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ABSTRACT Little knowledge exists on how soil bacteria in agricultural settings are
impacted by management practices and environmental conditions in current and
predicted climate scenarios. We assessed the impact of soil moisture, soil tempera-
ture, weed communities, and disease status on soil bacterial communities in three
cropping systems: (i) conventional no-till (CNT) systems utilizing synthetic pesticides
and herbicides, (ii) USDA-certified tilled organic (OT) systems, and (iii) USDA-certified
organic systems with sheep grazing (OG). Sampling date within the growing season
and associated soil temperature and moisture exerted the greatest effect on bacte-
rial communities, followed by cropping system, Wheat streak mosaic virus (WSMV)
infection status, and weed community. Soil temperature was negatively correlated
with bacterial richness and evenness, while soil moisture was positively correlated
with bacterial richness and evenness. Soil temperature and soil moisture indepen-
dently altered soil bacterial community similarity between treatments. Inoculation of
wheat with WSMV altered the associated soil bacteria, and there were interactions
between disease status and cropping system, sampling date, and climate conditions,
indicating the effect of multiple stressors on bacterial communities in soil. In May
and July, cropping system altered the effect of climate change on the bacterial com-
munity composition in hotter conditions and in hotter and drier conditions com-
pared to ambient conditions, in samples not treated with WSMV. Overall, this study
indicates that predicted climate modifications as well as biological stressors play a
fundamental role in the impact of cropping systems on soil bacterial communities.

IMPORTANCE Climate change is affecting global moisture and temperature pat-
terns, and its impacts are predicted to worsen over time, posing progressively larger
threats to food production. In the Northern Great Plains of the United States, climate
change is forecast to increase temperature and decrease precipitation during the
summer, and it is expected to negatively affect cereal crop production and pest
management. In this study, temperature, soil moisture, weed communities, and dis-
ease status had interactive effects with cropping system on bacterial communities.
As local climates continue to shift, the dynamics of above- and belowground associ-
ated biodiversity will also shift, which will impact food production and increase the
need for more sustainable practices.

KEYWORDS 16S rRNA gene, Illumina MiSeq, climate change, conventional, grazing,
organic, tillage, wheat streak mosaic virus

Climate change affects soil moisture content and temperature, which, in turn,
impacts crop production and nutritional value (1–4); pest abundance, dynamics,

and management (4–7); and overall ecosystem resiliency (8). Determining how climate
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change modifies multitrophic interactions between crops, weeds, pathogens, and soil
microbial communities is complex (9), yet critical, as crop production relies on healthy
soil and microbially mediated nutrient cycling (10, 11). Microbial �-diversity in soil is
linked to plant growth stage (12). Low microbial �-diversity in soil is associated with
impeded plant growth and early senescence of Arabidopsis thaliana (13). With the
knowledge that climate change will fundamentally change the dynamics of agricultural
ecosystems, we must increase our understanding of the mechanisms driving biological
and environment stress to secure the sustainability of agricultural production (1, 14, 15).

The Northern Great Plains of the United States is a major global cereal-producing
region where the effects of climate change are already being felt (16, 17). Over the next
30 years, mean temperature is predicted to increase by 2.5 to 3.3°C in this region (17,
18). Soil microbial community structure and function may be altered due to their
temperature sensitivity (19–21). This temperature increase coupled with predicted
decreases in summer precipitation will yield hotter and drier conditions during the
growing season, resulting in crop stress (17), which has the potential to further alter soil
microbial communities. In periods of drought, microbial diversity is reduced (22, 23), as
is the ability of the microbes to cycle soil nitrogen (24). Drought can also cause plants
to prioritize relationships with fungi over bacteria, reducing the transfer of nutrients
and contributing to the crash of the bacterial community (25, 26). Further, as climate
change alters the composition of plant communities and their nutrient content (27; T.
Seipel, S. L. Ishaq, and F. D. Menalled, submitted for publication), the composition of
plant litter and residues is altered. This change in soil inputs, in turn, modifies plant-
microbe relationships (28–30) and reduces the available nutrients recycled into soil
(22, 29).

Climate change is also predicted to worsen the effects of plant pathogens, including
Wheat streak mosaic virus (WSMV; genus Tritimovirus), either by altering the dynamics
of vector transfer or by decreasing plant resistance to infection (7, 31). WSMV is
transmitted by wheat curl mites (Aceria tosichella), occurs across the North American
Great Plains, and can make plants more susceptible to the effects of climate change by
hindering root development and water uptake (32). To our knowledge, no study has
formally assessed the potential link between WSMV infection and plant-, rhizosphere-,
or root-associated microbial communities. It is possible that WSMV infections alter root
structure or function and can alter the capacity for plants to interact with soil micro-
biota.

In industrial (contemporarily referred to as conventional) cropping systems, man-
agement approaches focused on maximizing production are based on regular appli-
cations of synthetic inputs in the form of fertilizers and pesticides (33). In recent years,
shifted consumer demands and new market opportunities have developed organic
production into a major agricultural, economic, and cultural force (34, 35). However,
organic cropping systems rely heavily on tillage for weed management and cover-crop
termination. Due to the negative consequences that tilling has on the physical, chem-
ical, and biological properties of soils in the semiarid ecosystems that dominate large
sections of the Northern Great Plains, there is a growing interest among farmers and
researchers in reducing soil disturbance practices in organic systems (36–38). In this
context, the integration of crop and livestock production has been proposed as a
sustainable approach to terminate cover crops, manage crop residues, and control
weeds while reducing tillage intensity (39–41); however, very few studies exist on the
impact of integrated livestock management on soil quality or microbial communities
(23) or disease resistance.

