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Abstract

This article analyses the literature regarding the value of computer-assisted systems in esogastroduodenoscopy-quality
monitoring and the assessment of gastric lesions. Current data show promising results in upper-endoscopy quality con-
trol and a satisfactory detection accuracy of gastric premalignant and malignant lesions, similar or even exceeding that
of experienced endoscopists. Moreover, artificial systems enable the decision for the best treatment strategies in gastric-
cancer patient care, namely endoscopic vs surgical resection according to tumor depth. In so doing, unnecessary surgical
interventions would be avoided whilst providing a better quality of life and prognosis for these patients. All these perfor-
mance data have been revealed by numerous studies using different artificial intelligence (AI) algorithms in addition to
white-light endoscopy or novel endoscopic techniques that are available in expert endoscopy centers. It is expected that
ongoing clinical trials involving AI and the embedding of computer-assisted diagnosis systems into endoscopic devices
will enable real-life implementation of AI endoscopic systems in the near future and at the same time will help to over-
come the current limits of the computer-assisted systems leading to an improvement in performance. These benefits
should lead to better diagnostic and treatment strategies for gastric-cancer patients. Furthermore, the incorporation of
AI algorithms in endoscopic tools along with the development of large electronic databases containing endoscopic
images might help in upper-endoscopy assistance and could be used for telemedicine purposes and second opinion for
difficult cases.
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Introduction

Starting from the middle of the twentieth century, the idea of
artificial intelligence (AI) has attracted the attention of scien-
tists in an attempt to augment the human brain’s capacity to
solve different problems, from the daily routine to the most
complex tasks, with the aid of computers [1]. In time, this con-
cept has spread into different domains of activity. Currently, AI
has begun to work its way into our everyday lives and we are
counting on a multitude of available devices to make our lives
easier, e.g. to wake us in the morning, forecast our weather, and
help us to drive our cars. We have the opportunity to use trans-
lation and linguistic programs, unlock our mobile phones using
facial recognition, access different applications, benefit from
automation of our homes to make our environment more com-
fortable, and more [2].

The term artificial intelligence (AI) refers to the ability of a
computer program to mimic the human brain by simulating
certain cognitive functions and intelligent behaviors, such as
the capacity to “learn” and “solve problems” [3, 4]. The concept
of machine learning (ML) refers to an AI field whereby a computer
system can automatically build mathematical algorithms based
on input training data, subsequently being able to predict and
generate decisions in uncertain circumstances without specific
programming [4]. ML includes both handcrafted and deep-
learning algorithms. In the handcrafted models, features are
manually engineered by the data scientist; an algorithm is
trained to perform classification of features and to recognize
the class of a new image [5].

Deep learning (DL) refers to a subcategory of ML techniques
constructed from multiple-layered artificial neural-network algo-
rithms that shows similarities with the human brain, with the
ability of automatically extracting and learning specific features
of the training data set to elaborate a concrete result. The convo-
lutional neural network (CNN) represents a class of deep neural
networks that is most commonly applied to analysing visual
imagery including medical images. They are composed of con-
volutional and pooling layers, with the role of extracting distinct
features and fully connected layers with the ability to perform
the overall classification. Spiking neural networks represent a
type of artificial network that resembles more closely natural
neural networks; their operating model includes the concept of
time [4] (Figure 1).

Recent studies have been developed using AI to improve the
quality of endoscopic procedures with the assistance of AI [3];

the detection of early neoplasia in Barrett’s esophagus [6, 7]; the
diagnosis of early gastric cancer (EGC) and precursor lesions [8];
the detection of Helicobacter pylori infection [9] and gastric polyps
[10]; the identification of small-bowel angioectasias, bleeding,
polyp/ulcer/cancer, or hookworms on capsule endoscopy [11–
13]; the dysplasia in intraductal papillary mucinous tumors [14];
and many other conditions. A large number of studies have also
focused on improving the adenoma-detection rate at colonos-
copy and on the distinction between adenomatous and hyper-
plastic polyps [15–20].

The aim of the paper is to familiarize clinicians with the con-
tinuously evolving field of AI and the way in which this modern
technology will have an impact on endoscopy performance and
its development in the near future in the daily clinical setting.
The article presents an overview of the literature regarding the
value of AI in monitoring the quality of esogastroduodenoscopy
(EGD), whilst providing a comprehensive analysis of the existing
literature that assesses the potential benefits and limits in the
detection of premalignant and malignant gastric lesions and
the prediction of gastric-cancer-invasion depth by adding differ-
ent types of DL algorithms to both conventional and advanced
endoscopic techniques.

Methods

All English-language literature published in the last 15 years, be-
fore July 2020, was searched by assessing the PubMed electronic
database. The keywords used for our research purposes were
“gastric cancer,” “gastric neoplasm,” “gastric precancerous
lesion,” “Helicobacter pylori infection,” “gastric polyp,”
“esogastroduodenoscopy,” “upper endoscopy quality control,”
“artificial intelligence,” “machine learning,” “deep learning,”
“convolutional neural network,” “detection,” “diagnosis.”
Furthermore, we searched to identify clinical studies involving
AI for the endoscopic evaluation of gastric premalignant condi-
tions and gastric cancer using the ClinicalTrials.gov database,
University Hospital International Network–Clinical trial Registry
(UMIN-CTR) and Chinese Clinical Trial Registry.

Brief description of the main applications of AI
in upper endoscopy

Frame-detection task—AI detects individual frames in a sequence
of images containing suspicious lesions that that require more
detailed examination, such as the detection of images contain-
ing gastric polyps during endoscopy; the role of this task is to
prevent the endoscopist from missing a lesion [10].

Object-detection task—During endoscopy, AI is able to recog-
nize a region of interest (ROI), such as a dysplastic area [5].

Classification task—AI categorizes the identified lesions into
different classes such as neoplastic vs non-neoplastic, e.g. gas-
tric cancer vs gastritis. Additionally, this task might involve as-
sessment of the invasion depth of a malignant gastrointestinal
(GI) lesion, such as in stomach cancer [21, 22].

Segmentation task—AI outlines the border of a detected le-
sion, making an accurate differentiation between pathological
and healthy tissue. This delineation task was satisfactorily
implemented for delineation of early gastric cancers on still
images [23, 24].Figure 1.Artificial intelligence: leading concepts.
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Task combinations—AI can combine the previously mentioned
tasks into one work-flow, e.g. the detection and classification of
a specific lesion followed by delineation of its border [10, 25]
(Figure 2).

Application of AI in endoscopy consists of training a com-
puter algorithm to fulfill a specific task, such as detection or
characterization of a particular lesion. The training procedure
takes place through exposure on big data sets, such as a large
number of predefined video frames containing the examined le-
sion. These algorithms extract and assess specific features from
a multitude of video frames, such as texture or color-hue differ-
ences, microsurface/microvascular/pit patterns, and many
other features detectable using either white-light endoscopy
(WLE) or other endoscopic technological advances such as high
magnification, chromoendoscopy (CE), narrow-band imaging
(NBI), linked color imaging (LCI), or endocytoscopy [26].

