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The gut-brain axis represents a bidirectional communication route between the gut

and the central nervous system comprised of neuronal as well as humoral signaling.

This system plays an important role in the regulation of gastrointestinal as well as

homeostatic functions such as hunger and satiety. Recent years also witnessed an

increased knowledge on the modulation of this axis under conditions of exogenous or

endogenous stressors. The present review will discuss the alterations of neuroendocrine

gut-brain signaling under conditions of stress and the respective implications for the

regulation of food intake.
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INTRODUCTION

Peripheral signals reach the brain via neuronal and humoral pathways. The neuronal connection
from the gut to the brain through vagal afferents originating from pseudo-unipolar cell bodies
located in the nodose ganglia is the most extensively investigated (1, 2). The vagus nerve is
composed of over 80% of afferent fibers which convey chemical and mechanosensory signals
involved in the regulation of food intake and body weight (3). Peptide hormones predominantly
produced in the gut interact with cognate G protein seven transmembrane domain receptors
localized on nodose ganglia neurons (4). The expression of these receptors is modulated by
feeding and fasting (2, 5) underlining the importance of vagal pathways in the control of energy
homeostasis.

Stress influences the expression or circulating levels of several gastrointestinal peptides involved
in the regulation of metabolic status under conditions of hunger or satiety (6). The impact of
these alterations on the stress response has subsequently been investigated. The present review
will highlight the impact of stress on peptidergic gut-brain hormones primarily involved in the
regulation of food intake along with the functional implications.

MODULATION OF GUT-BRAIN SIGNALING UNDER CONDITIONS
OF STRESS

Ghrelin
Ghrelin has been identified in the rat stomach (7) which is by far the major site of synthesis
as indicated by the pronounced decrease of circulating ghrelin levels following gastrectomy (8).
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Ghrelin is produced in gastric endocrine X/A-like cells (human
nomenclature: P/D1 cells) (9) and bears a unique fatty acid
residue on its third amino acid essential to bind to its receptor,
the growth hormone secretagogue receptor 1a (GHSR1a) (7)
now also designated as the ghrelin receptor (GRLN) (10).
The enzyme catalyzing this acylation was identified later on
and named ghrelin-O-acyltransferase (GOAT) (11, 12). Double
labeling showed that GOAT immunoreactive cells co-labeled
with ghrelin expression in rodents (13) and humans (14). In
addition, the finding that GOAT was detected in the pancreas
(15) and circulation of rodents (13) and humans (16) supports
additional extragastric acylation of the peptide.

Early on, ghrelin has been reported to stimulate food intake
after peripheral and central injection in animals (17) and
peripheral infusion in humans (18) leading to an increased
body weight after repeated injections (19). Expression of the
GHSR1a on vagal afferents and the blunting of the peptide’s
orexigenic action by vagotomy or selective reduction of the
GHSR1a in nodose ganglia support a major role of the vagus
in mediating ghrelin’s action in rats (20, 21). Nonetheless,
ghrelin was also shown to cross the blood-brain barrier in both
directions (22) indicative of an additional humoral mode of
signaling. In the hypothalamus, the GHSR1a is expressed on
neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons
of the arcuate nucleus (23, 24). Neuroanatomical and functional
studies using optogenetics indicate that ghrelin expressed in axon
terminals innervating hypothalamic nuclei increases NPY/AgRP
activity (25, 26). In addition, the ghrelin-induced stimulation
of food intake is abolished in NPY/AgRP knockout mice (27)
demonstrating an essential role of these signaling pathways in
mediating ghrelin’s orexigenic action in the hypothalamus.