Differences among cropping systems affect plant communities, including species
abundance, composition, and growth (42, 43), which, in turn, modifies microbial
communities in the rhizosphere (23, 44, 45). Although previous studies have evaluated
the role of microbial communities in crop yields and crop-weed competition (46), fewer
have explored the extent to which root-associated bacteria are impacted by cropping
systems, weeds, and plant disease in current and predicted climate scenarios. The aim
of our study was to assess changes in soil bacterial communities due to warmer and
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drier climate conditions and the presence of WSMV across contrasting cropping
systems and their associated weed communities. We hypothesized that (i) bacterial
community richness and evenness would be reduced by climate or WSMV infection;
(ii) cropping systems that promote bacterial richness would be more resistant to
alterations from climate and WSMV infection; and (iii) more diverse bacterial
communities would have a more stable bacterial community membership over the
growing season and in response to increased soil temperature, decreased precip-
itation, and WSMV.

RESULTS
Bacterial diversity and evenness. Soil temperature during the growing season (see

Fig. S1 in the supplemental material) was a strong driver of bacterial species richness
(Table 1), with fewer bacterial operational taxonomic units (OTUs; 97% cutoff) observed
in soil during hotter temperatures (Fig. 1A). Increased soil temperature reduced the
evenness of bacterial species (Table 1). Higher soil temperatures were negatively
associated with the presence or relative abundance of bacterial taxa that were signif-
icantly important features in the model (Fig. 1B). The most abundant of those taxa
included members of Blastococcus, Bacillales, Micromonosporaceae, Intrasporangiaceae,
Sphingomonas, Microbacteriaceae, and Streptomyces (Fig. 1B). There were 42 OTUs
which were significantly associated with a climate treatment (Table 2); 11 were asso-
ciated with ambient conditions, 17 with hotter conditions, and 14 with hotter and drier
conditions.

Soil moisture during the growing season (Fig. S2) positively impacted total bacterial
species richness (Fig. 2A; Table 1) and evenness (Table 1), though not as strongly as
temperature did. Across all samples, soil temperature and soil moisture were not
correlated with each other (lmer, P � 0.05) (Fig. S3). Soil moisture impacted the relative
abundance of bacterial species in different ways (Fig. 2B). For example, Aeromicrobium
organisms were more abundant at low soil moisture levels, Sphingomonas organisms
were more abundant at high moisture, and Phenylobacterium organisms were most
abundant at moderate levels of soil moisture (Fig. 2B).

Cropping system (conventional no-till [CNT], organic grazed [OG], or organic tilled
[OT]) interacted with climate treatment to affect bacterial richness and evenness (Fig. 3;
Table 1). Bacterial richness under ambient conditions peaked in early June for all three

TABLE 1 Effect of treatment factors and their interactions on observed soil bacterial
richness and evenness

Factor or interaction

Observed richnessa Shannon evenness

Sum of squares F value P value Sum of squares F value P value

Cropping system (C) 275,240 4.53 0.012 0.051 6.28 0.002
Soil temperature (T) 2,513,973 82.82 �0.001 0.080 19.64 �0.001
Soil moisture (M) 1,201,709 39.59 �0.001 0.028 6.97 0.009
WSMV (V) 56,697 1.87 0.173 0.001 0.14 0.708
Dateb 2,203,758 28.71 �0.001 0.104 8.6 �0.001
C:T 442,913 7.30 0.001 0.072 8.84 �0.001
C:M 217,218 3.58 0.029 0.015 1.89 0.154
T:M 845,614 27.86 �0.001 0.025 6.07 0.014
C:V 110,178 1.81 0.165 0.001 0.17 0.844
T:V 49,186 1.62 0.204 0.001 0.32 0.571
M:V 23,029 0.76 0.385 0.001 0.17 0.683
C:T:M 179,405 2.96 0.054 0.010 1.24 0.293
C:T:V 59,576 0.98 0.376 0.008 0.96 0.385
C:M:V 11,219 0.18 0.831 0.002 0.21 0.812
T:M:V 4,413 0.15 0.703 0.001 0.37 0.546
C:T:M:V 8.038 0.13 0.876 0.005 0.59 0.556
aRichness is measured as bacterial taxon counts and evenness of taxon abundance on a scale from 0 to 1
(each species having equal abundance). Comparisons were made using a linear mixed-effects model
accounting for repeated measures of subplots within replicated blocks, and significance was determined via
type III ANOVA with Satterthwaite’s approximation.

bFactor used in simple model.
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cropping systems, while richness under both hotter conditions and hotter and drier
conditions peaked in late June in the CNT and OG systems (Fig. 3A). Bacterial richness
in OG subplots was affected by soil temperature (lmer, estimate � 35, F � 2.997,
P � 0.003) and moisture (lmer, estimate � 6, F � 2.203, P � 0.03). There were 344 OTUs

FIG 1 Effect of soil temperature on soil bacterial communities. (A) Soil temperature was negatively correlated with soil bacterial richness. (B)
Relative abundance of soil bacterial by temperature over the 2016 growing season, selected as important features by random forest classification.
Taxa are arranged by total relative abundance, and only statistically significant features are shown. The model explained 45% of variance.
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which were significantly associated with a climate treatment (Table S1); 106 were
associated with the CNT system, 170 with the OG system, and 68 with the OT system.