The great variety of ML technologies offer the ability to cover
a large spectrum of functions and fulfill many tasks in the GI
endoscopy field. Two main categories of AI systems exist,
namely computer-assisted detection (CADe) [3, 18, 27, 28] with the
task of lesion detection and computer-assisted diagnosis (CAD) [3,
22, 24, 29] with the task of lesion characterization, which also
enables performance of “optical biopsy.” Furthermore, several
systems are designed to offer technical assistance for improved
endoscopy performance and quality, and are defined as com-
puter-assisted monitor (CADm) systems [30–32] (Figure 3). Still
other systems are constructed to offer assistance during endo-
scopic therapeutic procedures, e.g. assuring better delineation
of an early esophageal tumor for complete endoscopic resection
[33, 34].

Principal applications of AI for upper-
endoscopy quality-control monitoring and
assessment of gastric premalignant and
malignant lesions
EGD quality-control improvement: computer-assisted
monitor (CADm) systems

High-quality gastroscopy is mandatory for obtaining improved
diagnostic accuracy and prognosis for patients [35]. Because of
the marked differences in EGD performance among endoscop-
ists (which lead to variation in the gastric premalignant- and
malignant-condition detection rates and missed lesions [36]),
numerous guidelines of different professional societies have de-
veloped evidence-based performance measures for upper en-
doscopy [37–39] and proposed standardized protocols to map
the entire stomach [40, 41]. However, these protocols are not

always followed, and therefore it is essential to develop practi-
cal modalities that can aid implementation in the daily routine
[42].

WISENSE is a real-time quality-improvement system in en-
doscopy that was developed using the methods of deep CNN
and deep reinforcement learning (DRL)—another component of
DL that became known because of the Go game (2016). This sys-
tem combines high perception capacity in visual tasks and
decision-making capacity to address complex dynamic situa-
tions [43]. A single-center randomized–controlled trial (trial reg-
istration number ChiCTR1800014809) [30] was elaborated to test
the ability of WISENSE to reduce the rate of blind spots (unseen
areas) during upper endoscopy. WISENSE was based on the sys-
tematic screening protocol for the stomach, which was pro-
posed as a minimum required standard for gastroscopy. For
training of the network, 12,220 in vitro, 25,222 in vivo, and 16,760
EGD images from >3,000 patients (Dataset 1) were used and, for
learning and classifying gastric sites, 34,513 qualified EGD
images (Dataset 2) were collected. Five experienced endoscop-
ists labeled EGD images into 26 different sites by following
screening protocol 11. To identify the best status of DRL, the
researchers used 30 stored EGD videos. To test the clinical per-
formance of the system, a total of 107 stored real EGD videos
were used (Dataset 3).

A total of 324 patients with EGD were recruited, of whom 153
patients were randomized in the endoscopic WISENSE-assisted
group and 150 in the control group. The accuracy obtained by
the system in monitoring blind spots in real EGD videos was
90.40% and the blind-spot rate was significantly lower in the
WISENSE group vs control (5.86% vs 22.46%). Additionally,
WISENSE increased the inspection time and the completeness
of photo documentation.

The WISENSE study has several limitations, such as, first of
all, the validation of the performance of their specific algorithm
was not made on a large and representative testing data set
that included sufficient negative controls before initiating the
clinical trials; second, the prolonged inspection time might be a
confounding factor for improved lesion detection; third, the
study was limited to the Chinese population and Chinese endo-
scopists (lacks external validation). It is a promising study but
the result of an open-labeled single-center study cannot lead to
a definite conclusion regarding its ability to improve the quality
of upper endoscopy.

The authors presented data on the implementation of the
novel AI system ENDOANGEL (previously known as WISENSE)
for improving endoscopic visualization within several modali-
ties of EGD [44, 45]: sedated conventional EGD (C-EGD), unse-
dated C-EGD, and ultrathin transoral endoscopy (U-TOE).

Figure 2.The main applications of artificial intelligence (AI) in upper endoscopy. Figure 3.Categories of AI systems in the gastrointestinal-endoscopy field.
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ENDOANGEL enables real-time assessment of blind-spot areas
using a virtual stomach model and informs the endoscopists on
the inspection time. This study was a single-center study that
enrolled 437 patients who were initially randomized into one of
the three endoscopic modalities. Subsequently, patients in each
subgroup were randomized to undergo their EGD with or with-
out ENDOANGEL assistance. A complete endoscopic examina-
tion consisted of the visualization of 26 sites. All videos were
independently reviewed by five endoscopists. The blind-spot
rate was lowest in the sedated C-EGD group. The use of the
ENDOANGEL system reduced this rate among all three endo-
scopic procedures, by 84.77% in the C-EGD, 27.24% in the U-TOE,
and 26.45% in the unsedated C-EGD groups. One limit might be
the increase in the procedure time. These results suggest a pos-
sible benefit of ENDOANGEL in improving the quality of EGD in
visualizing mucosa. Therefore, this approach might be used in
endoscopic training programs and in assessing the skills of
endoscopists.

EGD is the principal modality used in the diagnosis of upper-
GI diseases (reflux esophagitis, gastritis, gastroduodenal ulcer,
gastric cancer, and others) [46, 47]. Although EGD is a routinely
performed procedure, endoscopists require special training and
skills to correctly identify these lesions because the endoscopic
changes might be rather discrete or resemble other conditions,
leading to misdiagnosis [48]. CNN systems have been used to
support the diagnosis of GI diseases and reduce the workload
on physicians. The first major step for the CAD system is recog-
nizing the anatomical location of the lesion.

A CNN diagnostic system based on the GoogLeNet structure
was constructed by Takiyama et al. [49] and was trained using a
large data set of 27,335 EGD images from 1,750 patients who
were grouped into four major anatomical locations (larynx,
esophagus, stomach, and duodenum) and three subclassifica-
tions for the stomach regions (upper, middle, and lower). The
efficacy of the artificial model was evaluated using an indepen-
dent validation set of 17,081 EGD images from 435 patients. The
CNN determined the appropriate anatomical location for
16,632/17,081 EGD images (97%), obtaining high-performance re-
ceiver operating characteristics (ROC) curves with area under
the curves (AUCs) of 1.00 for recognition of the larynx and
esophagus, and 0.99 for the stomach and duodenum. The CNN
obtained sensitivity/specificity of 93.9/100% for the larynx, 95.8/
99.7% for the esophagus, 98.9/93.0% for the stomach, and 87.0/
99.2% for the duodenum. The system achieved AUCs of 0.99 for
recognition of the upper, middle, and lower stomach, and sensi-
tivity/specificity values of 96.9/98.5%, 95.9/98.0%, and 96.0/
98.8%, respectively. This CAD system displayed good perfor-
mance in recognition of the anatomical location of endoscopic
images, revealing its potential for clinical application in the
near future.

