between the

sensor and source spaces for the different FC metrics and frequency

bands at a 100% density level is shown in Figure 6. The correlation was

significant (p < .05) for all the graph measures except for the S of the

dwPLI in the theta band and the S of the AEC in the low gamma band.

For the dwPLI, the GE, CPL, and T in the alpha, low beta, high beta, and

low gamma bands, the T in the theta band, and the S in the alpha and

low beta bands exhibited a moderate to high correlation (rho ≥0.5). For

the AEC, the GE, CPL, and T in all the frequency bands and the S in the

alpha and low beta bands exhibited a moderate to high correlation. For

the lcAEC, the GE, CPL, and T in all the frequency bands and the S in

the theta, alpha, low beta, high beta, and low gamma bands exhibited a

moderate to high correlation. The correlation was typically lower for

the dwPLI than for the AEC and lcAEC, particularly in the delta and

theta bands, while the correlation was largely similar for the AEC and

lcAEC. For all the FC metrics and frequency bands, the correlation was

lower for the S than for the GE, CPL, and T.

4 | DISCUSSION

The purpose of our study was to assess the utility of rs-MEG global

graph measures as clinical biomarkers and to provide guidance to

researchers on which network construction strategies to employ. This

was accomplished by quantifying the test–retest reliability and sensor

versus source association of the graph measures. For computation of

the graph measures, an atlas-based beamforming approach was used to

reconstruct the brain sources from the MEG data, and brain networks

were constructed in both the sensor and source spaces using three dif-

ferent FC metrics (i.e., the dwPLI, AEC, and lcAEC). Therefore, our

study examined whether more reliable graph measures were achieved

when using amplitude or phase synchrony metrics and when

performing sensor or source space analysis. Another open problem in

graph theoretical analysis is choosing which thresholding method and

network density level to apply before computing the graph measures.

To address this problem, our study also examined the reliability of the

graph measures over a wide range of network density levels and com-

pared the reliability for two different thresholding methods (i.e., the

proportional weight and OMST methods). An overall optimal density

level was chosen based on the reliability scores of the graph measures.

At the optimal density level of 100%, the reliability of the graph

measures was, in general, different between the sensor and source

spaces when using the dwPLI but similar when using the AEC and

lcAEC. Likewise, the sensor versus source association of the graph

measures was typically greater for the AEC and lcAEC than for the

dwPLI. Other rs-MEG and EEG studies have not compared the reliabil-

ity of graph measures between the sensor and source spaces for the

dwPLI, AEC, and lcAEC. A rs-EEG study found that the sensor versus

source association of MST-based global graph measures in the alpha

band was low (rho <0.35) and that the association was greater for

leakage-insensitive FC metrics (i.e., the PLI and lcAEC) than for

corresponding leakage-sensitive metrics (i.e., the phase locking value

[PLV] and AEC, respectively) (Lai, Demuru, Hillebrand, &

Fraschini, 2018). A comparison of the sensor versus source associa-

tion for the FC metrics in the other frequency bands was not reported

(Lai et al., 2018). The results of Lai et al. were not consistent with our

study, which found that all the graph measures had a moderate to

high (rho ≥0.5) sensor versus source association in the alpha band and

that this association was mostly similar for the dwPLI, AEC, and

lcAEC. The inconsistency in the results may be related to the use of

MST-based graph measures, a different imaging modality (EEG

vs. MEG), and/or a different source reconstruction technique

(weighted minimum norm estimate [wMNE] vs. LCMV beamformer).

The reliability of the graph measures in both the sensor and

source spaces was similar between the AEC and lcAEC while the reli-

ability was mostly greater for the AEC and lcAEC than for the dwPLI.

Sensor space rs-EEG studies have examined the reliability of global

F IGURE 5 Graphical comparison of the mean intraclass correlation coefficient (ICC), averaged across the four graph measures calculated at a
100% density level, for the three functional connectivity metrics in the sensor and source spaces
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graph measures for the dwPLI but not for the AEC and lcAEC

