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Purpose: To develop a machine learning regression model of subjective refractive
prescription fromminimum ocular biometry and corneal topography features.

Methods: Anterior corneal surface parameters (Zernike coefficients and keratometry),
axial length, anterior chamber depth, and age were posed as features to predict subjec-
tive refractions. Measurements from 355 eyes were split into training (75%) and test
(25%) sets. Different machine learning regression algorithms were trained by 10-fold
cross-validation, optimized, and tested. A neighborhood component analysis provided
features’normalized weights in predictions.

Results: Gaussian process regression algorithms provided the best models with mean
absolute errors of around 1.00 diopters (D) in the spherical component and 0.15 D in the
astigmatic components.

Conclusions: The normalized weights showed that subjective refraction can be
predicted by only keratometry, age, and axial length. Increasing the topographic
descriptiondetail of the anterior corneal surface impliedby ahigh-order Zernikedecom-
position versus adjustment to a spherocylindrical surface is not reflected as improved
subjective refraction prediction, which is poor, mainly in the spherical component.
However, the highest achievable accuracy differs by only 0.75 D from that of other
works with amore exhaustive eye refractive elements description. Although the chosen
parameters may have not been the most efficient, applying machine learning and big
data to predict subjective refraction can be risky and impractical when evaluating a
particular subject at statistical extremes.

Translational Relevance: This work evaluates subjective refraction prediction by
machine learning from the anterior corneal surface and ocular biometry. It shows the
minimum biometric information required and the highest achievable accuracy.

RESUMEN:

Objetivo: El desarrollo de unmodelo de regresión de aprendizaje automático prescrip-
ción refractiva subjetiva a partir de las características mínimas de la biometría ocular y
la superficie corneal.

Métodos: Los parámetros de la superficie corneal anterior (coeficientes de Zernike y
queratometría), además de longitudes axiales y de cámara anterior, edades y las refrac-
ciones subjetivas no ciclopléjicas de 355 ojos se dividieron en un conjunto de entre-
namiento (75%) y otro de test (25%) y se entrenaron diferentes algoritmos de regresión
de aprendizaje automático mediante validación cruzada 10 veces, se optimizaron y se
probaron sobre el conjunto test.

Resultados: Los algoritmos de regresión del proceso gaussiano proporcionaron los
mejores modelos con un error absoluto medio fue de alrededor de 1.00 D en el compo-
nente esférico y de 0.25 D en los componentes astigmáticos.
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Conclusiones: Los pesos normalizados mostraron que la refracción subjetiva puede
predecirse utilizando únicamente la queratometría, la edad y la longitud axial como
características. El aumento del detalle de la descripción topográfica de la superficie
corneal anterior que supone una descomposición de Zernike de alto orden frente al
ajuste a una superficie esferocilíndrica realizado por queratometría no se refleja en una
mejora de la predicción de la refracción subjetiva, que es pobre, en cualquier caso,
principalmente en el componente esférico. Sin embargo, la máxima precisión alcan-
zada difiere en sólo 0,75 D de la de otros trabajos con una descripción más exhaustiva
de los elementos refractivos del ojo. De todos modos, el aprendizaje automático y los
datos masivos aplicados a la predicción de la refracción subjetiva pueden ser arriesga-
dos y poco prácticos cuando se evalúa a un sujeto concreto en los extremos estadísticos,
aunque los parámetros elegidos puedan no haber sido los más ineficaces.

Relevancia Traslativa: El trabajo evalúa la predicción de la refracción subjetiva
mediante aprendizaje automático a partir de la superficie corneal anterior y la biometría
ocular, mostrando la mínima información biométrica requerida y la máxima precisión
alcanzable.

Introduction

Understanding how the human visual system works
has become a recursive research task in recent years.
Since the beginning of the past century, several optical
models of the human eye have been developed to
predict visual quality or subjective refraction at differ-
ent complexity levels, and both comprise real measure-
ments (in vivo and in vitro) and theoretical approx-
imations.1,2 The two fundamental elements are the
cornea and crystalline lens. Corneal topography can
be assessed by different techniques like interferom-
etry, ultrasonography, profile photography, hologra-
phy, Placido disk principle, and Scheimpflug photog-
raphy. Corneal surfaces are usually described with the
keratometry3 and/or Zernike coefficients,4 cj, which
result from fitting a series of Zernike polynomials to
heights maps. The Zernike decomposition of a surface
W can be expressed as polar coordinates5:

