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Abstract

Understanding the microbial communities in anaerobic digesters, especially bacteria and

archaea, is key to its better operation and regulation. Microbial communities in the anaerobic

digesters of the Gulf region where climatic conditions and other factors may impact the

incoming feed are not documented. Therefore, Archaeal and Bacterial communities of three

full-scale anaerobic digesters, namely AD1, AD3, and AD5 of the Jebel Ali Sewage water

Treatment Plant (JASTP) were analyzed by Illumina sequencing of 16S rRNA genes.

Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides

(Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria

(Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and

Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacte-

ria in the incoming feed may be thermophilic or halophilic as much of the water used in the

country is desalinated seawater. The predominant Archaea include mainly the members of

the phyla Euryarchaeota and Crenarchaeota belonging to the genus Methanocorpusculum,

Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocor-

pusculum (more than 50% of total Archaea), and other hydrogenotrophic archaea, is in

agreement with the high population of bacterial genera Acetobacteroides (Blvii28) and Fer-

vidobacterium, capable of fermenting organic substrates into acetate and H2. Coprothermo-

bacter, which is known to improve protein degradation by establishing syntrophy with

hydrogenotrophic archaea, is also one of the digesters’ dominant genera. The results sug-

gest that the microbial community in three full-scale anaerobic digesters is different. To best

of our knowledge this is the first detailed report from the UAE.
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Introduction

The process of anaerobic digestion is a multistep microbial process that includes the microbes

mediated breakdown of organic matter to produce CO2, CH4, and H2O by a complex micro-

bial community including archaea and bacteria. These products can be used as biogas, which

can be further processed to generate electricity or fuel for transportation [1, 2]. The energy

obtained from anaerobic digesters can also be used for the operation of the wastewater treat-

ment plant itself [3]. Due to these possible applications of the gases and the rising cost of con-

ventional fossil fuels, the anaerobic digestion process is emerging as one of the most

sustainable methods for the management of organic waste [4]. The process is already being

used for the generation of renewable energy in many countries worldwide [5]. Besides, anaero-

bic digestion is of environmental significance as it helps manage waste and reduce greenhouse

gases [6]. There are, however, clear challenges in translating the technology for simple com-

mercial applications and general use [7]. One of the reasons is the complexity of the microbial

community involved in the process, making it difficult to understand the specific roles of dif-

ferent bacteria and their maintenance as consortia [8, 9]. Therefore, it is important to under-

stand the roles of various microorganisms in the process of anaerobic digestion.

During the conversion of organic wastes into CH4 gas, a number of microbial processes are

involved [10]. The anaerobic digestion process involves the following basic steps: the break-

down of complex organic compounds to simple organic molecules, the conversion of these

simple organic molecules to organic acids (acidification), and the conversion of these organic

acids into CH4 gas. Methanogens are also of two major types: hydrogenotrophic and acetolac-

tic, depending on the type of substrate they utilize for CH4 production. Each of these processes

is carried out by different microorganisms in the presence of various other unrelated microor-

ganisms. The complex interplay between these microorganisms may influence these processes

adversely or favorably. Multiple factors influence the composition of the microbial community

present in the anaerobic digesters [11]. One important factor can be the microbial community

in the feed of the anaerobic digester, which influences the anaerobic digester’s microbial com-

munity [12, 13]. The composition of the microbial community in the feed can also change

with environmental conditions. It has been demonstrated earlier that environmental condi-

tions affect the type of methanogens present in anaerobic digesters [14].

Although several studies have reported the microbial community associated with full-scale

anaerobic sludge systems worldwide, exhaustive research based on next-generation sequencing

describing the microbial community structure in full-scale anaerobic sludge digesters of the

UAE and other wastewater treatment plants (WWTPs) in the Gulf is missing. It is also essen-

tial to understand the microbial community in these WWTPs due to two main reasons. First,

the climatic conditions in these countries are different, and secondly, much of the water used

is desalinated water from the sea, which may influence the microbial community in the incom-

ing feed, consequently affecting the process of digestion. Knowledge of the microbial commu-

nity in these digesters and its role in the anaerobic digestion process can help in improving the

performance of WWTPs, not only in Dubai but also in the whole Gulf region, sharing similar

climatic conditions and water resources. Since JASTP is one of the two main municipal sewage

treatment plants operating in Dubai, its successful operation is of critical importance. Both

treated wastewater and digested sludge produce are reused for various purposes. The biogas

produced by anaerobic digesters is partly utilized to maintain digester temperature and run

the boiler systems. Dubai also has future plans to use biogas produced from these WWTPs.