Computer-aided endoscopic navigation system
(CAEN)—retargeting gastric biopsies

Conventionally, endoscopists use biopsy for endoscopic follow-
up of premalignant gastric lesions in association with tattooing
to mark the location of the lesions. Because this is an invasive,
sometimes difficult, and inefficient procedure, several studies
have emerged that address gastric-biopsy surveillance by
means of computer simulation and optical instruments. These
research studies included biopsy-relocalization methods based
on epipolar geometry [50], the development of a computed-
tomography virtual 3D model as a non-invasive biopsy marking
system [51], and an online deformation method for

pathological-site retargeting [52] or probe-based confocal laser
endomicroscopy [53]. However, most of these methods were as-
sociated with different difficulties or drawbacks.

A Chinese group of researchers [54] designed a computer-
aided endoscopic navigation (CAEN) system as non-invasive biopsy
procedure, which included a six-degree-of-freedom tracking en-
doscopic instrument plus a computer-simulated workstation.
To visualize the navigation scene, a 3D stomach model was
designed based on simultaneous localization and mapping. The
tip of the endoscope was used to touch the lesion and the lesion
location was subsequently recorded to guide retargeting of the
pathologic area during surveillance. This study enrolled 22 par-
ticipating volunteers and an experienced endoscopist. The ex-
perimental data demonstrated that the CAEN procedure needs
a shorter time than tattooing and that the system error for the
gastric antrum and angulus is <1 cm. Considering that a biopsy
forceps opening is �6 mm and the tattooing area diameter is
�1 cm (due to diffusion) [55], this AI system seems appropriate
for clinical practice. However, this CAEN system cannot be yet
applied to the gastric body with sufficient accuracy and requires
optimization.

Gastric precancerous-lesion detection

Gastric precancerous disease network (GPDNet)
The Chinese study by Zhang et al. [56] elaborated on CNN classi-
fication of 3-class gastric precancerous diseases, namely polyp,
erosion, and ulcer, using a model known as the gastric precan-
cerous disease network (GPDNet). After image augmentation, a
total of 3,673 gastroscopic images were available, including
1,211 of erosion, 1,218 of polyps, and 1,244 of ulcers. The data
set was split into a training set (75%) and a test set (25%). The in-
novation of the GPDNet consisted of the introduction of fire
modules from SqueezeNet to reduce the size and parameters of
the system (by �10 times) with the purpose of improving the
speed of classification. To maintain accuracy with fewer param-
eters, after training the GPDNet, the authors used iterative rein-
forced learning (IRL) to fine-tune the parameters, the values of
which are close to 0, and considered the modified system as a
pretrained model for the next training. IRL seemed to improve
the accuracy by �9% after six iterations, reaching 88.90%.
However, the test set used in this study represented only one-
third of the training set, and it was not representative enough.
Therefore, the reliability of such results was also uncertain.

Furthermore, the GPDNet was not specifically designed for
precancerous disease, such as chronic atrophic gastritis (CAG)
or mucosal low-grade dysplasia (LGD)/high-grade dysplasia (ul-
cerated shape or protusive adenomas). The target was identified
based on the macroscopic aspect instead of histology; therefore,
the GPDNet was not able to make a distinction between real pre-
cancerous lesions and benign erosions/ulcers and fundic-gland
polyps.

Figure 4 illustrates the capacity of AI algorithms to perform
the classification task of premalignant gastric lesions.

Gastric-polyp detection
Although it is known that most gastric polyps are benign, ade-
nomatous polyps must be identified and resected in time be-
cause they have the potential for malignant transformation
[57]. In this context, it is important to develop automatic
gastric-polyp detection to help clinicians to reduce the gastric-
polyp miss rate [58].

Initially, most of the AI methods designed to detect and clas-
sify digestive polyps used manually designed features such as
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the elliptical shape [58–60], texture [61], color, location [62], or
combinations of these [63]. The methods were time-consuming,
associated with a high false-positive rate, and they focused
mostly on the detection of colonic polyps.

With the introduction of CNN into endoscopic-lesion classi-
fication and detection [56, 64, 65], the accuracy and celerity of
detection were improved [66, 67]. Within the MICCAI 2015
Endoscopic Vision Challenge [68], a comparative evaluation was
performed by polyp-detection methods in video colonoscopy.
The results revealed that none of the presented methods was
able to achieve real-time automatic polyp detection. In the next
years, the progress of AI tools for polyp detection started to get
close to the requirements of the real-life setting. Wang et al. [69]
developed a DL algorithm for the detection of polyps during
real-time colonoscopy by using data from 1,290 patients. For the
development data set, colonoscopic images with/without pol-
yps were used. The system was validated on four different data
sets: on newly collected colonoscopy images/patients with at
least one detected polyp (Dataset A); on a public database of
polyp-containing images (Dataset B); on colonoscopy videos
with histologically confirmed polyps (Dataset C); and on unal-
tered full-range colonoscopy videos without polyps (Dataset D).
The working group developed an automatic polyp-detection
system based on DL with high overall performance in both colo-
noscopy images/videos, achieving the application requirements
of the real-world colonoscopy setting. Therefore, the ideal auto-
matic poly-detection software must use representative data
sets and rigorous validation, meaning that validation data sets
should be prospectively collected from consecutive patients,
with no overlap existing with the training data set; it must have
uniform and high overall performance; moreover, it must have
low latency, operating with a real-time detection speed.

Billah et al. [70] proposed an automatic system that captures
the video streams from endoscopic video to support GI polyp
detection. The extracted color wavelet (CW) features and CNN
features of the video frames are fused to train a linear support
vector machine (SVM). Performance assessment on standard
public databases revealed that the model outperformed previ-
ous methods, reaching an accuracy of 98.65%, sensitivity of
98.79%, and specificity of 98.52% in the identification of polyps.

Zhang et al. [10] constructed a CNN based on single shot mul-
tibox detector (SSD) architecture known as SSD for gastric pol-
yps (SSD-GPNet). To obtain higher performance and to benefit
from the maximal quantity of information from the feature pyr-
amid, the algorithm reused information lost from the pooling
layers and joined that extra data to enhance the detection accu-
racy of the system. The CNN structure merged feature maps of
the lower and upper layers to strengthen the relationships be-
tween layers. The experiment was performed on the combina-
tion of training and test data sets composed of 404 gastric-polyp
endoscopic images. The authors did not categorize polyps
according to their histology. They divided polyp size into three
categories, namely small, medium, and large. More than half of
the polyps were small. The system was able to achieve real-
time gastric-polyp detection with a speed of 50 frames per sec-
ond and increased the mean average precision from 88.5% to
90.4%. The authors stated that SSD-GPNet had an improved
polyp-detection rate in comparison with the previous version of
the AI algorithm, and therefore it improved the polyp-detection
rate by increasing especially the detection of small polyps.
However, the data set included only a small number of images
(404 images of gastric polyps) and the authors did not use the
fundamental metrics to assess the performance of AI tools.
Instead, the study used performance metrics such as precision
and recall, highly affected by the proportion of positive samples

Figure 4.AI algorithms for the classification task of premalignant gastric lesions. Deep-learning (DL) algorithm: the model is trained using a large data set of endoscopic

images; subsequently, the classification task performance of the system is validated using an independent test data set.
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in total samples, while the number of true negative results was
not stated. Because of the limitations of this study, future re-
search is needed for implementing SSD-GPNet in improving the
detection of gastric lesions.