The predominant form of circulating ghrelin is, however,
the non-acylated form, des-acyl ghrelin (28, 29). Des-acyl
ghrelin initially received little attention due to its lack of
affinity to the GHSR1a (7). Nonetheless, des-acyl ghrelin
exhibits several biological actions such as decreasing anxiety
after intraperitoneral injection in receptor knockout mice (30).
Peripheral or intracerebroventricular pretreatment with des-acyl
ghrelin blunts the orexigenic action of ghrelin in rats (31) and
mice (32). Des-acyl ghrelin’s action takes place in a subset
of arcuate nucleus neurons distinct from those activated by
ghrelin (32). Studies using fluorescein des-acyl ghrelin injected
intracerebroventricularly in mice demonstrate that the peptide
binds selectively and mainly on arcuate neurons in a GHSR1a
independent manner (32). However, to date the receptor
mediating des-acyl ghrelin’s effects remains to be identified.

Exposure to various acute or chronic stressors influences
ghrelin expression and circulating levels although the response
varies with the modality of stressors and experimental conditions
as detailed in a previous review (6). Tail pinch or starvation
increases gastric ghrelin mRNA expression in mice (33). Several
other acute stressors including psychological (water avoidance
stress, trier social stress test), physical (cold ambient temperature,
restraint at 18◦ C, cholecystectomy, colectomy, cold pressure test)
or metabolic (fasting) increase circulating ghrelin levels (34–43).
It is to note that in the clinical setting the acute social stress test-
induced rise in circulating ghrelin and cortisol levels was not
associated with binge eating (35). Likewise, chronic stressors such

as repeated restraint in rats, social defeat in mice or trauma in
humans also induce a sustained elevation of circulating ghrelin
levels lasting for months after the cessation of the stress making
ghrelin a persistent biomarker of chronic stress (44–50). The rise
in ghrelin may represent a compensatory action to counteract
chronic stress-induced anxiety and depression-like behavior (49,
51, 52). Indeed, ghrelin increased the rewarding aspect of food
(46) and body weight observed under these conditions, effects no
longer observed in GHSR1a knockout mice (47).

By contrast, conditions of stress associated with inflammation
decrease ghrelin expression or circulating levels (6). In
detail, immune stress triggered by intraperitoneal injection
of lipopolysaccharide results in a rapid decline in ghrelin
levels associated with a decrease in circulating GOAT protein
concentration likely contributing to the reduced acylation in rats
(53). Abdominal surgery associated with gastric inflammation
(54) decreases acyl and des-acyl ghrelin levels (55, 56) and food
intake (57) in rats, an effect blunted by rikkunshito, a herbal
medicine stimulating the release of ghrelin (58). Central vagal
stimulation, which normalizes the gastric inflammatory response
(54), prevents the reduction of plasma ghrelin (55). Chronic
inflammatory stress elicited by adjuvant-induced arthritis in
rats or rheumatoid arthritis in humans reduces circulating
ghrelin levels (59). There are also reports that a psychological
stressor such as novelty stress in mice decreases plasma
levels of ghrelin and food intake, alterations prevented by
rikkunshito (60, 61). Chronic restraint stress or exposure
to foot-shock downregulates ghrelin mRNA expression in
the mouse hypothalamus (62) and reduces plasma levels
of ghrelin in rats (63). These alterations were associated
with decreased food intake and body weight gain in mice
(62).

Whether the differential alterations of ghrelin by stressors
reflect differences in species, metabolic status and/or stressor-
related specific recruitment of central and/or peripheral
signaling pathways regulating ghrelin release (56, 64) warrant
further investigations. Moreover, it cannot be ruled out that
difference in modalities to determine ghrelin (total vs. acyl,
radioimmunoassay vs. enzyme-linked immunosorbent assay,
commercial vs. custom-made kits) might also affect the levels
reported.

However, while stressors modulate circulating ghrelin levels,
there is also evidence that ghrelin stimulates the hypothalamic-
pituitary adrenal axis (33). The peptide injected peripherally
upregulates hypothalamic corticotropin-releasing factor (CRF)
(33), a key peptide involved in the stress response (65).
Recent studies indicate that ghrelin acts via the inhibition of
hypothalamic GABAergic signaling on CRF neurons in the
paraventricular nucleus of the hypothalamus (PVN) (66). In
hypothalamic 4B cells in vitro, ghrelin stimulates CRF promoter
activity through activation of protein kinase A and phospholipase
C pathways resulting in increased CRF mRNA levels (67). These
data suggest a bidirectional interaction between CRF and the
ghrelin signaling system.