Therefore, we have previously reported the microbial community in these digesters using the

fluorescent in situ hybridization and quantitative PCR technique [15]. Here we report a com-

prehensive mapping of key microbial operational taxonomic units present in these digesters.
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To the best of our knowledge, the microbial community of these anaerobic digesters is not

documented, especially using next-generation sequencing approaches like Illumina sequenc-

ing. Therefore, this study reports a preliminary analysis of the microbial community present in

the anaerobic digesters of JASTP, including bacteria and archaea, using Illumina sequencing.

Materials and methods

Sampling

Ten waste sludge samples were collected from three anaerobic digesters (AD1, AD3 & AD5) of

the Jebel Ali Sewage Water Treatment Plant (JASTP) over a period from September 2016 to

February 2017. JASTP is one of the two municipal wastewater treatment plants in Dubai,

which serves a population of approximately 3.37 million and processes 375,000 m3 of wastewa-

ter per day. The three AD systems chosen for this study are operating for a long time and are

considered representative digesters of JASTP and Dubai. Furthermore, the sludge produced

during anaerobic digestion is used as a biofertilizer in public parks and local agricultural farms

in Dubai. All three digesters had a capacity of 7433 m3 and operated at a mesophilic tempera-

ture ranging between 32–37˚C [15]. The digesters were fed with 60 and 40% of raw and acti-

vated sludge, respectively. Details on the configuration and characteristics of the digesters are

listed in Table 1.

The samples used for extraction of genomic DNA for Illumina sequencing were collected

simultaneously with other samples used in our previously published studies involving fluores-

cence in situ hybridization (FISH) and real-time PCR assay. The samples collected from three

anaerobic digesters were designated as AD1, AD3, and AD5. Temperature, pH, and electrical

conductivity (EC) were measured in sludge samples at the time of collection using HORIBA

U-50 Multi Water Quality Checker (HORIBA Instruments Incorporated, USA). The collected

samples were stored at 4˚C until DNA extraction.

Genomic DNA extraction

Genomic DNA was extracted in triplicate from the sludge samples using the Power Soil DNA

Extraction Kit (MO Bio Laboratories, Inc., Solana Beach, CA). The composite samples were

Table 1. Characteristics and configuration of anaerobic digestors.

Characteristics of digester Digester number

AD1 AD3 AD5

Type of digester CSTRa CSTR CSTR

Operating temperature mesophilic mesophilic mesophilic

Input feed RSb-60% RS-60% RS-60%

ASc-40% AS-40% AS-40%

Digester capacity (m3) 7433 7433 7433

Digester feeding rate (m3/day) 2248 2148 2552

Solid retention time (Days) 16 16 16

Hydraulic Retention time (Days) 3.3 3 2.91

Upflow Velocity (m3/hr) 120 120 120

Organic loading rate (Kg. ODS/m3. d) 6.84 5.84 6.61

aCSTR = continuously stirred tank reactors
bRS = raw sludge
cAS = activated sludge

https://doi.org/10.1371/journal.pone.0249023.t001
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vortexed and then centrifuged at 4000 rpm for 5 min. DNA was then extracted from 0.25g of

pellet according to the manufacturer’s protocol. The extracted DNA was stored at -20˚C until

further use. DNA concentration and purity were checked using a Qubit fluorometer (Thermo

Fisher Scientific, USA).