(Hardmeier et al., 2014; Kuntzelman & Miskovic, 2017). Kuntzelman

and Miskovic found that the reliability of the CPL, GE, and T for the

dwPLI was greater (i.e., fair to excellent) in the alpha and beta bands

and lower (i.e., poor to fair) in the delta, theta, and low gamma bands

(Kuntzelman & Miskovic, 2017). This is comparable with our reliability

results for the dwPLI except for the low and high beta bands in the

sensor space (i.e., poor to fair) and the low gamma band in the source

space (i.e., fair to good). On the other hand, Hardmeier et al. found

that the reliability of the normalized CPL and the normalized mean CC

for the dwPLI was poor to fair in the theta, low alpha, high alpha, and

beta bands (Hardmeier et al., 2014). Both of these rs-EEG studies

compared the reliability of graph measures computed using the dwPLI

with that of graph measures computed using other FC metrics

(Hardmeier et al., 2014; Kuntzelman & Miskovic, 2017). Kuntzelman

and Miskovic found that the graph measures had a greater reliability

(i.e., fair to excellent) for the coherence in the delta and theta bands

but a greater reliability for the dwPLI in the alpha and beta bands

(Kuntzelman & Miskovic, 2017). Hardmeier et al. found that most of

the graph measures had a greater reliability (i.e., fair to good) for the

PLI than for the dwPLI in the theta, alpha, and beta bands (Hardmeier

et al., 2014).

Sensor space rs-MEG studies have examined the reliability of

global graph measures for FC metrics other than the dwPLI, AEC, and

lcAEC (Babajani-Feremi et al., 2018; Deuker et al., 2009). Deuker

et al. found that the reliability of the GE, CPL, mean CC, and S for the

mutual information was poor in the low delta, high delta, theta, beta,

and gamma bands and good to excellent in the alpha band (Deuker

et al., 2009). However, Deuker et al. computed the graph measures

based on binary, not weighted, networks and used a model-free, infor-

mation theoretic FC metric rather than a model-based, amplitude or

phase synchrony metric (Deuker et al., 2009). Babajani-Feremi et al.

found that the reliability of the CPL and T for the PLV was fair to

excellent in the theta, alpha, and beta bands for both healthy subjects

and patients with epilepsy (Babajani-Feremi et al., 2018).

Although other source space rs-MEG studies have not examined

the test–retest reliability of global graph measures, they have exam-

ined the reliability of a large number of FC metrics (Colclough

et al., 2016; Garces, Martin-Buro, & Maestu, 2016). Garces et al.

found that the reliability of leakage-sensitive metrics (i.e., the PLV and

AEC) was greater than that of leakage-insensitive metrics (i.e., the PLI

and lcAEC) (Garces, Martin-Buro, & Maestu, 2016). The greater reli-

ability of the PLV and AEC may be explained by their sensitivity to

source leakage, which Garces et al. reported to have a significant

effect on the reliability (Garces, Martin-Buro, & Maestu, 2016). This

agrees with Colclough et al., which also found that the reliability of

leakage-sensitive metrics (e.g., the AEC, PLV, coherence, and mutual

information) was greater than that of leakage-insensitive metrics

(e.g., the PLI, wPLI, imaginary part of coherency, and lcAEC)

(Colclough et al., 2016). However, in our study, the reliability of the

graph measures was largely similar for the AEC and lcAEC, indicating

that source leakage did not have a large effect on the reliability. This

suggests that while source leakage may influence the reproducibility

of the functional connections, it does not influence the reproducibility

of the global network topology. Both Garces et al. and Colclough et al.

reported that, for leakage-insensitive FC metrics, the reliability of

F IGURE 6 The Spearman rank correlation of the four graph measures (calculated at a 100% density level) between the sensor and source
spaces for the three functional connectivity metrics and six frequency bands
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amplitude synchrony metrics was greater than that of phase syn-

chrony metrics (Colclough et al., 2016; Garces, Martin-Buro, &

Maestu, 2016), which is comparable to our results for the reliability of

the graph measures.

The reliability of the S in both the sensor and source spaces was

lower than that of the GE, CPL, and T except for the dwPLI in some of

the frequency bands. Additionally, the sensor versus source associa-

tion of the S was lower than that of the GE, CPL, and T for all the FC

metrics and frequency bands. Although this may indicate that the S is

an inherently more noisy and less reliable graph measure, other stud-

ies have shown the potential of the S as a clinical biomarker. For

instance, iEEG studies have employed the S as a dynamic network

measure to describe different seizure states (Khambhati et al., 2016)

and to predict the seizure outcome after resection surgery (Kini

et al., 2019). The S has also been used as a static measure in rs-MEG

studies to characterize the abnormal network properties of patients

with epilepsy (Niso et al., 2015; van Dellen et al., 2012) and patients

with Alzheimer's disease (de Haan et al., 2012).

A potential factor influencing the reproducibility of the graph mea-

sures is the relationship between the functional and structural connectiv-

ity. Functional network characteristics may be more stable over time if

the functional network is physically constrained by the underlying struc-

tural connections (Shen, Hutchison, Bezgin, Everling, & McIntosh, 2015).