Because measurement of polyp sizes proved to be essential
in performing an appropriate in situ endoscopic assessment and
treatment, 3D endoscopic systems have been designed, includ-
ing an active stereo-technique, which appears to be promising
and accurate, but certain difficulties were encountered in previ-
ous research. To overcome these problems, the study group of
Furukawa [71] proposed a learning-based algorithm for active
stereo using CNN. As such, two independent networks (U-Nets)
were developed and trained for tasks such as line detection and
code-based segmentation. In addition, to reconstruct a unified
shape from multiple scans for an endoscopic device, an ex-
tended bundle-adjustment technique was elaborated that esti-
mated the 3D shapes and the calibration parameters at the
same time. The performance of the proposed methodology vs
previous research [72] was evaluated experimentally using hu-
man resected tumor samples, a liver phantom, and a pig stom-
ach. The CNN training data set was obtained from 47 real
endoscopic images through a projector–camera system inserted
into the endoscope channel. To evaluate the pattern-feature-
extraction capacity of the system for endoscopic aspects,
resected cancer specimens were measured. The proposed
method showed an accurate grid/code-detection capacity and
3D reconstruction of large regions, and therefore it needs fur-
ther validation using in vivo experiments.

Diagnosis of H. pylori infection
Helicobacter pylori infection plays a crucial role in the pathogene-
sis of gastric cancer by inducing a multistep carcinogenic pro-
cess, including atrophic gastritis, intestinal metaplasia, and
eventually carcinoma development [73, 74]. Helicobacter pylori in-
fection is associated by an increased risk of gastric neoplasm
and, moreover, H. pylori eradication leads to a decrease in
gastric-cancer incidence. Therefore, the International Agency
for Research on Cancer defined H. pylori as a class I carcinogen
[75–77]. EGD is frequently performed for the screening of gastric
cancer and for the detection of other H. pylori-related diseases.
Endoscopic assessment also appears helpful in diagnosing H.
pylori infection because findings such as diffuse erythema,
edema, atrophy, prominent folds, and nodularity are typical for
H. pylori infection, whereas a regular architecture of collecting
venules and the presence of fundic-gland polyps are character-
istic of the absence of infection. Furthermore, the map-redness
aspect of gastric mucosa is mostly observed in eradicated
patients [78]. However, endoscopic evaluation is time-
consuming and subjective, and depends on the experience of
the endoscopist.

Initially, in 2004, Huang et al. [79] investigated the presence
of H. pylori infection based on refined feature extraction by
means of a neural network using endoscopic images and their
related gastric pathologic aspects. This model was trained/ana-
lysed with 84 image parameters collected from 30 patients and
was associated with a sensitivity and specificity of 85.4% (35/41)
and 90.9% (30/33) for H. pylori infection and an accuracy for the
identification of gastric atrophy, intestinal metaplasia, and se-
verity of inflammation that exceeded 80% (83.8%, 89.2%, and
83.8% respectively). The gold standard used was the histological
features. Additionally, Itoh et al. [80] developed a CNN model to
predict H. pylori infections using a total of 596 endoscopic
images (after data augmentation of 179 gastroscopic images
obtained from 139 patients, the presence or absence of HP was

confirmed by detecting the serum HP IgG antibodies in those
patients), which showed promising results with a sensitivity
and a specificity of 86.7% and an AUC of 0.956.

In 2017, Shichijo et al. [81] designed a CAD system to improve
the endoscopic diagnosis of H. pylori infection. First, that group
constructed a 22-layer CNN that was pretrained and fine-tuned
using a data set of 32,208 endoscopic images from either H. py-
lori-positive or -negative patients (735 and 1,015 patients, re-
spectively). All of the patients included were assessed for H.
pylori using at least one non-invasive test and were considered
H. pylori-infected if any of these assays became positive.
Subsequently, a secondary CNN was trained using endoscopic
images classified according to eight different anatomical loca-
tions in the stomach. A separate test data set including 11,481
images from 397 patients, of whom 72 were H. pylori-positive
and 325 were negative, was independently assessed by the AI
system and by 23 endoscopists. The first CNN achieved a sensi-
tivity of 81.9%, a specificity of 83.4%, and an accuracy of 83.1%
for the detection of H. pylori infection, requiring 198 s for analy-
sis of all images. The secondary system obtained a sensitivity of
88.9%, specificity of 87.4%, and an accuracy of 87.7%, requiring
194 s for data analysis. The secondary CNN obtained a signifi-
cantly higher accuracy than endoscopists for the detection of
infection in a notably short interval of time (only several
minutes).

Because this study included only H. pylori-positive and -neg-
ative patients and excluded patients after H. pylori eradication, a
situation was demonstrated to be still associated with moderate
risk of gastric-cancer development [82, 83]; the group con-
structed another CAD to evaluate the H. pylori status (2019) [9]
and pretrained and fine-tuned a CNN using a data set of 98,564
endoscopic images from 5,236 patients, of whom 742 were H. py-
lori-positive, 3,649 were negative, and 845 were eradicated. The
performance of the system was evaluated using a separate test
data set, including 23,699 images from 847 patients, of whom 70
were H. pylori-positive, 493 were negative, and 284 were eradi-
cated. All patients were evaluated for H. pylori infection by at
least one non-invasive test and considered infected if they
tested positive on any of these assays. The trained CNN esti-
mated the probability index for H. pylori-infection status per im-
age and subsequently selected the final “diagnosis” (highest
probability) of the infection condition. Among the 23,699 test
images, 418 were classified as H. pylori-positive, 23,034 as nega-
tive, and 247 as eradicated. After the artificial redefinition of H.
pylori-negative probability due to the large number of such find-
ings, the system achieved an accuracy of 80% (465/582) for H. py-
lori-negative cases, 84% (147/174) for eradicated infections, and
48% (44/91) for positive cases—a performance comparable to
that of experienced endoscopists. The system required a total of
261 s to diagnose all of the images from the test data set.

The use of CAD during the endoscopic procedure might offer
quick risk stratification of patients for the development of gas-
tric cancer according to H. pylori status. This advantage is of
maximum importance, especially in countries with a high inci-
dence of gastric cancer. In Japan, for example, H. pylori eradica-
tion in patients with gastritis (indeed, all infected patients) has
been covered by national health insurance since 2013 and, fur-
thermore, endoscopic mass screening for gastric neoplasm was
initiated in 2016. These programs led to an overwhelming work-
load for endoscopists, which might be relieved with the aid of a
CNN diagnostic algorithm.

The image-enhanced endoscopy (IEE) device was shown to im-
prove non-magnifying endoscopic detection of H. pylori gastritis
[84]. In this direction, Nakashima et al. [29] structured a
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prospective single-center pilot study with the aim of designing
an AI diagnosis algorithm that predicts H. pylori-infection status
using this modern endoscopic technique. Training of the AI sys-
tem used a data set including a total of 222 subjects (of whom
105 were H. pylori-positive) who underwent EGD, with subse-
quent selection of three still images of the lesser gastric curva-
ture/each case using WLE, blue-laser imaging (BLI)-bright, and
LCI, respectively. A total of 1,944 endoscopic images were pre-
pared for the AI training, 648 for each group (WLE, BLI-bright,
and LCI). Subsequently, 180 images from the test data set (60 for
each endoscopic modality) were classified. A serologic test for
H. pylori IgG antibody titer was considered as the gold standard
for infection status. This study used a GoogLeNet 22-layer CNN
as a pretrained and fine-tuned model that acquired image-
recognition capability as an endoscopic CAD system.