Illumina sequencing of samples

The diversity of bacterial and archaeal communities in the samples was determined by ampli-

fying the V3-V4 regions of bacterial and archaeal 16S ribosomal RNA (rRNA) genes. Briefly,

quality check of the extracted genomic DNA samples was performed by quantification using

the Qubit DNA BR Assay kit (Thermo Fisher Scientific, USA Cat#Q32853). For the generation

of 16S amplicon, the extracted DNA samples were diluted to 10 ng and were amplified for 16S

(~1500 bp) using 16S (5’ AGAGTTTGATCCTGGCTCAG 3’), & 16S reverse primers (5’
GGTTACCTTGTTACGACTT 3’), positive control (internal metagenomic DNA sample), and

no template control. These amplicons were checked on 1% agarose gel. To generate V3-V4

amplicon, 16S amplicon was used as a template with all the samples subjected to V3-V4 ampli-

fication (~460 bp) using V3-V4 forward and V3-V4 reverse primers (primer sequences

V3-V4-forward 5’ CCTACGGGNGGCWGCAG 3’ and V3-V4 reverse 5’ GACTACHVGGGT
ATCTAATCC 3’) and a positive control (internal metagenomic DNA sample), without tem-

plate control [16]. The amplicons were checked on 1% agarose gel. The V3-V4 amplicons were

then cleaned using AMPure XP beads (Beckman Coulter, CA, USA, Cat# A63882) to get rid of

non-specific fragments. The V3-V4 products were used for DNA library preparation using

NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolab, UK, Cat# E7370L).

First, the amplicons were end-repaired and mono-adenylated at the 3’ end in a single enzy-

matic reaction. Next, NEB hairpin-loop adapters are ligated to the DNA fragments in a

T4-DNA ligase-based reaction. Following ligation, the loop containing Uracil is linearized

using USER Enzyme (a combination of UDG and Endo VIII), to make it available as a sub-

strate for PCR-based indexing in the next step. During PCR, barcodes were incorporated

using unique primers for each of the samples, thereby enabling multiplexing. The prepared

libraries were checked for fragment distribution using D1000 Screen Tapes (Cat# 5067–5582,

Agilent, CA, USA) and reagents (Cat# 5067–5583, Agilent, CA, USA). The obtained libraries

were pooled and diluted to the final optimal loading concentration before cluster amplification

on the Illumina flow cell. Once the cluster generation is completed, the clustered flow cell is

loaded on Illumina HiSeq2500 instrument (Illumina, Inc., San Diego, USA) for amplicon

sequencing to generate 0.5M, 250 bp paired-end reads per sample using the pair-end

approach.

Bioinformatics and statistical analyses

The bioinformatics analysis was carried out using standard methods. Briefly, the following

steps were involved. Quality checking of the raw fastq files was carried out using FASTQC to

check for the base quality, base composition, and GC content. The sequence reads were

trimmed using fastq-mcf to retain only high-quality sequences for further analysis, and the

low-quality sequence reads were excluded from the analysis. Sequences were assembled using

forward and reverse sequences of the V3-V4 region. Spacer and conserved regions were

removed from paired-end reads. Dereplication and the identification of the sequences were

carried out using USEARCH. The UCHIME utility from USEARCH was used to remove chi-

meras using the de novo approach [17]. One representative sequence from each OTU was

picked for taxonomic classification using the RDP classifier against the green gene database at

97% similarity. OTUs thus determined were aggregated at the genus level, and all the
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downstream processing was carried out at the genus level until unless otherwise mentioned.

The raw sequences have been deposited in the National Center for Biotechnology Information

(NCBI Bethesda MD, 20894 USA) under Bio-Project accession number PRJNA602372. Alpha

diversity in the samples was calculated using the online Calypso program. Two diversity indi-

ces, namely Shannon and Chao1 diversity indices, were used to indicate alpha diversity. Venn

diagrams showing the genera shared by different samples based on the tables of shared OTUs

were also prepared using Calypso. Heat maps were also plotted using calypso, as described ear-

lier [18]. SPSS software version 26 (IBM Corp. Chicago, IL, USA) was used to determine corre-

lations between physicochemical parameters and the predominant bacterial and archaea

genera present in the sludges using bivariate Pearson’s coefficient of correlation with a level of

significance 0.05.

Results and discussion

Physicochemical conditions of anaerobic digesters

The physicochemical conditions of the digester operation are given in Table 2.