Inoculation with WSMV resulted in 6 positive CNT samples with a mean infection
rate within subplots of 4.4%, 9 positive OG samples with a mean infection rate of 13.3%,
and 7 positive OT samples with a mean infection rate of 3.2% (Table S2). Overall,
inoculation with WSMV had no effect on bacterial species richness or evenness (Fig. 3;
Table 1). When CNT and OT subplots were compared, there was a date-virus interaction
on bacterial richness (lmer, F � 2.6792, P � 0.039). OT subplots at the end of July that
had been inoculated with WSMV showed reduced bacterial richness (lmer, F � 2.019,
P � 0.046), as did all hotter subplots in July treated with WSMV (F � 3.046, P � 0.003)
and hotter OG subplots inoculated with WSMV in April (F � 2.039, P � 0.044), May
(F � 2.088 P � 0.039), and late June (F � 2.192, P � 0.03). Weed species diversity and
percent coverage or biomass did not alter bacterial richness across all subplots (lm,
P � 0.05). There was one OTU significantly associated with subplots not treated with
virus (Solirubrobacterales 288-2, linear discriminant analysis [LDA] � 2.01, P � 0.037)

TABLE 2 Bacteria taxa significantly affected by climate treatment

Condition(s) OTU LDA P valuea

Ambient Agromyces 2.19 0.013
Betaproteobacteria 2.18 0.026
Cytophagaceae 2.29 0.0122
Gaiella 2.44 0.006
Gemmatimonadaceae 2.28 �0.001
Chloroflexi KD4-96 2.49 0.033
Chloroflexi KD4-96 2.63 0.003
Betaproteobacteria subgroup 6 2.13 0.040
Sphingomonadales 2.86 0.020
Acidobacteria subgroup 6 2.15 0.021
Acidobacteria subgroup 6 2.39 0.044

OTC; hotter Agromyces 2.25 �0.001
Gemmatimonadaceae 2.32 0.012
Microbacteriaceae 2.92 0.010
Myxococcales 2.17 0.008
Oxalobacteraceae 2.79 0.001
Ramlibacter 2.14 0.003
Segetibacter 2.30 0.001
Acidobacteria subgroup 6 2.00 0.010
Acidobacteria subgroup 6 2.15 0.024
Acidobacteria subgroup 6 2.24 �0.001
Acidobacteria subgroup 6 2.26 0.018
Acidobacteria subgroup 6 2.30 0.018
Acidobacteria subgroup 6 2.31 0.011
Acidobacteria subgroup 6 2.36 �0.001
Acidobacteria subgroup 6 2.36 0.009
Acidobacteria subgroup 6 2.52 0.019
Xanthomonadaceae 2.54 0.025

ROS; hotter and drier Holophagae ABS-19 2.33 0.023
Amycolatopsis 2.34 0.003
Comamonadaceae 2.13 0.017
Conexibacter 2.20 0.018
Kineosporia 2.74 �0.001
Mycobacterium 2.59 0.018
Nocardioides 2.19 0.003
Rhizobium 2.34 0.007
Sandaracinaceae 2.20 0.010
Sphingomonas 2.59 0.015
Sphingomonas 2.69 0.032
Streptomyces 3.01 0.004
Acidobacteria subgroup 6 2.40 0.004
Xanthomonadaceae 2.43 0.028

aSignificance was determined by LEFSE with an LDA cutoff score of �2.

Agricultural Soil Bacteria and Climate

July/August 2020 Volume 5 Issue 4 e00340-20 msphere.asm.org 5

https://msphere.asm.org


and 3 OTUs with WSMV inoculation (Acetobacteraceae, LDA � 2.42, P � 0.006; Bacillales,
LDA � 2.03, P � 0.046; and Flavobacterium, LDA � 3.08, P � 0.020).

Bacterial community stability. Soil temperature impacted bacterial community
similarity with significant but relatively weak effects (Table 3). Higher soil temperatures

FIG 2 Effect of soil moisture on soil bacterial communities. (A) Soil moisture was positively correlated with soil bacterial richness. (B) Relative
abundances of rhizosphere bacteria were affected by soil moisture from all subplots across the 2016 growing season, selected as important
features by random forest classification (P � 0.05). The model explained 32% of variance. Soil moisture is presented as matric potential on
the main x axis and percent saturation on the secondary x axis.
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FIG 3 Soil bacterial richness and evenness over the 2016 growing season. (A) Species-level richness and (B) species-level evenness by cropping system
(conventional no-till [CNT], organic grazed [OG]. and organic tilled [OT]), climate conditions (ambient, hotter, and hotter and drier), and pathogen infection
(Wheat streak mosaic virus [WSMV] or a no-template control [none]). Error bars show standard errors of the means (SEM).
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were associated with increased variation in bacterial community heterogeneity and
dispersion (betadisper, F � 3.3579, P � 0.001); i.e., in warmer temperatures the bacterial
communities were more dissimilar across and within a treatment group. Soil moisture
also weakly but significantly altered soil bacterial community similarity (Table 3) but did
not affect the amount of variation (heterogeneity) within bacterial communities (be-
tadisper, P � 0.05). Soil moisture did not have an effect on homogeneity when healthy
and WSMV subplots were considered separately, to account for the effect of WSMV on
plants’ abilities to take up water. Soil bacterial community similarity was minorly
impacted by the interaction of cropping system and climate (Table 3).

Here, stability (interpreted as no significant difference in bacterial �-diversity) was
similar between ambient and treatment subplots over time. Lower OTU richness
correlated with a higher similarity between ambient and manipulated hotter and drier
subplots (lm, F � 1291, P � 0.001), and this was most evident early and late in the
growing season (Fig. 4). The temporal stability of a bacterial community against climate
change was not associated with a lower fold difference in OTUs between ambient and
hotter subplots and ambient and hotter and drier subplots (Fig. 5). While the most
stable soil communities did have more bacterial OTUs, a loss of OTUs was not neces-
sarily associated with having lower community similarity (Fig. 5).

When bacterial communities’ responses to climate conditions were compared,
cropping system affected how stable bacterial communities remained at different
periods in the growing season (Fig. 6; Table 4). In May, the bacterial communities in
hotter OG samples were less stable than the ambient OG samples, in contrast to those
in hotter CNT and OT samples, which were more stable than the corresponding
bacterial communities under ambient conditions (Fig. 6; Table 4). In July, the bacterial
communities in the hotter OT subplots were more stable than those in the hotter CNT
or OT subplots and the respective ambient conditions (Fig. 6; Table 4). For bacterial
communities in hotter and drier subplots compared to ambient subplots, communities
in OT subplots showed the most stability, followed by OG samples, and CNT were least
stable (most dissimilar) compared to the respective ambient conditions (Fig. 6; Table 4).