Nesfatin-1
Nesfatin-1 has been first detected in the rat hypothalamus as
an 82-amino acid peptide derived from nucleobindin2 (NUCB2)
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(68). Subsequent research showed a more widespread brain
distribution (69) as well as a 10-fold higher expression of NUCB2
mRNA in the stomach indicating that the upper gut is a major site
of production (70). Interestingly, immunohistochemical double
labeling showed that NUCB2/nesfatin-1 (the antibody recognizes
both nesfatin-1 and the full length NUCB2) co-localizes with
ghrelin indicating the production in the same gastric endocrine
cell type, namely X/A-like cells in rats (70). This finding was
later confirmed in humans where these cells are named P/D1

cells (14). Nesfatin-1 is able to reach the brain humorally but
likely also acts via the vagus nerve as intraperitoneal injection
induces Fos expression in neurons of the nucleus of the solitary
tract that receives input from vagal afferents (71). However, the
putative receptor mediating nesfatin-1’s effects is still unknown.
Converging evidence points toward a G protein-coupled receptor
(72, 73). A recent autoradiographic study indicates widespread
binding of 125I-labeled nesfatin-1 in the brain with signals in the
cortex, PVN, area postrema, dorsal motor nucleus of the vagus
nerve and cerebellum (74) supporting its centrally mediated
pleiotropic effects (75).

The anorexigenic effect of nesfatin-1 has been early on
described in several species including rats (68, 76), mice (77),
chicks (78), and goldfish (79) following intracerebroventricular
injection. In contrast to the convergent findings on the robust
food intake-reducing effects of centrally injected nesfatin-1, only
one study in mice reported an anorexigenic effect after acute
intraperitoneal injection of nesfatin-1 at high doses (71), while
other studies in rats (76) and mice (77) showed no effect.
Similarly, data following chronic peripheral administration did
not produce consistent results: while a reduction of food intake
was observed in rats (80), no effect was detected in mice (81).
Taken together, the effect of peripheral nesfatin-1 on food intake
seems less robust and may not be the primary function of
peripherally produced nesfatin-1. By contrast, consistent reports
showed that the peptide may play an important role in glucose-
stimulated pancreatic insulin release in rats (82) and humans
(83).

Convergent findings support an involvement of nesfatin-1
in the stress response. First, several stressors activate nesfatin-
1 immunoreactive neurons in the brain, namely psychological
(restraint, water avoidance stress) (84–87), physical (abdominal
surgery) (88), immunological (injection of lipopolysaccharide)
(89) as well as a combination of stressors (chronic variable mild
stress) (90). Second, water avoidance stress (91) and injection
of lipopolysaccharide (92) elevate circulating levels of nesfatin-
1 likely due to the release of the peptide associated with the
upregulation of NUCB2 mRNA expression assessed by RT-qPCR
and NUCB2/nesfatin-1 protein concentration measured by
Western blot in the stomach (92). Third, intracerebroventricular
injection of nesfatin-1 increases plasma adrenocorticotropic
hormone (ACTH) and corticosterone in rats, an effect likely
occurring in the hypothalamus as in vitro nesfatin-1 stimulates
cytosolic Ca2+ in CRF-containing cells of the PVN (86).
Therefore, nesfatin-1 exerts its stress-mediating effect likely via
downstream CRF signaling. Lastly, circulating NUCB2/nesfatin-
1 levels are positively correlated with perceived stress in a
human female obese population (93) suggesting a potential role

in the mediation of stress in humans as well. Interestingly,
suicide victims showed altered NUCB2 mRNA expression in a
midbrain nucleus implicated in stress-related mood alterations,
the Edinger-Westphal nucleus, with an 1.8-fold increase in
males and a 2.7-fold decrease in females compared to control
subjects who died without any diagnosed neurodegenerative or
psychiatric disorder (94).