W (ρ, θ ) =
p−1∑
j=0

c jZj (ρ, θ ) ; (1)

j = 0.5 (n (n + 2) + m) ;
n =

⌈
0.5

(
−3 +

√
9 + 8 j

)⌉
;

m = 2 j − n (n + 2) ; (2)

Zn,m (ρ, θ ) = Nn,mRn,m (ρ )Mm (θ ) (3)

Nn,m =
√
2 (n + 1)
1 + δm0

;

Rn,m (ρ ) =
0.5(n−|m|)∑

s=0

(−1)s (n − s)!
s! [0.5 (n + |m|) − s]! [0.5 (n − |m|) − s]!

ρn−2s; (4.a)

Mm (θ ) =
{
cos (mθ ) m ≥ 0
sin (mθ ) m < 0 ; (4.b)

where n is the radial order,m is the azimuthal frequency,
j is the single index for the Zernike polynomial, p
is the number of terms in the expansion, cj are
the Zernike coefficients associated with their Zernike
polynomial, δm0 is the Kronecker delta function, and
� · � denotes the ceiling (round-up) operator. Regard-
ing the crystalline lens, on the one hand, phakom-
etry,6 Scheimpflug imaging,7–10 magnetic resonance
imaging,11 and optical coherence tomography12,13 have
been used to assess the in vivo optical properties of lens
shape and lens thickness. On the other hand, in vitro
techniques14–18 have also been followed to evaluate lens
shape and power.

Subjective refraction is responsible for determining
the most adequate optical power needed to compen-
sate a patient’s refractive errors. It relies on the patient’s
ability to discern and communicate possible improve-
ments or distortions caused by corrective adjustments
made by the optometrist, and thus, its determina-
tion with automated machines is still not accurate.
This procedure takes time and, consequently, slows
down the diagnosis process. To reduce the time needed
for this process, machine learning has been recently
used to predict refractive prescription from physi-
cal eye data obtained by wavefront aberrometers,19,20
photorefraction images,21 retinal fundus images,22
other ophthalmologic devices,23 and intraocular lenses
characteristics.24 The aim of this work is to develop
a machine learning regression model that predicts
patients’ subjective refractive prescription from the
anterior corneal surface and ocular biometry. The first
step consists of choosing physiologic descriptors as
the model’s features. It is a key point because using
toomany features can degrade prediction performance,



Subjective Refraction From Cornea Using AI TVST | April 2022 | Vol. 11 | No. 4 | Article 8 | 3

even if all features are relevant.25 The strong corre-
lation between the spherical power components and
astigmatic components26 of the anterior and poste-
rior corneal surfaces, as well as the fact that the
latter contributes only about one-eighth of the eye’s
refractive power,27 leads to the hypothesis that the
anterior surface suffices to assess the whole corneal
refractive effect on an eye model. Apart from anterior
corneal topography, other physiologic parameters that
are expected to be involved in patients’ subjective
refraction were added to the model: axial length (AL)
and then constructing a similar approach to Emsley
schematic eye; the patient’s age, on which refrac-
tive indices and crystalline lens morphology depend;
and, finally, anterior chamber depth (ACD), which
can be related to lens location. Compared to previ-
ous works,20 this proposal offers the advantages of
using simpler measurement devices, requiring fewer
descriptive data and, therefore, faster performance.
However, disregarding the crystalline lens effect will
probably provide poor results. In fact, the distribu-
tion of some aberrations between the cornea and lens
appears to be auto-compensated.28 Next, the selec-
tion and tuning of machine learning models must be
performed with training and test population subsets.
The Results section shows an analysis of the main
indispensable characteristics and the evaluation of the
final predictive accuracy of the selected models.

Methods

The electronic medical records of 229 patients
were retrieved. This study followed the Declaration
of Helsinki principles, and the participants gave
their written informed consent. Any patients with
any ocular abnormalities, except ametropia and ever-
performed cataract surgery or artificial lens implants,
were excluded. The resulting selected measurements
consisted of the anterior corneal surface parameters,
AL, ACD, age, and noncycloplegic subjective refrac-
tions conducted by optometrists with 201 patients (355
eyes), 154 patients’bilateral eye records and 47 patients’
unilateral eye records. Subjective refraction (S, C, α)
was transformed through equation (5) to power vector
notation29 (M, J0, J45), which consists of components
that are independent of one another. Figure 1 shows
the histograms of the age and power vector compo-
nents of the population sample herein used.