Neither WSMV inoculation nor rate of infection (Table S2) within subplots created a
definable bacterial community (random forest; data not shown), although WSMV
inoculation was negatively associated with a species of Cellulomonas, as well as with
Actinobacteria clade 480-2 (Fig. 7). However, WSMV inoculation significantly affected
soil bacterial community similarity (Table 3). Moreover, there was an interaction of

TABLE 3 PERMANOVA of treatment factors and their interactions on soil bacterial
communitiesa

Factor or interaction

Bray-Curtis

F value R2 P value Significanceb

Cropping system (C) 0.88 0.007 0.001 ***
Soil moisture (M) 3.67 0.014 0.001 ***
Soil temperature (T) 2.00 0.007 0.004 **
Virus (V) 1.63 0.006 0.001 ***
Datec 5.27 0.077 �0.001 ***
C:M 1.15 0.008 0.213
C:T 1.69 0.012 0.005 **
M:T 2.88 0.011 0.001 ***
C:V 1.00 0.007 0.189
M:V 1.82 0.007 0.015 *
T:V 2.93 0.011 0.001 ***
C:M:T 1.03 0.008 0.411
C:M:V 1.56 0.011 0.009 **
C:T:V 1.25 0.009 0.107
M:T:V 2.22 0.008 0.001 ***
C:M:T:V 1.25 0.009 0.093 t
aComparisons were made accounting for repeated measures of subplots and with replicate blocks as a
stratification.

b***, �0.001; **, 0.001 to 0.009; *, 0.01 to 0.05; t (trending), 0.05 to 0.1.
cFactor used in simple model.
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WSMV and climate change (Table 3), which was modulated by cropping system (Fig. 8;
Table 4).

When the changes in bacterial communities between ambient conditions and hotter
conditions or hotter and drier climate conditions were compared, cropping system
modulated how stable bacterial communities remained in subplots which had been
treated with WSMV. In assessing similarity between bacterial communities between
ambient and climate conditions, CNT and OT subplots treated with WSMV were
significantly different (analysis of variance [ANOVA], P � 0.001 [Tukey’s test]) from their
noninfected counterparts, indicating that disease status altered the ability of the
community to remain stable (i.e., resistance) under changing climate. However, OG
subplots did not differ between WSMV-treated and untreated subplots (ANOVA,
P � 0.05 [Tukey’s test]) in terms of the similarity between ambient and climate-
conditioned soil.

WSMV made it more difficult for bacterial communities to remain stable under
different climate conditions, across the growing season, and between cropping systems
(Fig. 8; Table 4). When ambient conditions were compared to hotter conditions in
subplots treated with WSMV, in April, CNT subplots were more stable than OG or OT
subplots; in early June, OG subplots were more stable than OT subplots; in late June,
CNT and OG subplots were more stable than OT subplots; and in late July, CNT subplots
were most stable, followed by OT and then OG subplots (Fig. 8; Table 4). A comparison

FIG 4 Soil bacterial community similarity between ambient and climate-treated subplots correlated with
bacterial OTUs. Cropping systems include conventional no-till (CNT), organic grazed (OG), and organic
tilled (OT).
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of hotter and drier conditions to ambient conditions in WSMV-treated subplots showed
that in April, CNT subplots were more stable than OG or OT subplots; in late June, CNT
and OG subplots were more stable than OT subplots; and in late July, CNT subplots
were again more stable than OG or OT subplots (Fig. 6; Table 4).

Weed communities in the organic systems were more diverse than the CNT sub-
plots, though OG and CNT subplots had similar relative species abundance (Seipel et al.,
submitted). Climate conditions had minor impacts on weed communities (Seipel et al.,
submitted). Weed species diversity, as well as percent biomass from subplots, nega-
tively impacted the similarity between ambient and climate-treated subplots across the
growing season (Fig. S4), including weed diversity (lm, F � 79.153, P � 0.001) and
percent coverage (F � 26.516, P � 0.001) the prior fall on 25 October 2015, diversity

FIG 5 Soil bacterial community similarity against the fold change in number of OTUs in comparing ambient to
hotter subplots and ambient to hotter and drier subplots across the 2016 growing season. The difference in
OTUs is measured as fold change, or ratio of the OTU abundance in ambient subplots over the OTU abundance
in climate scenario subplots. Viral treatment includes Wheat streak mosaic virus (WSMV) and a no-template
control (none). Cropping systems include conventional no-till (CNT), organic grazed (OG), and organic tilled (OT).

Ishaq et al.

July/August 2020 Volume 5 Issue 4 e00340-20 msphere.asm.org 10

https://msphere.asm.org


FIG 6 Soil bacterial community similarity between ambient and hotter and between ambient and hotter and drier conditions in subplots from three cropping
systems across the 2016 growing season. Plots were not treated with Wheat streak mosaic virus. Significance is provided in Table 4. Cropping systems include
conventional no-till (CNT), organic grazed (OG), and organic tilled (OT).
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(F � 25.637, P � 0.001) and coverage (F � 119.78, P � 0.001) early in the growing
season on 8 April 2016, diversity on 14 June 2016 (F � 68.888, P � 0.001), and weed
biomass on 29 June 2016 (F � 30.807, P � 0.001).