The AUC obtained was only 0.66 for white light imaging but
was excellent for BLI-bright and LCI modes, with values of 0.96
and 0.95, respectively. Moreover, the sensitivity of the artificial
CNN for BLI-bright and LCI was 96.7%. Thus, CAD in association
with IEE is expected to become a useful endoscopic diagnostic
tool in the near future.

Linked color imaging (LCI) was demonstrated to detect slight
differences in mucosal color, such as those encountered in the
case of gastritis, metaplasia, or atrophy [84, 85]. A Japanese re-
search study [86] proposed a universally interpretable AI multi-
stage algorithm for the endoscopic diagnosis of H. pylori
infection based on LCI. The training data set included 128 endo-
scopic images (4 images each from 32 cases). Patients were
assessed for H. pylori infection using more than two different
tests. Based on a slight difference in redness, gastric images
were categorized into two patterns (high-hue and low-hue
images) for training of SVM classifiers to automatically detect H.
pylori infection. To investigate the performance of the learning
machine, it was used on a test data set including 525 LCI endo-
scopic images from 105 patients (5 images from different
regions per case), of whom 42 were H. pylori-positive, 46 were
post-eradication, and 17 were negative. The AI system obtained
an accuracy of 87.6% (92/105), sensitivity of 90.5% (38/42), specif-
icity of 85.7% (54/63), and positive predictive value of 80.9% (38/
47), and negative predictive value of 93.1% (54/58). These perfor-
mance scores were higher than those of inexperienced endo-
scopists and quite similar to those of expert endoscopists.
However, the study currently has selected drawbacks, mostly
related to the ability to diagnose post-eradication patients.

Discrete lesions, containing subtle changes in color, mor-
phology, or texture, might generate similar detection difficulties
both for AI and for doctors. AI may be able to achieve a superior
diagnostic performance by summarizing the variation rules of
the features characterizing the pathologic superficial epithe-
lium, but this method is still an indirect approach when com-
pared with pathological assessment and also may have its in-
nature limitations.

CAG detection
CAG represents a major stage in the carcinogenic process of
gastric cancer [87] and its extent is correlated with the risk of
cancer development [88–90]. Eradication of H. pylori infection
can significantly improve atrophy in these patients, with a sub-
sequent reduction in the risk of gastric neoplasm. For this rea-
son, it is essential to detect CAG to prevent the development of
gastric cancer [91]. As such, specific guidelines exist for the en-
doscopic assessment of precancerous conditions using stan-
dardized biopsy protocols [92]. However, multiple biopsies
increase mucosal trauma and risk of bleeding, and they are also

costly and time-consuming. Recently, although advanced en-
doscopy techniques such as magnifying endoscopy (ME)-CE and
confocal laser microscopy improved the diagnosis accuracy of
CAG [93], they proved useful tools only in the hands of experi-
enced endoscopists. Moreover, these advanced techniques are
not widely available and require expensive devices. Because the
morphological characteristics of gastric atrophy are discrete
and difficult to detect, CAD of atrophic gastritis emerged as a
necessity. Therefore, DL technology has begun to be used in di-
agnosing pathological images of CAG [94]. Lahner et al. (2005)
constructed an ANN and linear destructive analysis system
based on clinical and biological data to support the diagnosis of
CAG without endoscopy—an artificial model associated with an
accuracy rate of 100% [95]. Because patients with atrophic gas-
tritis might present non-specific symptoms and gastroscopy
with biopsy still remains the main diagnostic modality, it is
mandatory to develop DL techniques that can assist in the en-
doscopic screening of CAG.

The research group of Guimar~aes [96] structured a CAD ap-
proach for the diagnosis of CAG and the approach was trained
using real-world endoscopic images originating from the proxi-
mal stomach. The training data set consisted of 200 WLE images
from patients with and without histology-proven CAG (100 from
each group) that were exported using the digital imaging and
communications in medicine (DICOM) format. Subsequently,
data were augmented using the artificial techniques of rotation,
mirroring, and scaling. An independent test data set of 70
images (30 with CAG and 40 without) was used in evaluation by
six endoscopists with different degrees of expertise. The CAD
system used a pretrained fine-tuned CNN. Initially, the best ar-
chitecture was assessed using pretrained models on ImageNet
and a 10-fold cross-validation was performed on the training
set. For each cross-validation, data were split into training
(80%), tuning (10%), and testing (10%) sets. The test data set was
classified according to the best-performing combination of the
hyperparameters. The model obtained a diagnostic accuracy of
93% and an AUC of 0.98, showing significantly better perfor-
mance than endoscopists from the tertiary referral center.
Histopathology was used as the gold standard.

The study by Zhang et al. [97] (2020) designed a CNN model
to improve the diagnostic accuracy of CAG based on 5,470
images of gastric antrums (3,042 images of atrophic gastritis
and 2,428 of non-atrophic gastritis) from 1,699 patients who
were labeled with their pathological features. Endoscopic
images were randomly assigned to the training set (70%) and
testing set (30%). Subsequently, the training data set underwent
5-fold cross-validation and the diagnoses of the artificial model
were also compared with those of three endoscopist experts.
The CNN model obtained a diagnostic accuracy, sensitivity, and
specificity of 0.942, 0.945, and 0.940, respectively—performance
scores that were better than those of the experts. In addition,
the detection rates according to the severity of the lesions were
93% for mild atrophy, 95% for moderate atrophy, and 99% for se-
vere atrophic gastritis.

These promising results highlight the usefulness of the CNN
model in diagnosing CAG, by achieving a higher accuracy and
by reducing the burden on endoscopists.

Gastric-cancer detection

Stomach cancer remains a major global health problem and is
responsible for >1,000,000 new cases and 783,000 deaths world-
wide (2018). Stomach cancer is the fifth most frequently diag-
nosed cancer globally and the third leading cause of cancer
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death [98]. Large geographic variation occurs in the incidence of
gastric cancer, with notably high rates in Eastern Asia, in con-
trast to other regions such as Northern America and Northern
Europe with lower incidences. Helicobacter pylori is considered
the main risk factor and is responsible for almost 90% of non-
cardia gastric-cancer cases [99, 100]. The incidence of non-
cardia gastric tumors has been steadily declining over the past
decades, mostly due to prevention measures, including a de-
crease in H. pylori prevalence and improvements in the preser-
vation of foods. The characteristics of gastric cardia cancers
more closely resemble those of esophageal adenocarcinoma,
obesity, and gastroesophageal reflux disease, with Barrett’s
esophagus representing important risk factors. With respect to
the incidence of these specific cancers, an increasing trend has
been noted, especially in developed countries.