All three digesters were operated in almost similar physicochemical conditions of mesophi-

lic temperature (34˚C) and a neutral pH range of 7.13–7.55. Among the three digesters, how-

ever, AD3 had a relatively low organic loading rate of 5.84 kg. ODS/m3.d compared to AD1

(6.84 kg. ODS/m3. d) and AD5 (6.61 kg. ODS/m3. d). The electrical conductivity (EC) of all

sludge digestors was found to be towards the higher range. The highest conductivity of sludge

samples was found for AD5 (12.33–15.46 mS cm-1) followed by AD3 (11.71-14.44 mS cm-1)

and AD1 (9.77–13.45 mS cm-1). The EC value range found in this study was similar to that

observed in another study in Austria evaluating the effects of various co-substates on the

microbial community composition of full-scale anaerobic digesters fed with or without co-

substrates [19]. Overall, all three anaerobic digesters showed acceptable levels of the main

operational parameters and were performing stably during the sampling period.

Bacterial community in the anaerobic digesters

The reads per sample varied between 1 million and 1.6 million. After quality filtering, 60% of

the total reads were removed, resulting in an average of 0.6 million reads per sample. The

sequences were assigned to OTUs based on 97% sequence similarities. The detected OTUs

were assigned to 33 phyla, 64 classes, 99 orders, 116 families, and 107 genera. Bacteroidetes, Fir-
micutes, Synergistetes, Theromotogae, OP8, and Chloroflexi were dominant in all the digesters,

accounting for 90.85% of all sequences (Fig 1).

Bacteroidetes were found to be the most abundant phylum (41.44%), followed by Firmicutes
(23.42%), Synergistetes (7.22%), Thermotogae (6.70%), Chloroflexi (6.69%), and OP8 (5.3%).

Table 2. aPhysicochemical parameters of anaerobic digesters samples.

Digester Temperature

(˚C)

pH EC (mS cm-

1)

Dry solids (%

[wt/vol])

Volatile solids (% [wt/

wt] of TS)

Volatile fatty acids (mg

HAc/L)

Dissolved sulfide

(mg/L)

Alkalinity (mg/

L)

AD1 33–34.3 7.13–

7.33

9.77–13.45 2.91–3.34 70.27–70.95 177–195 30.6–38 3014–3249

AD3 34.2–34.5 7.22–

7.55

11.71–14.44 2.56–5.74 43.75–70.15 153–205 32.40–37.20 2992–3512

AD5 32.9–34.4 7.36–

7.50

12.33–15.46 2.79–3.54 50.3–67.49 145.5–195 16.80–47.20 2893–3498

aminimum-maximum range

https://doi.org/10.1371/journal.pone.0249023.t002
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Other phyla, with a population of>1% were Actinobacteria (3.1%), Proteobacteria (1.4%), and

WWE1 (1.21%). The overall abundance of bacterial community phyla observed is similar to

those from anaerobic sludge digester samples in previous studies [19, 20]. However, unlike

these studies, the percentages of Bacteroidetes (41.44%) detected in this study were significantly

high, and the population of proteobacteria was very low (1.4%). The higher population of Bac-
teroidetes phyla can be associated with high hydrolytic activity in full-scale anaerobic digesters

[21]. Degradation of macromolecules is the first step in the digestion process, and a high popu-

lation of Bacteroidetes indicates effective degradation (Fig 2).

A study reported the effect of high salinity on reducing the abundance of members of Bac-
teroidetes and Chlorflexi [22]. However, in our study, despite high electrical conductivity,

indicative of higher salt concentration observed in three digesters, the population of Bacteroi-
detes remained high i.e., in the range of 44.86% (AD1), 45.95% (AD3), and 35.49% (AD5). The

Synergistetes phylum was found to be abundant in AD1 (18.67%) compared to AD 3 (2.76%)

and AD5(1.98%). The members of Synergistetes phyla are known to use amino acids for pro-

ducing short-chain fatty acids and sulphate to methanogens and sulphate-reducing bacteria

[23]. The members of the fourth most abundant phyla Thermotogae were previously reported

to be linked to polysaccharide fermentation and hydrogen production, which may promote

the population of hydrogenotrophic methanogens, as shown in Fig 2 [24]. A previous study

has also reported the syntrophic association between methanogenic archaea and the members

of Thermotogae [25].