Individual weed species were weakly but significantly correlated with membership
of the soil bacterial community (Table 5), including Asperugo procumbens, Bromus
tectorum, Capsella bursa-pastoris, Chenopodium album, Cirsium arvense, Descurainia
sophia, Galium aparine, Lactuca serriola, Lamium amplexicaule, Malva neglecta, Mono-
lepsis nuttalliana, Poa annua, Solanum triflorum, Taraxacum officinale, Thlaspi arvense,
Tragopogon dubius, and Trifolium pretense. Of these, three winter annuals had definable
effects on bacterial community structure (Fig. 9) (P � 0.05). Bromus tectorum cover in
mid-June (Fig. 9A), as well as cover of Capsella bursa-pastoris (Fig. 9B) and Descurainia
sophia (Fig. 9C) in the previous fall, had a predictable impact on the rhizosphere
community. Bromus tectorum had a U-shaped relationship with bacterial relative abun-
dance, while C. bursa-pastoris and D. sophia showed more of a positive correlation.
Capsella bursa-pastoris cover in subplots associated with an increase in Rubrobacter,
Nocardioides, Ilumatobacter, the family-level clade FFCH13075 in the order Solirubro-
bacterales, and others (Fig. 9B). Descurainia sophia coverage of subplots was associated
with an increase in the KD4-96 clade in the phylum Chloroflexi, FFCH13075, Blastococ-
cus, Nocardioides, Oryzihumus, and others (Fig. 9C).

DISCUSSION

This study evaluated the effects of climate conditions, WSMV inoculation, cropping
system, and associated in situ weed communities on wheat soil bacterial communities
over the course of a growing season. We hypothesized that (i) bacterial community
richness and evenness would be reduced by climate changes or WSMV infection, (ii)
cropping systems which promote bacterial richness would be more resistant to alter-
ations from climate changes and WSMV infection, and (iii) more diverse bacterial
communities would have a more stable bacterial community membership over the
growing season and in response to increased soil temperature, decreased precipitation,

TABLE 4 Effect of climate conditions, cropping system, and sampling date on soil
bacterial community compositiona

Comparison Cropping systemb Date Virusc Adjusted P value

Ambient vs. hotter OG-CNT 12 May None 0.002
OT-OG 12 May None 0.001
OT-CNT 25 Jul None �0.001
OT-OG 25 Jul None �0.001
OG-CNT 21 Apr WSMV �0.001
OT-CNT 21 Apr WSMV 0.001
OT-OG 1 Jun WSMV 0.032
OT-CNT 22 Jun WSMV �0.001
OT-OG 22 Jun WSMV 0.007
OG-CNT 25 Jul WSMV �0.001
OT-CNT 25 Jul WSMV �0.001
OT-OG 25 Jul WSMV 0.003

Ambient vs. hotter and drier OG-CNT 25 Jul None 0.006
OT-CNT 25 Jul None �0.001
OT-OG 25 Jul None �0.001
OG-CNT 21 Apr WSMV 0.001
OT-CNT 21 Apr WSMV 0.002
OT-OG 22 Jun WSMV 0.001
OT-CNT 22 Jun WSMV 0.007
OG-CNT 25 Jul WSMV �0.001
OT-CNT 25 Jul WSMV �0.001

aThe unweighted Jaccard index was used to calculate bacterial community composition, and comparisons
were made between ambient and hotter conditions and between ambient and hotter and drier conditions
within each sampling date. Comparisons were tested with analysis of variance, and P values were adjusted
with Tukey’s honestly significant differences.

bCropping systems: CNT, conventional no-till; OG, organic grazed; OT, organic tilled.
cWSMV, Wheat streak mosaic virus.
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and WSMV. In summary, sampling date within the growing season, soil temperature,
and soil moisture exerted the greatest effect on soil bacterial communities, followed by
cropping system, WSMV infection status, and weed community characteristics.

Changes in precipitation and soil moisture, atmospheric gas concentration, soil
salinity, and soil temperature can affect bacterial diversity (19, 20, 47). In particular, soil
temperature can be a stronger driver of bacterial diversity and functionality than
soil moisture (48). Even after weeks of warmer temperatures, soil microbiotas do not
appear to develop functional resistance to the heat and maintain stable communities
(48), yet soils which experience frequent wet-dry cycles, such as grassland soils, host
microbial communities which remain more stable under drought conditions (49).
Physical or chemical disturbance can further prevent a stable soil community which is

FIG 7 Spearman’s correlations between most abundant soil bacteria and various factors at the end of the 2016 growing season in July. Significant correlations
are shown, determined by Wilcoxon rank (P � 0.05).
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adapted to warmer temperatures from forming (50). In this study, and in accordance
with previous studies (51, 52), soil temperature was found to be a stronger driver of
bacterial species diversity and abundance than soil moisture. This may reflect the more
complex interaction between plants, microorganisms, and soil conditions, as soil mois-

FIG 8 Soil bacterial community similarity between ambient and hotter conditions and between ambient and hotter and drier conditions
in subplots treated with Wheat streak mosaic virus from three cropping systems across the 2016 growing season. Significance is provided
in Table 4. Cropping systems include conventional no-till (CNT), organic grazed (OG), and organic tilled (OT).
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ture can somewhat stabilize soil temperature (53). Plant foliation, which increases with
air temperature, in turn shades soil and can buffer further increases in soil temperature
(53), thus better supporting microbial communities.

Cropping systems are known to be associated with particular soil microbial com-
munities (23, 45, 54). In particular, the use of plant- or manure-based fertilizer can
increase microbial diversity, while chemical-based fertilizers select for acid-tolerant
species (45, 55, 56), leading to the trend of organic systems to harbor more diverse
microbial communities than conventional (industrial) ones (55, 57, 58). Further, tillage
and herbicides reduce microbial diversity (59, 60). Soil microbial �-diversity has been
used as a topical application to rescue plants from drought, salt stress, or disease
(61–63) and may be used to remediate soils after chemical or physical disruption
(64–67). Thus, management practices which promote microbial diversity have the
potential to be used as an in situ method to moderate the effect of stressors such as
climate change, pathogens, or weeds (46, 54).