Early diagnosis and treatment of gastric cancer determine
an improvement in the 5-year survival rates to 96% compared
with the high mortality and poor prognosis associated with ad-
vanced tumors [101]. Therefore, establishing a diagnosis of gas-
tric cancer at an early stage represents a major step forward in
the management of this tumor.

For the classification of gastric cancer, Sun et al. [102] used
VGGNet, IRNV2, and the R-FCN algorithm to classify benign vs
malignant gastric ulcers. The best accuracy of 86.6% was
obtained using the R-FCN network—a result that exceeded the
performance of doctors.

It is important to emphasize the difference between the
object-detection task and the classification task. Detection
means the ability of AI to recognize a ROI, such a dysplastic/
neoplastic area (which can be histologically confirmed subse-
quently using tissue biopsy), while classification means the
ability of AI to categorize the identified lesions into different
classes (e.g. neoplastic vs non-neoplastic). This signifies that,
for a lesion to be categorized (classification), it definitely should
be first of all visualized (detection). Nowadays, optical biopsy
has gained increasing accuracy, but still tissue biopsy repre-
sents the gold standard for diagnosing gastric lesions.

CAD using CE
Starting from the consideration that a hybrid AI approach could
be suitable for the advanced assessment of various descriptors
to represent the characteristics of gastric images, Ali et al. [103]
proposed a new hybrid feature-extraction method known as the
Gabor-based gray-level co-occurrence matrix (G2LCM) used in
CADe of CE abnormal frames. The Ali group compared the per-
formance scores of multiple types of classifiers by training
them initially on features obtained from existing texture-
extraction methods and subsequently on the G2LCM matrix.

The study used a publicly available database consisting of
176 CE images of multiple patients with normal aspect/abnor-
mal tumor lesions and associated with two sets—one for train-
ing and the other for testing the methods. These images were
also classified according to color histograms [104]. The data set
included three groups: 56 (31.8%) images of normal mucosa—
group I (normal class) and 120 (68.2%) images with lesions of
metaplasia and dysplasia—groups II and III (abnormal class). AI
algorithm performance was compared to the assessment of two
expert endoscopists.

Using an SVM classifier and G2LCM texture features, abnor-
mal images were differentiated from normal frames with a sen-
sitivity of 91% (110/121), specificity of 82% (45/55), accuracy of
88% (155/176), and an AUC of 0.91. These results demonstrate
that the proposed system can be used to assist gastroenterolo-
gists in gastric neoplastic screening.

Ogawa et al. [105] performed an objective assessment of the
utility of different chromoendoscopy techniques for EGC detec-
tion by means of a ML algorithm (SVM) that uses data of color
differences. A total of 54 still endoscopic images from 18 histo-
pathologically confirmed EGC lesions were examined and endo-
scopic images from WLE, indigo carmine (Indigo), and acetic
acid-indigo carmine chromoendoscopy (AIM) were prepared for
the CADe system. A border distinguishing between cancerous/
non-cancerous areas on the endoscopic images was delineated
from post-treatment pathological findings. Each pixel was con-
sidered as a sample and was represented as a 3D vector using
RGB values. The study evaluated the Mahalanobis distance as
indicative of color differences between cancerous vs non-
cancerous areas. Subsequently, a diagnostic test using an SVM
was performed for each image. The model was trained using
100 samples per class and evaluated which area each of the
1,900 samples per class originated from.

The obtained means for the Mahalanobis distances did not
differ significantly for the three modalities. The diagnostic abil-
ity per endoscopy technique was assessed using the F1 mea-
sure. The objective assessment using SVM was helpful for
confirming the superiority of AIM images to detect EGC.

CAD using flexible spectral imaging color enhancement (FICE)
Miyaki et al. [106] reported software designed to automatically
distinguish cancerous/non-cancerous areas using a bag-of-
features framework with densely sampled scale-invariant fea-
ture-transform descriptors to magnify FICE (Fujifilm Corp.,
Tokyo, Japan) images. Although based on small data sets, the
study was well designed and collected meaningful negative
samples, which were similar in morphology and color, as con-
trol. While it is a relatively easy task for an AI tool to be sensi-
tive to detect early cancer, it may be extremely difficult for the
system to be specific to differentiate benign from malignant
lesions with similar characteristics. The CAD system was vali-
dated using 46 intramucosal gastric cancers and reached an ac-
curacy of 85.9% (79/92), sensitivity of 84.8% (39/46), and
specificity of 87% (40/46) for cancer diagnosis; also, it achieved a
positive predictive value of 86.7% (39/45) and negative predictive
value of 85.1% (40/47).

CAD using hyperspectral imaging
Hyperspectral imaging (HSI) is an emerging domain that combines
ML with spectroscopy [107] and acquires 2D images containing
spectral information for each pixel, thus supplying better con-
trast than white-light imaging. Cancer detection represents one
of the principal applications of HSI in the medical field [108] and
the method demonstrated efficacy in identifying different types
of tumors [109–111]. Previous research on the colon or esopha-
gus using HSI was performed only on ex vivo specimens [112] or
histopathological fragments [113].

The research group of Hohmann [114] proposed (2017) multi-
spectral imaging (MSI) as an initial step towards hyperspectral
video endoscopy (HSVE). For this reason, a standard endoscopy
system was modified to perform in vivo multispectral imaging
of the upper digestive tract, associated with the automatic clas-
sification of normal/cancerous areas using SVM. The pilot study
was conducted on 14 gastric-cancer patients and different clas-
sifiers were compared for data classification based on a leave-
one-out strategy. For system training, the tumor limits were
outlined by expert-labeling and tumoral lesions were histologi-
cally confirmed. The technology achieved a sensitivity of 63%
and specificity of 64% (for the best classifier). Although this
study faced selected difficulties due to the current level of the

192 | D.C. Laz�ar et al.



technology, it might be possible to transfer the results to hyper-
spectral imaging and solve certain limits of the methodology in
the future.

CAD using BLI
BLI combined with ME was demonstrated to improve diagnostic
accuracy for EGC and precancerous lesions [115]. The group of
Miyaki et al. [116] constructed an SVM-based system to quantita-
tively identify gastric cancer on images obtained by ME-BLI. The
system was evaluated on 100 consecutive EGC in 95 patients
and produced a data set from 100 images of EGC, 40 flat/slightly
depressed, small, reddened mucosa (benign lesions) and the
surrounding tissues. The authors attempted to quantitatively
distinguish the lesions. The SVM output value for cancerous
lesions was significantly greater than that for reddened lesions/
surrounding tissue, and thus it allows the quantitative diagno-
sis of gastric lesions.

CAD using NBI
The endoscopic technique of magnifying endoscopy with
narrow-band imaging (ME-NBI) has been applied to enhance
EGC detection by describing the microvascular pattern and
microsurface architecture of gastric mucosal lesions [117].
However, in the hands of non-experts, this approach acquired
only modest diagnostic efficacy in differentiating cancerous
from non-cancerous gastric lesions.