Urocortins
Belonging to the CRF family, urocortins (Ucns) have been
identified, namely Ucn1, a 40-amino acid (aa) peptide sharing
45% sequence identity with rat/human (r/h) CRF (95), Ucn2,
a 39-aa peptide sharing 34% identity with r/h CRF and 42%
with r/h Ucn1 (96, 97) and Ucn3, a 38-aa peptide sharing 26%
homology with r/h CRF and 21% with r/h Ucn1 (98). Ucn1
binds to both CRF receptors, CRF1 and CRF2, with equal affinity,
whereas Ucn2 and Ucn3 bind to the CRF2 receptor with high
selectivity (99).

Besides their widespread brain distribution extensively
reviewed elsewhere (100), Ucns are also expressed in the
periphery, namely the heart, skeletal muscle, spleen, kidney,
adipose tissue, ovary, skin (101) as well as the gastrointestinal
tract including liver, pancreas, stomach, small, and large intestine
(101–108).

Peripheral injection of Ucn1 inhibits food intake in different
species including mice (109–111) and sheep (112). In rodents,
Ucn1 reduces meal frequency and size and can induce
conditioned taste aversion (113) and reduces body weight upon
repeated peripheral administration (109). Reports showed that
the food intake-reducing effect of Ucn1 is more potent compared
to that of CRF, Ucn2, Ucn3, cholecystokinin (CCK) and leptin
(109, 110, 113); moreover, a synergistic interaction between
Ucn1 and CCK on satiety has been demonstrated (114). The
anorexia induced by peripheral Ucn1 is mediated via the CRF2
receptor based on the observation that the selective CRF2
antagonists, antisauvagine-30 and astressin2-B, unlike selective
CRF1 antagonists, suppress the Ucn1-induced reduction of food
intake (110, 112, 115). The finding that CRF2 knockout mice
do not display a reduction of food intake after intraperitoneal
injection of Ucn1 further corroborates the implication of
this receptor subtype (115). The mechanism through which
peripherally injected Ucn1 influences food intake is still to be
elucidated. It is unlikely to bemediated by vagal afferent signaling
as capsaicin treatment did not alter the anorexigenic response of
the peptide in mice (110). Moreover, Ucn1 barely enters the brain
through the blood-brain barrier (116). However, CRF2 receptors
are densely expressed in brain areas outside of the blood-brain
barrier, namely the area postrema (117, 118), and neurons at this
site are activated by peripheral Ucn1 (119) suggesting a possible
pathway.

Ucn2 and Ucn3 injected peripherally also reduce ad libitum
food intake during the dark phase as well as the refeeding
response to a fast with Ucn2 being more potent compared to
Ucn3 in mice (110, 111, 114, 115, 120), rats (113), and fish
(121). The automated dark phase food intake monitoring showed
that Ucn2 reduces meal size (increased satiation), while meal
frequency (indicative of satiety) is not altered in mice (115).
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Interestingly, under re-feeding conditions after a fast, meal size
is also reduced, however, meal frequency is increased (decreased
satiety) (115). It is important to note that Ucn2, unlike Unc1, does
not induce signs of taste aversion (113) pointing toward a specific
food intake-reducing effect. Moreover, Ucn2 acts synergistically
with CCK to reduce food intake, an effect also observed in vitro
when recording gastric vagal afferent activity (114). This supports
a vagal mode of transmission corroborated by the expression of
the CRF2 receptor in the nodose ganglia (122, 123).