During the resting-state, it is generally considered that structural connec-

tivity has a greater influence on amplitude than on phase synchrony

(Engel, Gerloff, Hilgetag, & Nolte, 2013). Studies have reported significant

associations between structural connectivity and amplitude synchrony in

multiple frequency bands for rs-MEG (Cabral et al., 2014; Garces, Pereda,

et al., 2016). However, other studies have also reported significant associ-

ations between structural connectivity and phase synchrony, particularly

in the alpha band, for rs-MEG (Meier et al., 2016; Tewarie et al., 2014)

and rs-EEG (Finger et al., 2016). Likewise, our results showed that the reli-

ability of the graph measures was mostly greater for the AEC and lcAEC

than for the dwPLI except for in the alpha band. For the dwPLI, the reli-

ability was noticeably greater in the alpha band than in other frequency

bands. The greater reliability in the alpha band may also be related to the

high signal-to-noise ratio of the alpha band in resting-state measurements

(Martin-Buro, Garces, & Maestu, 2016).

An optimal density level of 100% was determined from the reliabil-

ity scores of the graph measures. The reliability obtained using no

threshold (i.e., 100% density) was also compared to the reliability

obtained using the data-driven GCE-proportional and GCE-OMST

thresholding approaches. The GCE approach may result in a different

density for each MEG session and typically produces sparse networks

with low density levels, as evidenced by the values obtained using the

data in our study (i.e., 7.5–15% [IQR] across all the MEG sessions and

parameters for the proportional method, 5–10% [IQR] for the OMST

method). For most of the parameters, the reliability of the S was signifi-

cantly greater for the no threshold and GCE-OMST approaches than

for the GCE-proportional approach. This effect was less prominent

when using the GCE approach with the AEC. Likewise, for most of the

parameters, the reliability of the S at lower density levels (<20%) was

significantly greater for the OMST than for the proportional method.

Based on these results, the OMST method may be a more appropriate

thresholding method to apply if a low density level or the GCE

approach is used. A limitation of the proportional method is that the S

attains values close to zero if a threshold, usually at a low density level,

causes a node to become disconnected from the network (Arenas

et al., 2008). This is not a limitation for the OMST method, which pre-

vents disconnection of nodes (Dimitriadis, Antonakakis, et al., 2017). In

contrast to the S, the reliability of the GE, CPL, and T did not depend

heavily on which thresholding method was applied, particularly at den-

sity levels in the 20–100% range.

Studies examining the test–retest reliability of global graph mea-

sures differ on the thresholding approach used. Furthermore, a limited

number of rs-MEG and EEG studies have examined the reliability at dif-

ferent density levels and only for a small range of values. Deuker et al.

binarized the networks by applying a proportional threshold and chose

a different density level for each frequency band, with the criterion

being the lowest density at which all the nodes remained connected to

the network (Deuker et al., 2009). Deuker et al. also examined the reli-

ability at density levels 5% lower and higher than the ones chosen and

found that there was not a significant effect of density level on the reli-

ability (Deuker et al., 2009). Babajani-Feremi et al. applied a propor-

tional threshold with an optimal density level of 10% determined from

the GCE approach (Babajani-Feremi et al., 2018) while Hardmeier et al.

and Kuntzelman and Miskovic did not report applying a threshold

(Hardmeier et al., 2014; Kuntzelman & Miskovic, 2017). In our study,

the graph measure reproducibility was evaluated using a fixed density

approach and using the GCE approach with both the proportional

weight and OMST thresholding methods. Other topological filtering

methods have also been employed in the literature and may be of inter-

est for future reproducibility studies. Such methods include the use of

surrogate data analysis to identify and remove statistically insignificant

connections from the adjacency matrix (Dimitriadis et al., 2018).

Although our study used the graph measure reproducibility as an

empirical criterion for evaluating different thresholding methods, other

criteria may be just as important, if not more so, for selection of the

optimal approach. For instance, studies have demonstrated that FC

estimation may suffer from the presence of spurious interactions, even

when using metrics insensitive to source leakage (Palva et al., 2018).

Spurious interactions in the connectivity estimate may artificially inflate

the reproducibility, as shown for the test–retest reliability of FC metrics

susceptible to source leakage (Colclough et al., 2016; Garces, Martin-

Buro, & Maestu, 2016). Topological filtering may be beneficial for the

removal of these interactions in order to reveal the true network topol-

ogy. Interestingly, our study showed that the graph measure reliability

at a 100% density was similar for the AEC and lcAEC. This indicates

that the reproducibility of the global graph measures was not affected

by the spurious correlations introduced by source leakage.