To boost the diagnostic accuracy, Kanesaka et al. [24] created
a CAD system using an SVM to enhance the efficiency of ME-
NBI in distinguishing EGC and to delineate the border between
cancerous and non-cancerous areas. The performance of the
system was compared to the expert endoscopists’ region delin-
eation. A total of 126 magnifying NBI images were used as train-
ing material. In this pilot study, the authors trained the model
using 61 ME-NBI images of EGC and tested it on 20 ME-NBI
images of non-cancerous areas. The results highlighted a re-
markable diagnostic performance (accuracy of 96.3%, positive
predictive value of 98.3%, sensitivity of 96.7%, and specificity of
95%) and performance of area concordance (accuracy of 73.8%,
sensitivity of 65.5%, and specificity of 80.8%).

A Chinese group [118] analysed the performance of EGC
detection using transfer learning with CNN on magnifying NBI en-
doscopic images. The VGG16, Inception V3, and InceptionResNetV2
algorithms were selected to accomplish the image-classification
task. The coarse data set of M-NBI images was used in training/
testing a total of 1,438 EGC and 1,630 normal endoscopic images,
out of which a fine data set was further selected. Experiments
showed that DL using CNN performs better than traditional
handcrafted methods. The best performance scores were
obtained by fine-tuning Inception V3, with accuracy, sensitivity,
and specificity of 0.985, 0.981, and 0.989, respectively.

Li et al. [119] developed a new CNN system to classify gastric
mucosal lesions detected by ME-NBI and constructed a CNN
model (Inception-v3) trained using 386 endoscopic images of
non-cancerous lesions and 1,702 images of EGC. The diagnostic
efficacies of both the ML system and endoscopists were tested
on a data set of 341 endoscopic images containing 171 non-
cancerous lesions and 170 EGC. The histopathologic result was
considered the gold standard. The CNN system achieved sensi-
tivity, specificity, and accuracy of 91.18% (155/170), 90.64% (155/
171), and 90.91% (310/341), respectively, in the diagnosis of EGC.
Although comparable specificity and accuracy of diagnosis were
noted between CNN and experts, the diagnostic sensitivity of
CNN was significantly better. Furthermore, the diagnostic per-
formance scores were significantly higher than those of the

non-experts. Therefore, the use of this CAD system could be no-
tably helpful in gastric-cancer screening.

Hirasawa et al. [27] constructed a CNN system based on SSD
architecture to detect early and advanced gastric cancer. The
CNN was trained by a data set including 13,584 non-magnified
WLE/indigo carmine CE/NBI endoscopic images for 2,639 histo-
logically proven gastric-cancer lesions. The diagnostic accuracy
was evaluated using an independent test data set composed of
2,296 WLE images of 77 gastric cancers gathered from 69 consec-
utive patients.

The CNN analysed all of the test images in <1 minute. The
proposed system correctly diagnosed 71/77 gastric-cancer
lesions, achieving an overall sensitivity of 92.2%, whereas 161
non-tumoral lesions were misdiagnosed as gastric cancer, lead-
ing to a positive predictive value of 30.6% (71/232). The system
diagnosed 70/71 lesions (98.6%) that were >6 mm in diameter
and all invasive tumors. All of the undetected cancers were
intramucosal neoplasms of a superficially depressed and differ-
entiated type that might be confounded with gastritis, even by
expert endoscopists. However, nearly half of the false-positive
cases consisted of gastritis lesions expressing marked changes
in mucosal coloration or surface architecture that might mimic
neoplastic alterations.

In the study by Hirasawa et al., many endoscopic images of
gastritis were misdiagnosed as EGC, and therefore it was con-
sidered that the AI achieved a quite low probability of differenti-
ation. Thus, to further explore the possibility that a DL system
can improve EGC diagnosis in clinical practice, Horiuchi et al.
[21] used magnified endoscopic images. The CNN system com-
posed of 22 layers was pretrained using 1,492 EGC/1078 gastritis
ME-NBI images. For assessment of the diagnostic performance
of the CNN, an independent test data set including 151 EGC/107
gastritis ME-NBI images was used. The histopathologic result
was considered the gold standard. The diagnostic ability
achieved by the system was described as follows: accuracy
85.3%, sensitivity 95.4%, specificity 71.0%, positive predictive
value 82.3%, and negative predictive value 91.7%. Additionally,
7/151 EGC were misdiagnosed as gastritis (false negative),
whereas 31/107 gastritis images were classified as EGC (false
positive). The main causes of misdiagnosis were represented by
localized atrophy/atrophy of the fundic gland and intestinal
metaplasia. The CNN produced a high AUC of 85.2%. These
promising results demonstrate that the CAD system using ME-
NBI stored endoscopic images is capable of rapid differentiation
between EGC and gastritis with a high sensitivity and negative
predictive value, and is helpful in the daily clinical routine.

CAD using video endoscopic images
To implement this methodology in the real-time detection of
gastric cancer in the screening EGD program, a pilot study was
initiated to evaluate the performance of a CNN algorithm when
applied to video endoscopic images [120]. To test the accuracy
of detection, video images of 68 endoscopic submucosal dissec-
tions performed in 62 patients using EGC were assessed. CNN
obtained an accuracy of detection similar to that of still images
by correctly diagnosing 64/68 tumors (94.1%). The median time
needed for detection was 1 s per lesion. Similarly to the previous
work, in the four missed cases, the neoplastic changes were dif-
ficult to distinguish from background gastritis. Although the
sensitivity and latency of this study seem good, the specificity
of the AI tool was not analysed. Therefore, it is unclear whether
the high sensitivity of this AI system is based on a compromise
of false positives.
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The proposed system has the ability to conduct rapid analy-
sis of a large number of stored/video endoscopic images and
achieves good diagnostic accuracy for gastric cancer. Thus, this
approach might be implemented in clinical practice to relieve
the burden on endoscopists, especially when used as a support
tool for the gastric-cancer screening program, for telemedicine
in rural areas and developing countries, or for second-opinion
purposes. In this manner, the standard for EGC detection is
expected to increase in the future.

Invasion-depth detection of gastric cancer

Correct assessment of the neoplastic-invasion depth is manda-
tory for proper selection of patients with EGC for endoscopic re-
section. For this purpose, in 2012, Kubota et al. [121] were the
first to evaluate a CAD system used to identify the depth of the
wall invasion of a gastric neoplasm using endoscopic images.
These researchers collected 902 endoscopic images and created
a backpropagation model defined by 10-time cross-validation,
with an achieved diagnostic accuracy of 77.2% (346/448) for T1
(68.9% (157/228) T1a/63.6% (140/220) T1b), 49.1% (52/106) for T2,
51.0% (76/149) for T3, and 55.3% (110/199) for T4 staging.

Zhu et al. [22] developed a CAD system using the transfer
learning methodology based on a pretrained CNN architecture
(ResNet50). The AI system used a total of 790 endoscopic
gastric-cancer images as a development data set, including 632
images for the training data set and 158 for the validation data
set. After data augmentation, the number of images for these
data sets increased to 5,056 and 1,264 images, respectively. To
evaluate the classification accuracy of the system, another 203
images were used as a test data set. The results were compared
with those of 17 endoscopists of varying experience. The CNN-
CAD system achieved an AUC of 0.94. At a threshold value of
0.5, the model obtained a sensitivity of 76.47% and a specificity
of 95.56%. The overall accuracy was 89.16%, whereas the posi-
tive and negative predictive values were 89.66% and 88.97%. The
accuracy and specificity achieved by the system in estimating
the invasion depth of gastric cancer were significantly higher
than those obtained by the endoscopists. This system was able
to distinguish between EGC with superficial invasion from can-
cers with deeper infiltration of submucosa, thus reducing over-
estimation of the invasion depth and the number of surgical
resections, leading to an improved outcome and quality of life
for those patients. Although promising, it was a single-center
study, based on a small sample size.