M = S + C
2

; J0 = −C
2
cos (2α) ;

J45 = −C
2
sin (2α) (5)

Both ACD and AL were measured by an optical
biometer IOLMaster 500 (Carl Zeiss Meditec, Inc.,
Dublin, CA, USA). Corneal surface measurements
were taken with a Sirius Topographer (Sirius, CSO,
Firenze, Italy). The Sirius is a Scheimpflug combined
with a Placido disk imaging system that allows
measurements of 256 meridians of corneas in 30 radial
distances to be taken. It provides several corneal physi-
ologic descriptors susceptible to be selected as features
in machine learning (Zernike coefficients from both
surfaces with different diameters, keratometry, etc.).
The Zernike coefficients describing the anterior corneal
surface at a pupil diameter of 4.5 mm and anterior
corneal surface astigmatism (Ck,αk) were selected from
the measurements taken by the Sirius Topographer as
corneal physiologic descriptors. As the device does not
provide defocus coefficient c4, we used the keratometry
equivalent sphere (Mk) instead, which was computed
from the keratometry for the same pupil diameter as

Mk = 0.5 (nk − 1)
(

1
Rf

+ 1
Rs

)
(6)

where nk is the keratometric index and Rf and Rs
are, respectively, the flattest and the steepest anterior
corneal curvature radius. The conventional keratomet-
ric index (1.3375) was used in this work. However, its
value is not relevant for machine learning algorithms
because it is constant. Keratometry data (Ck,αk)
were also transformed into standard power vector
notation29 according to equation (5).

The database was split into a training subset and a
test subset with 75% and 25% of the patients, respec-
tively, to avoid overfitting. It comprised the ocular
measurements of both unilateral and bilateral patients.
Splitting was performed by preventing the eyes of
the same patient from appearing in both subsets. The
training subset consisted of 36 unilateral eyes, plus
both eyes of 115 bilateral patients. The test subset
included 11 unilateral eyes, plus both eyes of 39 bilat-
eral patients. Table 1 presents the descriptive statis-
tics that summarize the refractive data and ages of the
different sets.

Data set size determines the maximum number of
features that can be postulated as significant character-
istics in the machine learning algorithm. In this work,
the training data included 266 eyes. However, a 10-fold
cross-validation technique was applied to the training
data to assess how the results of a statistical analy-
sis would generalize to an independent data set. This
process consists of randomly partitioning the training
sample is into 10 equally sized subsamples. Of these
10 sets, a single subsample is retained as the valida-
tion data to test the model. The remaining nine sets are
used as data to train the model. Therefore, the effective
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Figure 1. Histograms of the (a) age and (b–d) power vector components (M, J0, J45) obtained from the subjective refraction performedwith
the sample population.

Table 1. Descriptive Statistics Summarizing the Subjective Refractive Data and Ages of the Different Sets

Full Set (355 Eyes) Training Subset (266 Eyes) Test Subset (89 Eyes)

Characteristic Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum

Age, y 38 13 16 85 38 14 16 85 37 12 18 73
M (D) −1.89 3.80 −11.00 6.25 −1.80 3.76 −11.00 6.25 −2.18 3.94 −11.00 5.00
J0 (D) 0.18 0.51 −1.06 2.22 0.18 0.50 −1.06 2.22 0.20 0.56 −0.94 1.72
J45 (D) −0.04 0.28 −1.29 1.41 −0.03 0.27 −1.29 1.41 −0.07 0.32 −1.23 0.67

size of the training data is 266 × 9 / 10 ≈ 239. A
rule of thumb establishes that the maximum number
of parameters for a good-performing model is limited
to one-tenth of the amount of training data. This left
the maximum number of features at 23.

Sirius provides Zernike coefficients up to the seventh
order except piston (c0) and defocus (c4), that is, 34
coefficients from the anterior corneal surface decom-
position that are above the maximum limit of 23
features. Bearing in mind that a patient’s age, Mk,
ACD, and AL are all features that characterize the
eye apart from cornea, a thus-detailed anterior corneal
surface description can be foregone to meet that limit.