Various stressors upregulate the peripheral expression of
Ucns. Injection of lipopolysaccharide, an immunological stressor,
increases the expression of Ucn1, Ucn2 and Ucn3 mRNA
in gastric mucosa and submucosa plus muscle layers (107)
which is associated with the reduction of food intake under
these conditions (53). Ucn1 and Ucn3 immunoreactivity in
blood vessels and submucous neurons of the ileum is also
increased following Schistosoma mansoni-induced inflammation
(124). Likewise, blood monocyte-derived dendritic cells display
largely increased Ucn1 mRNA and protein expression following
stimulation with Bacteroides vulgatus or Fusobacterium varium
(125). There is also evidence that psychological stressors (chronic
social stress) upregulates Ucn2mRNA expression in the pig colon
(126), and maternal deprivation increases duodenal Ucn2 and
CRF2 receptor mRNA, whereas CRF1 mRNA is decreased in rats
(127).

Cholecystokinin
CCK is mainly produced in I cells scattered within the
upper small intestine with more prominent distribution
in the duodenum (128). These cells harbor the feature to
be in direct contact with other cells via pseudopods (129).
Several forms of CCK have been detected including CCK-
5,−7,−8,−18,−22,−25,−33,−39, and−58 (representing the
number of amino acids) with CCK-8 being the most commonly
studied form (128). The demonstration that CCK-58 is the only
form detected in the circulation when using a new method for
blood processing suggests that the shorter forms are products of
degradation (29).

The first described biological action of CCK was the
stimulation of gallbladder contraction along with the stimulation
of the production and release of pancreatic enzymes and
secretion [for review see Sayegh (128)]. The food intake-
suppressing effect of CCK was initially reported in rats, and
later extended to rabbits, monkeys, pigs, sheep and humans [for
review see Sayegh (128)]. Both forms of CCK, CCK-8 and CCK-
58 were shown to decrease dark phase food intake following
intraperitoneal injection in ad libitum fed rats by reducing meal
size (130). However, CCK-58 does not shorten the subsequent
inter-meal interval as observed following injection of CCK-8
providing evidence for a more sustained effect of CCK-58 (130).
Moreover, CCK also suppresses gastric emptying in rats (131) and
humans (132) contributing to its anorexigenic effect.

CCK interacts with two receptor subtypes, CCKA

(alimentary), expressed in the gastrointestinal tract and on
vagal afferents and CCKB (brain), predominantly expressed in
the brain (133). CCK is postprandially released from duodenal I
cells with lipids and proteins being the most potent stimulators

(134–136). Released CCK binds to vagal CCKA expressing
afferents and activates neurons in the nucleus of the solitary
tract to inhibit food intake, with vagotomy abolishing both the
CCK-induced neuronal activation in the brain (137) as well as
the anorexigenic effect (138).

A combination of immunological stress using infection
with Giardia lamblia and psychological stress using the water
avoidance model increases CCK levels in the colonic mucosa
of mice (139). The stress-induced visceral hypersensitivity could
be blocked using the CCKA antagonist, L-364718, and the
CCKB antagonist, L-365260 following psychological but not
immunological stress (139) giving rise to a role of CCK in visceral
sensitivity under selective stress conditions. By contrast, acute
or chronic intraperitoneal injection of CCK exerts a protective
effect on the impairment of memory functions under conditions
of chronic restraint stress (140, 141). Moreover, OLETF rat pups
lacking the CCKA display a higher separation-induced ultrasonic
vocalization (142) as a surrogate for increased experience of
stress. The link between the stress response and CCK signaling
was further corroborated by the observation that a well-
established immunological stressor, lipopolysaccharide, increases
CCK mRNA expression in PVN CRF-containing neurons
(143). Intraperitoneal injection of CCK stimulates neuronal
activation in noradrenergic A2 neurons (144) as well as increases
corticosterone levels to comparable magnitudes observed after
injection of CRF (145). Also repetitive intracerebroventricular
injections of cortagine, a CRF1 agonist, increases CCK mRNA
as well as CCKB protein expression in the mouse amygdala
and hippocampus resulting in heightened anxiety behavior as
assessed using the elevated plus maze and open field test, an
effect reversed by intracerebroventricular injection of the CCKB

antagonist, LY225910 (146). This anxiety-inducing effect of CCK
has also been observed in pharmacological provocation studies
following intracerebroventricular injection of CCK-8 in rats that
reduced exploratory behavior in the light/dark paradigm (147).
In humans, intravenous injection of CCK-4 was shown to induce
anxiety and panic symptoms (148, 149). Lastly, tail pinch stress-
induced eating in rats (150) is reduced by intracerebroventricular
injection of CCK-8 (151). Collectively these observations are
indicative of a modulation of the stress response by CCK
signaling.