A total of 108 bacterial genera were detected in all three samples studied. In addition to

these genera, many of the bacteria were grouped as unknown bacteria. Alpha diversity calcu-

lated based on the populations of various genera in these samples in terms of Shannon

(p = 0.72) and Chao1 (p = 0.48) indices are shown in Fig 3A and 3B, respectively.

The figures show that the lowest diversity is observed in the AD1 sample, followed by AD3

and AD5. Members of 51 bacterial genera were found to constitute the core microbiome of the

three digesters studied (Fig 4A). Some of the predominant genera include Acetobacteroides

Fig 1. The relative abundance of different bacterial phyla in the three anaerobic digester samples.

https://doi.org/10.1371/journal.pone.0249023.g001
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(Blvii28), Coprothermobacter, Fervidobacterium, Clostridium, Caldilinea, Allochromatium,

Sediminibacter, and T78 (Fig 4B).

Most of these genera are associated with an anaerobic digester; some have also been

reported from anaerobic digester earlier also [26]. Acetobacteroides (Blvii28) was the genus

with the highest population. The cultured representative members of the genus are known to

produce acetate, H2, and CO2 as fermentation end-products [27]. As shown in Fig 2, this bacte-

rium may be involved in the production of acetate, H2 and CO2, playing an important role in

digestion and promoting the growth of hydrogenotrophic methanogens. T78 possibly metabo-

lizes carbohydrates and alcohol via syntrophic interactions [28]. Many of the predominant

bacteria found in this study were thermophilic or halophilic. The presence and dominance of

diverse halotolerant bacteria with hydrolytic and acidogenic abilities adapted to the high salt

concentrations has been reported earlier [22].

Coprothermobacter, a known proteolytic anaerobic thermophilic bacteria, is found in many

thermophilic anaerobic digesters [29]. This genus can improve protein degradation by estab-

lishing syntrophy with hydrogenotrophic archaea [29]. Other thermophilic bacteria found,

include Fervidobacterium and Caldilinea that are known to ferment carbohydrates to lactate,

acetate, hydrogen, and carbon dioxide, as shown in Fig 2 [30, 31]. The genus Sediminibacter,
initially isolated from a sediment sample, was also found as one of the dominant genera [32].

Since most of the water used in Dubai is obtained from the sea after desalination, the incoming

feed may contain such bacteria [33, 34].

Interestingly, Sediminibacter has a unique light-driven sodium ion pump that helps in its

survival in the marine habitat [35]. Several purple sulfur bacteria like Allochormatium and

Thermotogales AUTHM297 were also part of the digester microbial communities. Desulfomi-
crobium and Desulfobacter were the two most dominant sulfate-reducing bacterial (SRB) gen-

era. In our previous study, we have reported consistently high populations of these two genera

in the same digesters as detected by fluorescent in-situ hybridization [36]. Notably, Desulfomi-
crobium is also known to be associated with the marine habitat [37]. The statistical correlation

analysis between physicochemical parameters and bacterial genera indicated that the

Fig 2. Abundant microbial genera and their possible involvement in the process of anaerobic digestion.

https://doi.org/10.1371/journal.pone.0249023.g002
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population of Planctomyces was significantly correlated with dry solids. In contrast, the W5

genus was associated with the anaerobic digester’s operating pH (S1 Table).

Anaerobic digestion involves the degradation of complex organic matter to simple organic

compounds, most likely carried out by the members of the phyla Bacteroidetes, Firmicutes, Pro-
teobacteria, Synergistetes, and Thermotogae. Previous studies also demonstrate the presence of

these phyla in anaerobic digesters as macromolecules-degrading bacteria [26]. Mycobacterium,

which is associated with the production of Lipases and Lipolytic activity, producing fatty acids

was also present in high numbers. Another important process of anaerobic digestion is acido-

genesis, wherein bacteria convert organic monomers into acids like acetic, propionic, and

butyric acids (Fig 2).