Novel AI endoscopic devices and data-set platforms for
upper-digestive-cancer detection

Currently, AI software is incorporated in devices that are rou-
tinely used. The first commercial AI system included in endo-
scopic techniques, known as EndoBRAIN, was developed in
collaboration with expert Japanese endoscopists and was
launched in March 2019 (Olympus) [122, 123]. This system
allows the differentiation of neoplastic vs non-neoplastic pol-
yps during real-time colonoscopy [124]. Huiyan Luo and col-
leagues [125] analysed the application of an AI system in WLE
upper-GI endoscopy in a real-life setting. This study was the
first to incorporate a notably large number of 1,036,496 endos-
copy images from 84,424 individuals across six hospitals of dif-
ferent tiers in China to train and validate a GI AI model for the
diagnosis of upper-GI cancer, known as the Gastrointestinal
Artificial Intelligence Diagnostic System (GRAIDS). This system
was based on the retrospective collection of endoscopy images

and was subjected to both internal and external prospective val-
idation. The CAD obtained a diagnostic accuracy of 0.955 in the
internal validation data set, 0.927 in the prospective set, and be-
tween 0.915 and 0.977 in the five external validation sets. The
diagnostic sensitivity obtained by GRAIDS was similar to that of
the expert endoscopist (0.942 vs 0.945). The positive predictive
value of GRAIDS was lower vs expert endoscopists. Converting
still endoscopic frames to video analysis was overcome by
GRAIDS, which is capable of processing a minimum of 25
images/second with a latency of <40 ms. Based on the high ac-
curacy of GRAIDS in diagnosing upper-GI cancers, the study
group constructed a cloud-based multi-center AI platform to
supply real-time assistance during gastroscopy and a freely ac-
cessible website for telemedical assistance and second opinions
in difficult cases.

Table 1 summarizes the previously described studies regard-
ing AI algorithms in upper-endoscopy-quality monitoring and
gastric lesion assessment.

Discussion and perspectives

To overcome the reduction in the quality of gastroscopy due to
the high workload and different expertise levels of endoscop-
ists, real-time computer-assisted quality-improvement systems
in upper endoscopy based on the systematic screening protocol
for the stomach have emerged that reduce the rate of blind
spots during the procedure and improve diagnostic accuracy.
The newly developed systems are able to increase the visibility
of the mucosa, and might be used in endoscopic training pro-
grams and as method of assessing the skills of endoscopists.
The only drawback of such an approach might be the increase
in the procedure time.

A major application of computer-assisted systems is to help
to recognize the anatomical location of the lesion, representing
the first main step in supporting the diagnosis of endoscopic
lesions. The available systems demonstrated good performance
in the recognition of anatomical location so they may be imple-
mented in clinical practice in the near future.

Due to the difficulty of endoscopic follow-up of premalig-
nant gastric lesions combined with tattooing to mark the loca-
tion of the lesions, the development of gastric non-invasive
biopsy surveillance by means of computer simulation and opti-
cal instruments has emerged. This experimental computer nav-
igation system proved to need a shorter time to guide
retargeting of the pathologic area vs tattooing, but still requires
accuracy optimization of the method for clinical application.

AI algorithms have been studied for the classification of gas-
tric precancerous lesions, gastric-polyp detection, and measure-
ment showing promising results. Moreover, the addition of CAD
during upper endoscopy might offer quick risk stratification of
patients for the development of gastric cancer according to H.
pylori status. This denotes significant importance in countries
with a high incidence of gastric cancer and with endoscopic
mass screening for this neoplasm, which leads to an increased
burden for endoscopists. Also, several recent studies were able
to identify, although with less accuracy, the category of patients
with eradicated H. pylori infection, demonstrating a moderate
association of gastric-cancer development.

The AI systems proved also to be associated with adequate
performance for identification of premalignant conditions asso-
ciated with H. pylori infection, such as the presence and severity
of gastric atrophy, presence of intestinal metaplasia, and sever-
ity of inflammation. These encouraging performances result by
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achieving a higher diagnostic accuracy vs endoscopists and re-
ducing the endoscopists’ workload.

Numerous studies using AI detection and classification algo-
rithms in conjunction with different advanced IEE techniques
such as CE, FICE, ME-NBI, BLI, and HSI, most of them trained
and validated on stored endoscopic images, demonstrated com-
parable or better diagnostic performance scores for EGC than
those of the expert endoscopists and significantly higher than
those of non-experts. There is still a high number of false-
positive cases, most of them consisting of gastritis lesions asso-
ciated with marked alteration in mucosal coloration or architec-
ture, localized atrophy, or intestinal metaplasia that might
mimic neoplastic changes—an aspect that should be improved
in the future. Nevertheless, the promising results obtained
demonstrate that the AI systems are capable of distinguishing
between EGC and gastritis with a high sensitivity and negative
predictive value, so their use could be extremely helpful in
gastric-cancer screening. Moreover, CAD systems were able to
distinguish with high accuracy the neoplastic-invasion depth,
thus reducing the number of surgical resections, and improving
the quality of life and prognosis for those patients.

To implement these computer-assisted algorithms in the
real-time diagnosis of gastric cancer, pilot studies using video
endoscopic images were developed. Although fast detection ca-
pacity and a high diagnostic accuracy for gastric cancer have
been demonstrated, there still remain problems in differentiat-
ing between EGC and background gastritis.

We can state that, in current practice, AI detection is more
important than the AI classification task, because tissue biopsy
remains the gold standard whereas optical biopsy has still a
limited accuracy. We should assume that, if a discrete neoplas-
tic lesion had not been detected at all, then the optical biopsy
would not have been done. Therefore, the most significant ap-
plication of AI in the assessment of upper-GI lesions is the de-
tection of early cancer and, to some extent, the depth
prediction, although it is a challenging task.

There are several ongoing clinical trials assessing the value
of AI methods in enhancing real-time upper-endoscopy quality
control, EGC detection, and mucosal invasion, which will hope-
fully lead to a significant improvement in this emerging tech-
nology (Table 2). Moreover, AI software is currently
incorporated in endoscopic devices that are routinely used in
real-life settings to develop a CAD model for improving the di-
agnosis of upper-GI cancer.

Conclusion

Although having a long and difficult way ahead and several lim-
its to overcome, computer assistance for monitoring the quality
of upper endoscopy and the detection of premalignant and ma-
lignant gastric lesions has shown promising results.

As an emerging field, refinement of AI algorithms and ad-
vancement in endoscopic devices will continue to increase the
speed and accuracy of the detection of premalignant and malig-
nant gastric lesions, leading to improvements in the quality of
endoscopies whilst reducing the workload for physicians.
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