We previously assessed the impact of these cropping systems over the course of the
growing season (23) and observed that under ambient conditions, cropping system did
not alter bacterial richness or evenness but did affect �-diversity. In particular, organic
tilled subplots contained more putative nitrogen-fixing bacterial genera (23). In the
present study, the bacterial community in all cropping systems changed over the
course of the growing season, as well as in response to increased soil temperature or
decreased soil moisture. However, the interaction between cropping systems and
climate conditions was not identical across systems. The peak in bacterial richness in
CNT and OG systems was delayed in the hotter and the hotter and drier conditions
compared to their respective ambient subplots. From observations, wheat in these
systems developed more slowly than in OT subplots. The peak in bacterial richness is
likely tied to peak growth and development of wheat, when plant-bacterial nutrient
exchange is greatest. In OT subplots, the earlier peak and subsequent drop in bacterial

TABLE 5 PERMANOVA of weed species identity and percent coverage on soil bacterial
communities at different times over a growing seasona

Weed and measurement F model R2 P value Significanceb

Asperugo procumbens, cov, Oct 2015 1.212 0.00474 0.047 *
Bromus tectorum, cov, Oct 2015 0.819 0.0032 0.001 ***
Bromus tectorum, cov, Jun 2016 1.016 0.00397 0.005 **
Bromus tectorum, biomass, late Jun 2016 1.1495 0.00449 0.001 ***
Capsella bursa-pastoris, cov, Oct 2015 0.7862 0.00307 0.035 *
Capsella bursa-pastoris, cov, Apr 2016 1.0965 0.00429 0.001 ***
Capsella bursa-pastoris, biomass, late Jun 2016 1.0236 0.004 0.001 ***
Chenopodium album, cov, Apr 2016 1.1424 0.00447 0.05 *
Chenopodium album, cov, Jun 2016 1.0397 0.00407 0.001 ***
Cirsium arvense, biomass, late Jun 2016 0.8499 0.00332 0.03 *
Descurainia sophia, cov, Oct 2015 0.7804 0.00305 0.003 **
Galium aparine, cov, Apr 2016 0.7757 0.00303 0.049 *
Lactuca serriola, biomass, late Jun 2016 0.9691 0.00379 0.042 *
Lamium amplexicaule, cov, Oct 2015 1.0349 0.00405 0.047 *
Malva neglecta, cov, Oct 2015 1.129 0.00441 0.019 *
Malva neglecta, cov, Apr 2016 0.6295 0.00246 0.009 **
Monolepsis nuttalliana, cov, Jun 2016 0.9573 0.00374 0.009 **
Poa annua, cov, Oct 2015 0.8321 0.00325 0.001 ***
Poa annua, cov, Apr 2016 0.7457 0.00292 0.022 *
Solanum triflorum, cov, Oct 2015 0.8559 0.00335 0.044 *
Taraxacum officinale, cov, Oct 2015 0.8523 0.00333 0.002 **
Taraxacum officinale, cov, Jun 2016 0.7226 0.00283 0.021 *
Thlaspi arvense, cov, Apr 2016 1.3834 0.00541 0.002 **
Thlaspi arvense, cov, Jun 2016 0.8235 0.00322 0.047 *
Tragopogon dubius, biomass, late Jun 2016 0.799 0.00312 0.002 **
Trifolium pratense, biomass, late Jun 2016 0.8271 0.00323 0.001 ***
Trifolium pratense, cov, Apr 2016 0.813 0.00318 0.024 *
aComparisons were made accounting for repeated measures of subplots and with replicate blocks as a
stratification. Only significant comparisons are shown. cov, coverage.

b***, �0.001; **, 0.001 to 0.009; *, 0.01 to 0.05.
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richness may be associated with a more advanced growth stage and earlier senescence
(13). Cropping system affected the stability of bacterial communities when ambient
conditions were compared to climate-treated conditions, with the conventional no-till
system remaining more stable than the organic ones. This may reflect the more intense
selective pressure exerted by chemical inputs on the community and the recruitment
of a more resilient microbiota.

Cropping system can indirectly alter soil microbial �-diversity via crop disease
susceptibility. For example, direct nitrogen fertilization can increase WSMV disease
transmission (68). Using livestock grazing to terminate cover crops and control weed
residues can reduce wheat mite populations (69), although this has not been shown to
reduce virus transmission (70). In the present study, there were interactions between
WSMV application and soil moisture, soil temperature, and cropping system-soil mois-
ture, pointing to the importance of multiple concurrent stressors in shaping soil
communities. The effect of different cropping systems on viral infection in crops is
complex (71) and is largely modulated by the extent of crop diversification, crop
residue removal strategy, and pest control (72).

As early successional species, agricultural weeds establish quickly in newly disturbed
soil and sometimes earlier in the growing season than spring or summer crops (73). In
climate change scenarios which predict warmer, wetter springs and higher atmospheric

FIG 9 Relative abundance of rhizosphere bacteria associated with Bromus tectorum (A), Capsella bursa-pastoris (B), and Descurainia sophia (C) subplot coverage
at specific points during the 2016 growing season. Bacterial taxa were selected as important features by random forest classification (P � 0.05).
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CO2, the alteration of the local environmental conditions can give weeds a greater
advantage over crops (74). Changing environmental conditions and crop-weed com-
petition may, in turn, alter the soil microbial community, further making conditions less
favorable for crop germination, growth, and competitive ability (75). As with all plant
species, agricultural weed species associate with particular microbial communities in
their rhizosphere (23, 54, 73, 76). It is generally thought that weed diversity in agricul-
tural settings could increase microbial diversity in soil and potentially increase the
functionality and stability of soil microbial communities. In this study site, ambient
subplots were previously shown to have weak positive correlations between weed
diversity and soil bacterial richness (23). In the present study, weed diversity or biomass
did not alter soil bacterial richness or evenness, although bacterial �-diversity was
affected, and weed diversity was inversely related to the stability of bacterial commu-
nities in response to climate treatment. This may reflect the temporary increases in
bacterial richness during periods of weed growth which are not sustained during the
hottest part of the season when bacterial communities are more susceptible to
temperature and moisture stress.