Therefore, those coefficients, and excluding tilts (c1 and
c2) for their little relevance as they can be naturally
compensated by eye movements, were selected in
ascending order without exceeding that limit. The fifth
order includes 17 Zernike coefficients that, together
with age, Mk, ACD, and AL, make up a set of 21
selected features as a first approach, to character-
ize each eye and to train the models. As part of
the preprocessing data step, a filter-type feature selec-
tion algorithm30 that used a diagonal adaptation of
the neighborhood component analysis31 was applied
to determine the features’ normalized weights (NWs).
This reports about the importance of each feature in
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the regression models of the power vector components
and allows different feature selections to train and tune
the new models to be run. An extra parameter with a
random value (rv) was added to check the significance
of the 21 selected features in the model. The NW of
the extra random parameter is expected to be zero. If
not, any feature with an NW that equals or goes below
that can be discarded because its significance would be
equal or worse than that of a random variable.

Regression models were trained with the regres-
sion learner app32 of MATLAB (version R2021b;
MathWorks, Inc., Natick, MA, USA), which provides
linear regression models,33 regression trees,34 support
vector machines (SVMs),35 Gaussian process regres-
sion (GPR) models,36 ensembles of trees,37–39 and
neural networks.40 Algorithms were trained to
predict each refraction vector component separately
because of their mathematical independence. The
models that obtained the best root mean squared
errors (RMSEs) were later hyperparameter-tuned by
Bayesian optimization. Finally, the best models were
tested with the test subset data. Otherwise, a model
might only perform well with the training data but
may fail to predict anything useful in yet unseen data.

Results

The neighborhood component analysis feature
selection with regularization was applied to determine
feature importance to predict the power vector compo-
nents of the subjective refraction. Figure 2 is a bar
graph showing the computed NWs of all 21 features,

plus the random one to predict the three power vector
components.

The next step consisted of determining the machine
learning algorithm that worked the best. Different
regression models were trained using the regression
learner app32 with the 266 eyes from the training
subset characterized by the 21 features and by follow-
ing the above-described procedure. Table 2 shows the
RMSE and the coefficient of determination (R2) values
obtained for each power vector component with the
trained models, which gave better results. R2 compares
the trained model to the model with a constant
response, and it equalled the training response mean.
If the model is worse than this constant model, then
R2 is negative and the model is discarded.

According to the RMSE, the GPRmodels provided
the best results in the first approaches for the three
power vector components, although other models
approximately matched those values for some compo-
nents. Therefore, the GPR, Ensembles, and SVM
models were subsequently optimized by hyperparame-
ter tuning to obtain the best results in the GPRmodels.
The results appear in the last row of Table 2. In Figures
3a and 3b, the responses obtained with the optimized
GPR models for the power vector components of the
training set are represented versus the true data.

The performance of the optimizedmodels in the test
subset (89 eyes) was also evaluated. Figures 4a and 4b
show the predicted responses versus the true response
for the three power vector components. Table 3
includes the RMSE, mean absolute error (MAE), and
R2 obtained from the test subset for each power vector
through the optimized GPR model trained for 21
features.

Figure 2. Normalized weights of the features for predicting the three power vector components. cj stands for the jth Zernike coefficient in
line with (1).
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Table 2. RMSE and Coefficient of Determination (R2) Values Obtained for Each Power Vector for the Training
Subset With All the Trained Models

M J0 J45
Model RMSE (D) R2 RMSE (D) R2 RMSE (D) R2

Linear 1.19 0.90 0.26 0.73 0.19 0.54
Robust linear 1.20 0.90 0.26 0.73 0.19 0.54
Fine tree 1.94 0.74 0.29 0.66 0.21 0.24
Medium tree 1.94 0.71 0.26 0.71 0.23 0.30
Coarse tree 2.31 0.63 0.29 0.66 0.22 0.38
Linear SVM 1.27 0.89 0.26 0.72 0.19 0.50
Quadratic SVM 1.36 0.87 0.23 0.78 0.21 0.40
Cubic SVM 1.89 0.75 0.28 0.68 0.22 0.36
Medium Gaussian SVM 1.39 0.86 0.28 0.67 0.22 0.33
Coarse Gaussian SVM 2.33 0.62 0.35 0.49 0.23 0.37
Boosted trees 1.45 0.85 0.25 0.75 0.19 0.51
Bagged trees 2.01 0.69 0.28 0.68 0.21 0.43
Neural networka 1.19 0.90 0.24 0.77 0.18 0.54
Squared exponential GPR 1.19 0.90 0.23 0.79 0.19 0.53
Matern 5/2 GPR 1.17 0.91 0.23 0.79 0.19 0.53
Exponential GPR 1.15 0.90 0.23 0.78 0.19 0.52
Rational quadratic GPR 1.19 0.90 0.23 0.78 0.18 0.53
Optimized ensemble 1.53 0.84 0.23 0.78 0.19 0.53
Optimized SVM 1.26 0.89 0.26 0.73 0.18 0.57
Optimized GPR 1.01 0.93 0.22 0.81 0.16 0.61

Description of regression model types, their interpretability, and flexibility is in the app documentation.41
aOne hidden layer and 11 neurons.