Fig 3. Boxplot of Shannon index (A) and Chao 1 (B) showing Alpha diversity in the three anaerobic digesters (AD1,

AD3, and AD5) calculated based on the populations of different bacterial genera.

https://doi.org/10.1371/journal.pone.0249023.g003
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The populations of acidogenic bacteria like Acetobacteroides, Fervidobacterium, Clostrid-
ium, and Paludibacter producing acetate, lactate, or propionate were high in the digesters as

reported above. The conversion of these organic molecules to methane (CH4) is carried out

mainly by archaea. However, some bacteria may influence the production of CH4 by compet-

ing with the acetoclastic methanogens. An example of such acetate-utilizing uncultured bacte-

ria is the Synergistes group 4 [38].

Archaea in the anaerobic digesters

When analysed at the genus level, the highest diversity was observed in digester AD5, followed

by AD1 and AD3. This was also evident from Shannon index’s, and Chao 1 values obtained

for AD1 followed by AD3 and AD5 (Fig 5A and 5B). The boxplot of Shannon (A) and Chao 1

Fig 4. Panel A: Venn diagram showing the core microbiome and number of genera shared by the samples. Panel B:

shows heat map of hierarchical clustering of twenty genera with the highest mean relative abundance across the three

anaerobic digesters.

https://doi.org/10.1371/journal.pone.0249023.g004
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(B) indices was calculated based on the populations of different archaeal genera (AD1, AD3,

and AD5).

The predominant archaea in the three digesters were the members of the phylum Euryarch-
aeota, followed by Crenarchaeota. The three digesters share a core archaeal microbiome of 18

genera (Fig 6A). The population of hydrogenotrophic archaea was clearly high in the digesters.

Methanocorpusculum alone constitutes more than 50% of the total population. The predomi-

nant core genera of archaea included Metallosphaera, Methanocella, Methanococus, Acidianus,
Natronobacterium, and others. Metallosphaera was significantly correlated with the dry solids

parameter of the anaerobic digesters (S2 Table).

Fig 6B shows the heat map of predominant archaea in the three digesters. Methanocorpus-
culum is one of the hydrogenotrophic methanogens which was isolated for the first time from

the biodigester of the wastewater treatment plant [39]. This archaea genus and other

Fig 5. The alpha diversity of archaea, Shannon (A), and Chao 1 (B) indices.

https://doi.org/10.1371/journal.pone.0249023.g005
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hydrogenotrophic methane-producing archaea may utilize the H2 produced by a predominant

bacterial genus (Acetobacteroides; Blvii28) were present in the digesters (Fig 2). Interestingly,

the population of Acetobacteroides (Blvii28) was significantly related to the population of

many other predominant hydrogenotrophic archaea in the digesters, including Methanococcus

Fig 6. Panel A: Venn diagram showing the core Archaeal genera present in the three anaerobic digesters (AD1, AD3,

and AD5) and the number of genera shared by different digesters. Panel B: Heat map of hierarchical clustering of twenty

archaeal genera with the highest mean relative abundance across the three anaerobic digesters.

https://doi.org/10.1371/journal.pone.0249023.g006
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and Methanothermus (S3 Table). The analysis shows that the population of Methanocorpuscu-
lum was also significantly correlated with the population of Coprothermobacter, which is

known to improve protein degradation by establishing a syntrophic relationship with the

hydrogenotrophic archaea (S3 Table).