Glucagon-Like Peptide 1
Glucagon-like peptide (GLP-1) is produced by endocrine L cells
of the small intestine and processed into two biologically active
forms, GLP-17−36 amide and GLP-17−37 (152) with GLP-17−36

amide being the predominant form in the human circulation
(153). GLP-1 is released postprandially with a biphasic pattern: an
early peak of GLP-1 secretion occurs ∼15min after meal intake
that involves humoral (154, 155) and vagal (156) stimulation,
while a later and larger peak is related to the direct contact of
L cells with food components (157).

Peripheral but also central administration of GLP-1, in
addition to the well-described incretin effect, results in a decrease
of food intake in animals (157–159) and humans (160). In
addition, the slowing of gastric and intestinal transit (161, 162)
is likely to contribute to the food intake-reducing effect.
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GLP-1 signals to the brain via the vagus nerve expressing
the GLP-1 receptor (163) as shown by the suppression of the
anorexigenic effect of peripherally injected GLP-1 by vagotomy
(164, 165). It is to note that GLP-1 is also expressed in the
brainstem nucleus of the solitary tract that projects to the PVN
(166), and local knockdown of the pro-glucagon gene in the
nucleus of the solitary tract increases food intake and also body
weight gain (167). Since lesioning of these connections blunts
the anorexigenic effect of peripherally injected GLP-1 (164)
the gut-vagal-brainstem-hypothalamus connection is essential
for the mediation of GLP-1’s food intake-suppressing effect.
Nonetheless, GLP-1 is able to cross the blood-brain barrier
by simple diffusion (168). However, the rapid degradation of
the peptide by circulating DPPIV (169) points toward the
importance of neural and/or paracrine signaling.

GLP-1 can modulate a number of stress responses. Under
basal conditions, GLP-17−36 amide injected peripherally
stimulates circulating corticosterone levels in mice and rats as
well as cortisol levels in healthy human subjects (170). Other
studies showed that targeted knockdown of the GLP-1 receptor
in single-minded 1-expressing neurons of the PVN reduces
hypothalamic-pituitary-adrenal axis responses to acute and
chronic stress and this was associated with reduced anxiety-like
behavior and a prevention of body weight reduction under
conditions of chronic stress (171). Similarly, injection of the
GLP-1 receptor inverse agonist, exendin-(9−39) into the dorsal
subregion of the lateral septum blocks the acute restraint
stress-induced anorexigenic effect in rats (172). While these
studies support GLP-1’s permissive role in the activation of stress
signaling pathways, other reports showed that mice lacking the
GLP-1 receptor display an increased corticosterone response to
novel environment stress (173).

Several protective effects of GLP-1 have been reported under
conditions of stress. GLP-1 injected intracerebroventricularly
prevents gastric mucosal lesions induced by a combination

of cold and restraint stress, an effect blocked by exendin-

(9−39) (174). Subcutaneous injection of liraglutide, a GLP-
1 analog, inhibits visceral allodynia induced by injection of
lipopolysaccharide or repeated water avoidance stress (175).
In humans with alcohol dependence, treatment with the
GABA-B receptor agonist, baclofen at a dose of 30 mg/day
increases circulating levels of GLP-1 (176), possibly associated
with a reduced craving for alcohol. Moreover, GLP-1 receptor
activation reverses the restraint stress-induced activation of
bone marrow sca-1highc-KithighCD48lowCD150high proliferation
of hematopoietic stem cells in mice, thereby reducing the
inflammatory response (177). In a study using geniposide as
GLP-1 agonist these anti-inflammatory effects were associated
with an amelioration of depression-like behaviors following
repeated restraint stress (178). Also in vitro GLP-17−36 prevents
various stressors (e.g., H2O2 and amyloid β1−42)-induced death
of murine hippocampal HT22 cells, an effect likely mediated via
increased phosphorylation of Akt and ERK1/2 (179).