Our study focused on investigating the effect of different net-

work construction strategies on the reliability of global graph mea-

sures. Another important consideration is the reliability of nodal graph

measures. Other rs-MEG studies have examined the reliability of

nodal graph measures for the mutual information in the sensor space

(Jin et al., 2011) and for the lcAEC and imaginary part of the PLV in
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the source space (Dimitriadis et al., 2018). Jin et al. found that nodal

measures had a lower reliability in the gamma band and a greater reli-

ability in the alpha and beta bands (Jin et al., 2011). Dimitriadis et al.

found that the reliability of nodal measures was greater for the lcAEC

than for the imaginary part of the PLV (Dimitriadis et al., 2018), which

is similar to our results for the reliability of global graph measures and

to Garces et al. and Colclough et al. for the reliability of FC metrics

(Colclough et al., 2016; Garces, Martin-Buro, & Maestu, 2016). In

addition to analyzing their test–retest reliability, the use of global and

nodal graph measures as biomarkers can be further supported by

establishing them as heritable traits. Heritable network characteristics

can be expected to have a certain degree of replicability across differ-

ent scanning sessions. For rs-MEG, studies have reported a significant

effect of heritability on FC metrics in the source space (Colclough

et al., 2017; Demuru et al., 2017) and on global graph measures in the

sensor space (Babajani-Feremi et al., 2018).

It is reasonable to expect that the reproducibility of FC metrics

and graph measures is contingent on each step of the analysis pipe-

line. A rs-EEG study examined the consistency of the imaginary part

of coherency in the alpha band across several source reconstruction

techniques and software packages (Mahjoory et al., 2017). Mahjoory

et al. found a high consistency between the widely implemented

FieldTrip and Brainstorm toolboxes when using the LCMV

beamformer for source reconstruction but a lower consistency when

using the wMNE (Mahjoory et al., 2017). Mahjoory et al. also found a

high consistency between the LCMV beamformer and wMNE for the

Brainstorm toolbox but a lower consistency for the FieldTrip toolbox

(Mahjoory et al., 2017). Another methodological consideration is

whether the Fourier, Hilbert, or wavelet transform is used to compute

the FC metrics although there is some evidence to suggest that these

approaches achieve similar results (Bruns, 2004). Studies on the reli-

ability of global graph measures have employed the Fourier

(Kuntzelman & Miskovic, 2017), Hilbert (Hardmeier et al., 2014), and

wavelet transform (Deuker et al., 2009). Our study used the FieldTrip

toolbox, which computes the dwPLI based on the Fourier transform,

and the MEG-ROI-nets toolbox, which computes the AEC and lcAEC

based on the Hilbert transform. Future work may be done that inves-

tigates the influence of the source reconstruction technique, spectral

analysis approach, and software package on the reliability of the graph

measures. Additionally, while our study demonstrated that the graph

measures typically had a significant sensor versus source association,

these measures only capture certain characteristics of the global net-

work topology and may not be generalizable across different analysis

pipelines. A recent study has proposed the use of an information the-

oretic distance measure, referred to as portrait divergence, for com-

parison of the global network topology irrespective of the particular

pipeline used to construct the networks (Luppi & Stamatakis, 2021).

5 | CONCLUSIONS

In this study, the test–retest reliability and sensor versus source asso-

ciation of rs-MEG global graph measures was investigated. The

reliability of the GE, CPL, and T was relatively stable across different

network density levels and was similar between the proportional

weight and OMST thresholding methods. The reliability of the S was

dependent on the density level and, at lower density levels (<20%),

was significantly greater for the OMST than for the proportional

method. Based on the reliability scores, an optimal density level of

100% was chosen. At a density level of 100%, all the graph measures

had acceptable reliability (i.e., fair to excellent) for most of the param-

eters. The GE, CPL, and T for all the parameters and the S for most of

the parameters had a significant sensor versus source association. In

general, the graph measure reliability and sensor versus source associ-

ation was greater for the amplitude synchrony metrics (i.e., AEC and

lcAEC) than for the phase synchrony metric (i.e., dwPLI). Additionally,

the reliability and sensor versus source association of the GE, CPL,

and T was mostly greater than that of the S. The reliability for the

AEC and lcAEC was similar between the sensor and source spaces

while the reliability for the dwPLI was greater for the source than the

sensor space in the low beta, high beta, and low gamma bands. Over-

all, these results indicate that although most of the graph measures

may be useful as clinical biomarkers, more reliable values are likely to

be achieved when using FC metrics of amplitude rather than phase

synchrony. If using phase synchrony metrics, it may be more prudent

to perform the analysis in the source space.
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