Figure 3. Predicted responses obtained with the optimized GPRmodels versus the true data of the training set for the three power vector
components.

Discussion and Conclusions

Machine learning regression algorithms were been
trained to predict the subjective refraction prescrip-
tion from the anterior corneal shape parameters,

eye lengths, and the patients’ age. The Gaussian
process regression algorithms provided the best models
with different accuracies for each subjective refraction
power vector component. Algorithms were applied to
a small data set compared to other studies found in the
bibliography. However, data adhered to the rule of 10



Subjective Refraction From Cornea Using AI TVST | April 2022 | Vol. 11 | No. 4 | Article 8 | 7

Figure 4. Predicted responses obtained with the optimized GPR models versus the true data of the test set for the three power vector
components.

Table 3. RMSE, MAE, and Coefficient of Determination (R2) Obtained for Each Power Vector for the Test Subset
With the Optimized GPR Trained Model and the Proposed Features

M J0 J45
Features (n) RMSE (D) MAE (D) R2 RMSE (D) MAE (D) R2 RMSE (D) MAE (D) R2

All (21) 1.27 1.02 0.90 0.21 0.16 0.86 0.20 0.15 0.58

Table 4. RMSE, MAE, and Coefficient of Determination (R2) Obtained for Each Power Vector for the Test Subset
With the Optimized GPR Trained Model With Different Eye Features

M J0 J45
Features (n) RMSE (D) MAE (D) R2 RMSE (D) MAE (D) R2 RMSE (D) MAE (D) R2

NW >0 (11) 1.26 1.00 0.90 0.21 0.16 0.86 0.20 0.14 0.60
NW >20% (5) 1.34 1.07 0.88 0.22 0.18 0.84 0.20 0.14 0.59
K + age + AL 1.34 1.08 0.88 0.22 0.18 0.84 0.22 0.16 0.52

K, keratometry features (Mk,J0k,J45k).

in the worst case, namely, the amount of training data
needed for a good-performing model being 10 times
the number of parameters in the model. Therefore, the
performance of the obtained models was reliable.

A selection of the features with weight that appears
in Figure 2 would provide equal or better results
when performing the regression models for each power
vector component than those from the 21 features.
The effect of neglecting some of those features can be
assessed by establishing different weight thresholds to
make the selections. Two different thresholds were set.
The first comprised features with NWs above zero. The
second contained those with NWs above 20%, which
depreciated the ACD effect, with higher-order aberra-
tions c6 (vertical trefoil), c7 (vertical coma), c12 (primary
spherical), c13 (vertical secondary astigmatism), and c19
(oblique secondary trefoil). Hence, the M component

features were consecutively in NW importance terms
AL, the keratometry equivalent sphere, and age. Both
J0 and J45 were respectively modeled using the primary
astigmatism Zernike coefficient (c3 and c5). The
independency of the three components was evidenced
because they showed different NWs of features. Hence,
a different subset of features could be selected for
each one to perform the regression models. However,
common selections of features have been sought for
three components for simplicity’s sake and to obtain
only a set of features for each threshold. Table 4
shows the results, for the test subset, of the trained and
optimizedGPRmodels by considering features accord-
ing to these two different thresholds for the three power
vector components.

The fact that the regression performed with the
features of NW>0 slightly improved RMSE is the first
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point to be noted. As expected, using toomany features
degrades prediction performance. Indeed, the R2 of
component J45 improved. The results of the optimized
GPR model with all features and of that with those of
NW >20% (five features) were similar. Consequently, a
regression model with only these five parameters can
achieve maximum accuracy. Disregarding high-order
aberrations and ACD did not significantly make the
results worse.

Based on the above result, good results can be
expected by considering age, AL, and keratometry,
which describes the corneal defocus and astigma-
tism. Table 4 also present the obtained errors and
R2 from the test subset for the models trained with
keratometry, age, and AL. One again, the results were
not different from those obtained using themodels with
all the features.