Peptide YY
Peptide YY (PYY) is derived from L cells located in the distal
small intestine and colon (180). The peptide circulates in two
forms, PYY1−36 and PYY3−36, which is the predominant form
in the blood (181) resulting from the processing by dipeptidyl
peptidase IV (182). PYY is well established to reduce food intake
in animals and humans following peripheral injection via binding
to the Y2 receptor (183). This was demonstrated by the blunting
of the peptide’s anorexigenic effect by the Y2 antagonist, BIIE0246
(184) and knockout of the Y2 receptor (183) in rodents. The
anorexigenic gut-brain mode of action may involve the vagus
nerve and humoral pathways. The Y2 receptor is expressed on
vagal afferents (185) and vagotomy blocks the anorexigenic effect
of PYY (186) In addition, PYY can also cross the blood-brain
barrier in a non-saturable manner (187). There is evidence that
peripherally injected PYY or PYY3−36 activates brain nuclei

FIGURE 1 | Alterations of gut-brain peptides under conditions of stress and functional implications. ↓, decrease; ↑, increase; ?, unknown effect; GLP-1, glucagon-like

peptide 1; GI, gastrointestinal; HPA axis, hypothalamus-pituitary-adrenal axis; PYY, peptide YY.
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such as the nucleus of the solitary tract (188) and hypothalamic
nuclei (189) which are known to regulate food intake. In the
brain, PYY microinjected directly into the arcuate nucleus, a
nucleus involved in the regulation of food intake and expressing
the Y2 receptor (190), reduces food intake. This is achieved by
decreasing the activity of neuropeptide Y-containing neurons and
activating proopiomelanocortin-containing cells (183).

Repetitive water avoidance stress decreases circulating PYY
levels compared to non-stressed rats (191). Likewise, in humans
a well-established psychological stressor, the Trier social stress
test, reduces circulating PYY levels in normal weight and obese
women (192). However, in mice, water immersion stress results
in increased plasma PYY levels (193). Other studies showed that
mice lacking PYY have an enhanced restraint stress-induced fecal
pellet output and upper gastrointestinal transit (194); therefore,
the peptide might play a modulatory role in the stress response.
Whether the contrasting effects of stress on PYY release are
related to species or stress modality differences remains to be
further investigated.

SUMMARY

Various stressors alter the expression or circulating levels
of several gut-brain peptidergic hormones involved in the
regulation of hunger and satiety. While most anorexigenic
peptides are upregulated under conditions of stress (nesfatin-1,
Ucns, and CCK), others were shown to be differentially regulated
dependent on the type of stressors (ghrelin and PYY), and for
GLP-1 conclusive data are lacking so far. In addition, there is

a further activation of the hypothalamus-pituitary-adrenal axis
induced by specific gut peptides (ghrelin, nesfatin-1, CCK, and
GLP-1) acting via neuronal and/or humoral gut-brain signaling
highlighting the PVN as key responsive area orchestrating the
stress response. This results in an increased perception of stress
(nesfatin-1) and an alteration of anxiety and depressiveness
(ghrelin, CCK, and GLP-1) with the PVN and Edinger-Westphal
nucleus playing an important role in the behavioral responses.
Whilemost peptides contribute to stress-induced anorexia (Ucns,
CCK, and GLP-1), ghrelin can stimulate food intake under
these conditions (Figure 1). Despite the fact that our knowledge
on these regulatory pathways greatly increased during the past
years, the interactions between these peptides (114, 195) under
stress conditions should be further investigated along with the
possible translation of these findings—derived mainly from
animal models—to humans.
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