The effects of environmental condition or disease status had interactions with
cropping system when bacterial communities were assessed. This has implications for
soil bacterial communities and plant performance (77), both within the growing season
and in successive plantings, as the legacy of these altered bacterial communities
persists (8). As local climates continue to shift, so too will the dynamics of above- and
belowground diversity, which will impact food production and drive the need for more
sustainable practices (5, 16, 18).

Conclusions. Overall, this study indicates that predicted climate modifications as
well as biological stressors play a fundamental role in the impact of cropping systems
on soil bacterial communities. Soil temperature, soil moisture, treatment with Wheat
streak mosaic virus, type of cropping system, and date within the growing season were
shown to have independent and interacting effects on soil bacterial community
richness, evenness, and stability over time.

MATERIALS AND METHODS
Experimental design. This study was conducted in 2015 and 2016 at an agricultural field experiment

that had been implemented since July 2012 at the Montana State University Fort Ellis Research and
Teaching Center, Bozeman, MT (45.652664056 N, �110.97249611 W; elevation, 1,500 m above sea level),
to test production of three dryland cropping systems using a 5-year crop rotation. The Fort Ellis site is
a Blackmore silt loam soil type (a fine-silty, mixed, superactive, frigid Typic Arguistoll) with a consistent
ratio of 1 part sand, 2 parts silt, and 1 part clay, by weight, at 0% to 4% slopes (78). The monthly air
temperature in Bozeman in 2016 was higher than historic maxima and minima from 1981 to 2010, and
the mean monthly precipitation (Table S3; republished from Geoderma [23]) was lower by 18 mm in May,
16 mm in June, and 14 mm in July (79).

The cropping systems at the studied site consisted of (i) a conventional no-till system (CNT), in which
synthetic inputs were used in the form of fertilizers, herbicides, and fungicides; (ii) a USDA-certified tilled
organic (OT) system, and (iii) a USDA-certified organic system with grazing (OG), which integrates sheep
grazing to terminate cover crops and manage weeds, with the overall goal of reducing tillage intensity
in organic production. Chemical inputs utilized in the CNT system included 2,4-dichorophenoxyacetic
acid (2,4-D), bromoxynil, dicamba, fluroxypyr, glyphosate, 2-methyl-4-chlorophenoxyacetic acid, pinoxa-
den, and urea for winter wheat rotations (see Tables 2.7 and 2.8 in reference 80). The organic plots began
the organic transition process in July 2012 and completed it in 2015. In the OT system, tillage was
performed with a chisel plow, tandem disk, or field cultivator, as needed to control weeds, prepare the
seedbed, and incorporate cover crops and crop residues. Weed control was enhanced with a rotary
harrow. In the OG system, targeted sheep grazing was used to reduce tillage intensity for preseeding and
postharvest weed control and to terminate the cover crops, with duration and intensity of grazing based
on weed biomass (5). Grazing was minimally supplemented with tillage, based on soil conditions and
weed pressure. For all systems, seeding was done with a low-disturbance no-till double-disk seeder.
Outside normal farm management activities, soil disturbance and compaction were minimized during
sampling procedures. Further details of the management practices, both historical and at the time of
experimentation, can be found elsewhere (5, 42, 80).

Each system was replicated three times (i.e., blocks) with cropping systems (75 by 90 m) as the main
plots, each of which was further divided into 5 split plots (13 by 90 m), with a 2-m fallow buffer between.
Split plots were each following a 5-year rotation, as follows: year 1, safflower (Carthamus tinctorius L.)
undersown to yellow sweet clover [Melilotus officinalis (L.) Lam.]; year 2, sweet clover cover crop; year 3,
winter wheat (Triticum aestivum L.); year 4, lentil (Lens culinaris Medik.); and year 5, winter wheat (5).

Agricultural Soil Bacteria and Climate

July/August 2020 Volume 5 Issue 4 e00340-20 msphere.asm.org 17

https://msphere.asm.org


Within each of the year 3 (winter wheat) fields, subplots (1-m diameter) were randomly established
to assess the impact of climate conditions and disease status on wheat soil bacteria across cropping
systems. Two subplots were marked with flags and used as control or ambient climate conditions
(ambient conditions), two subplots were enclosed with an open-top chamber (OTC; hotter conditions)
made from 18-inch-high plastic that reflected heat back on the subplot to increase air temperature and
soil temperature by 1 to 2°C (81), and two subplots were enclosed with OTCs and partially covered with
rain-out shelters (OTC-ROS; hotter and drier conditions) which reduced rainfall by 50% using transparent
polyurethane (Fig. S5; similar to conditions described in reference 82). For each of the three climate
treatments, one of the subplots was randomly inoculated with WSMV (see below).

Wheat streak mosaic virus inoculation and data collection. Following previous work (83), prior to
the WSMV inoculations, spring wheat (variety Chouteau) was grown in the greenhouse in flat trays (30
by 10 cm), where plants were maintained under a 16-h photoperiod of sunlight supplemented with
mercury vapor lamps (165 �E m�2 s�1) at 10°C/25°C (day/night). When the wheat was at Feekes stage
4 to 6, an inoculum of WSMV was created from the Conrad isolate line (84). Infected wheat was harvested
from the greenhouse and frozen for 1 to 2 days until use. To create the WSMV inoculum, 300 g of infected
wheat clippings were ground to reduce particle size using a food processor and then blended with buffer
(3.2 liters of deionized water plus 600 ml of 5� phosphate-buffered solution, pH 7.2) until smooth. The slurry
was filtered through cheesecloth to remove particulate matter which would clog the spray hose and
refrigerated for up to 1 h until use. Immediately prior to use, 2 g carborundum (ground glass) was added per
3.78 liters of slurry as an abrasive to injure wheat slightly but enough for the virus to infect it. Slurry was
sprayed onto subplots using an air compressor (275 kPa) travelling at a rate of 0.5 m/s and sprayed at a height
of 20 cm above the canopy. Control subplots were sprayed with water in which 2 g carborundum was added
per 3.78 liters (no-template control). Spraying occurred the last week of April, 1 week after the first soil
sampling date (21 April), and 2 weeks prior to the second sampling date (12 May).