While the second most predominant genus was Metallosphaera, an extreme thermoacido-

phile with optimal growth at 74˚C and pH 2.0 [40], Methanocella was the third most dominant

genus and is a mesophilic, hydrogenotrophic methanogen [41]. At the same time, Methanoco-
cus is also a thermophilic hydrogenotrophic methanogen. At least one species of the genus is

also known to fix nitrogen [38]. The Methanothermus fervidus species found abundantly are

hyperthermophiles methanogen, reported for thermophilic anaerobic digestion of wastewater

sludge [42]. Several non-methanogenic archaeal genera members were found in very high pop-

ulations in our study. Notable among these were genera Acidianus, an archaeal genus found to

inhabit halophilic, hyperthermophilic, and acidic environments. One of the unique genera of

extremophile detected in our study was Natronobacterium, a haloalkaliphilic archaeon found

in extremely hypersaline lakes [43]. Natronobacterium gregoryi species found in this study

have not been reported from anaerobic digesters operating at mesophilic temperatures and

neutral pH. The genus Natronobacterium are facultative anaerobes with the capability to

reduce sulfur under extremely halophilic and alkaline conditions [44]. The archaeal genus Fer-
roplasma is known to grow at highly acidic pH levels and tolerate heavy metals such as Cu. As,

Cd, Zn. This was another genus of extremophilic archaea that showed predominance in our

study [45].

The studied digesters contained high populations of the Crenarchaeota genera Metallo-
sphaera, Acidianus, and Sulfolobus. These genera contain thermophilic enzymes involved in

the conversion of CO2 into liquid fuels and industrial chemicals and hence can be engineered

for the production of value-added compounds like 3-hydroxypropionate or n-butanol [46].

Candidatus Nitrosocaldus, a novel ammonia-oxidizing archaea genus, was among the top 14

dominating genera found in this study. The genus is a member of the phylum Thaumarchaeota
and is generally found in geothermal environments [47]. However, recently its presence in the

anaerobic digester has been reported [48].

It is clear from the analysis that a unique and atypical microbial community exists in the

anaerobic digesters studied. The degradation is carried out by the members of various phylum

reported earlier. These include the members of the phyla Bacteroidetes, Firmicutes, Proteobac-
teria, Synergistetes, and Thermotogae [13]. In contrast, a number of genera mainly involved in

the conversion of these organic substrates into acetate, butyric acid, propionate, and H2 were

found in the anaerobic digesters. Euryarchaeota, mainly the hydrogenotrophic methanogens,

were found as predominant members (Fig 6). Although the digesters were operated under

mesophilic conditions, many thermophilic genera of bacteria and archaea were found to

predominate.

Furthermore, high populations of various halophilic and acidophilic bacteria and archaea

were also detected. This may be due to the presence of such bacteria in the incoming feed, as

most of the water used in Dubai is obtained from the sea and is used after desalination.

Whether such bacteria are initially present in the incoming feed is a matter of future investiga-

tion. Similar observations were made in an earlier study that demonstrated how the incoming

feed shapes the microbial community structure in anaerobic digesters [49], through the use of

different microbial inoculants. Our study here argues that the microbial community present in

the incoming feed is influenced by local environmental conditions, which consequently play

important roles in shaping the microbial community in anaerobic digesters.
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Conclusions

The bacterial and archaeal community structure of three full-scale anaerobic sludge digesters

of a municipal sewage treatment plant in Dubai, UAE, were compared using Illumina sequenc-

ing of 16S rRNA genes. Bacteroidetes, Firmicutes, Synergistetes, Theromotogate, OP8, and

Chloroflexi were dominant bacterial phyla in all the digesters. The highest diversity was

observed in AD5, followed by AD3 and AD1. The predominant archaea included mainly the

members of phyla Euryarchaeota and Crenarchaeota. Members of the genus Methanocorpuscu-
lum, Metallosphaera, Methanocella, and Methanococcus were predominant. The highest diver-

sity of archaea was also observed in AD5, followed by AD3 and AD1. The presence of many

thermotolerant and halotolerant bacteria and archaea in the anaerobic digesters may be due to

the influence of environmental conditions on the incoming feed sludge. The anaerobic digest-

ers were also characterized by a high population of bacteria known to ferment organic sub-

strates to acetate and H2. The high population of hydrogenotrophic archaea can utilize the H2

produced by these bacteria. Comparison of microbial communities in these three digesters

shows that they contain a core, stable, and functional microbial community as all digesters

were operated under more or less similar physicochemical conditions. Furthermore, under-

standing the microbial communities in these digesters can help design strategies for the better

performance of the digesters in Dubai and neighbouring countries sharing similar climatic

conditions and water resources.
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