Infection of WSMV in subplots was evaluated in July by using an indirect enzyme-linked immunosor-
bent assay (ELISA), with 10 leaves sampled from each subplot and assessed separately (85). Within a
plate, every 10th well contained a negative control (i.e., a sample from a healthy wheat plant) to reduce
potential bias in values of optical density caused by position of samples. The mean and standard
deviation for the negative control on each plate were calculated. Samples with values above three
standard deviations were considered infected with WSMV (86). ELISA results are provided in Table S1.

Crop and weed evaluations. Percent coverage of weeds in subplots was assessed visually in
October 2015, April 2016, and June 2016. Aboveground biomass of all weed species within sampled areas
was harvested by hand in late June 2016. Within each 0.75-m2 subplot, weed biomass was cut at ground
level and separated by species. The individual biomass of each species was dried for 2 weeks at 55°C and
weighed (Seipel et al., submitted). Wheat biomass was harvested from sampled areas by hand on 25 July
2016, once the crop had completely senesced and ripened. The two center rows (75 cm each) of wheat
in the subplot were harvested, for a total of 1.5 row-meters. All the aboveground biomass was harvested,
dried for 1 week at 55°C, and threshed to determine biomass and grain yields (Seipel et al., submitted).

Soil assessment. Soil moisture was measured weekly using gypsum blocks buried 5 cm below-
ground (87). Percent moisture readings below 0 were outside the range of measurement and were reset
to 0, per manufacturer recommendations; then matric potential was calculated according to previous
literature (88). Soil temperature was measured with buried iButtons (Maxim Integrated), with data
obtained every 4 h between 14 April 2016 (1 week prior to the first sampling) and 25 July 2016 (final
sampling date). In each subplot, three cores were taken from around wheat plants to a depth of 15 cm
and then homogenized into one composite sample, which was used for bacterial community sampling
(stored at �20°C) and nutrient analysis (stored at 4°C). Soil cores were obtained from all 54 subplots at
five time points over the growing season: 21 April, before the WSMV inoculations were applied; 12 May,
1 week post-WSMV infection; 1 June, 3 weeks post-WSMV infection; 22 June, 6 weeks post-WSMV
infection; and 25 July, 10 weeks post-WSMV infection and immediately prior to wheat harvesting.
Additional soil was collected at wheat harvest for nutrient analysis (Table S4) (Agvise Laboratories,
Northwood, ND, USA).

DNA extraction from soil samples (PowerSoil 96-well soil DNA isolation kit; MoBio Laboratories, Inc.),
library preparation (HotStart PCR kit; Kapa Biosystems), sequencing, and sequence analysis protocols
were as previously described (23). An Illumina MiSeq system (Montana State University, Bozeman, MT)
was used to sequence the V3-V4 region of the 16S rRNA gene, using primers 341F (5=-CCTACGGGAGG
CAGCAG-3=) and 806R (5=-GGACTACHVGGGTWTCTAAT-3=) (89).

The bioinformatics workflow, described in more detail elsewhere (23), used PANDAseq (90) to
assemble contigs, mothur version 1.38 (91) to process quality control steps, and R version 3.5 (92) to
perform statistical analysis. Significant taxa by treatment class were assessed using the mothur-
integrated version of linear discriminant analysis effect size (LEFSe) (93) with an LDA cutoff score of �2.

Linear mixed-effects models and distance-based redundancy models (vegan) (94), random forest with
permutation (95, 96), permutational ANOVA (PERMANOVA; adonis) (97), and ggplot2 (98) were used in
the R statistical package (92). Linear mixed models used cropping system, soil moisture, and soil
temperature on the day of sampling and WSMV application as random effects. Sampling date and
subplot identity nested with block were included to control for repeated sampling. Some variables were
aliased in the distance-based redundancy analysis and therefore were removed from the model: Capsella
bursa-pastoris, Cirsium arvense, Galium aparine, and Tragopogon dubius biomass on 29 June 2016;
Chenopodium album, Lamium amplexicaule, Malva neglecta, Poa annua, and Solanum triflorum coverage
on 25 October 2015; C. arvense, T. dubius, and Trifolium pretense coverage on 8 April 2016; and
Chenopodium album and Tragopogon dubius coverage on 14 June 2016. Plant coverage has been shown

Ishaq et al.

July/August 2020 Volume 5 Issue 4 e00340-20 msphere.asm.org 18

https://msphere.asm.org


to have a linear correlation with plant aboveground biomass (99, 100), and weed senescence may negate
the effect on soil microorganisms (100). Thus, as coverage was measured at multiple time points but
biomass only once, coverage was used as a more accurate measure of the weed-soil microbe relationship
with respect to sampling date when coverage and biomass were both significant.

Random forest was performed with 500 trees and 100 permutations. Replicate block did not affect
numerical diversity and was included as a random effect in those models, but it did affect bacterial
communities when ambient systems were compared (23) and was included as a fixed effect in those
models. Unweighted Jaccard similarity was used to determine effect of factors on community structure
and tested with permutational analysis of variance (PERMANOVA; adonis function), with replicate block
as a stratification. When comparing climate to ambient conditions, we utilized analysis of variance
(ANOVA) and Tukey’s honestly significant differences to assess the variables determining soil bacterial
communities. The comparison and visualization of ambient and modified climate conditions was based
on R code developed by Ashkaan Fahimipour and Roo Vandegrift.

Data availability. Sequencing output data can be found in the Sequence Read Archive (SRA) at NCBI
under BioProject no. PRJNA383161.
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