The analysis of the computed normalized weights
of features allowed the number of required parame-
ters to be minimized. This work revealed the highest
accuracy that can be obtained using the available
information and confirmed some preestablished facts.
The models’ predictive ability for components J0 and
J45 was good (around 0.25 diopters [D] of RMSE),
but the coefficient of determination for J45 was poor.
For spherical component M, although R2 was good,
the error (MAE around 1.00 D) seemed to be too
high to employ it as a technique to predict subjective
refraction. Notwithstanding, the achieved accuracies
were not much worse than those reported in previous
works,20 although the presented proposal used simpler
measurement devices (a keratometer would work) and
required fewer descriptive data.

Our results are probably not as accurate as the
models contained no data about posterior corneal
surface and crystalline lens aberrations.Machine learn-
ing algorithms employed age, ACD, and AL to
approach the eye’s inner optical part effect. On the
one hand, it proved that the geometric parameters
of the human crystalline lens and refractive indices
were age dependent and, therefore, so was lens refrac-
tive power. The analysis of the NW of the features
showed that the NW of the age was above 20% when
modeling the M component. This fact confirmed the
marked dependence of the refractive spherical compo-
nent on this feature. The refractive power of themissing
elements in the eye model was slightly described by
the age feature. A patient’s age also appeared in the
NW features analysis for predicting J0 and J45. This
could indicate the age dependence of astigmatism.42,43
The ACD effect, which was hypothesized to be related
to the lens location in the eye, and the higher-order
Zernike coefficients effect were assessed from the results
obtained with the parameters of NW >0 in the M

Table 5. RMSE, MAE, and Coefficient of Determination
(R2) Obtained for the Astigmatic Power Vector for the
Test SubsetWith theOptimizedGPR TrainedModelWith
c3 and c5 Coefficients

J0 J45
Features RMSE (D) MAE (D) R2 RMSE (D) MAE (D) R2

c3 + c5 0.21 0.16 0.86 0.20 0.14 0.61

component model. The result obtained considering
these effects was not significantly better (only about 0.1
D of MAE) than those obtained in the model with the
features of NW >20%, which excluded these param-
eters in relation to the previous ones. The compar-
ison made of the astigmatic power vector compo-
nents showed that errors were no higher when those
coefficients were not considered. Hence, we conclude
that their influence was slight and, therefore, machine
learning algorithms can dispense these features without
making the predictions worse.

On the other hand, as AL determines the location
of the retina, it is fundamental to model the spheri-
cal component. Indeed, as this feature had the highest
NW for theM component prediction, not taking it into
account would provide poor results. It was also present
for the J0 component prediction but with anNWbelow
20% and, hence, its poor significance.

Astigmatic components are expected to be solely
determined by the anterior corneal surface shape.
However, as we have just cited, the NW analysis of
features to predict J45 and J0 showed other features
apart from c3 and c5 (oblique and vertical astig-
matism Zernike coefficients, respectively), albeit with
lower NWs. The models that optimized GPR and only
employed the astigmatic components were also trained
and tested. The results in Table 5 are practically no
different from those obtained using all the parameters
with NWs other than zero, which implies that anterior
corneal surface topography determines astigmatism.
These results, together with the fact that the errors
of models for astigmatic components were lower than
the error of the spherical ones, confirmed the strong
correlation between the astigmatic components26 of
the anterior and the posterior corneal surfaces.

The weight feature analysis also allowed us to
conclude that no precise corneal surface descrip-
tion is needed for subjective refractive prescriptions.
The errors of the astigmatic components for all the
evaluated models remained unchanged, regardless of
whether keratometry or a high-order anterior corneal
Zernike decomposition was considered or not. The
obtained MAE values were of the same order as
those obtained by Rampat et al.,20 who contemplated
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whole-eye aberrations. Therefore, the contribution of
the posterior corneal surface and the crystalline lens to
the eye’s astigmatism falls within those errors. For the
spherical component, the difference with that work20
was below 0.75 D. Therefore, by assuming the strong
correlation between the spherical power26 of corneal
surfaces, disregarding the lens would be partially, but
not completely, compensated by considering age. The
difference in patients’ demographics between both
works lay in them having a refractive spherical equiva-
lent between −6.75 D and 6.13 D, which, in this work,
is between−11Dand 6.25D. This could also be a cause
of the worse results herein obtained for the widest
range of ametropies.

Machine learning allowed us to confirm that the
low-order aberrations obtained from anterior corneal
surfaces, together with age and AL, suffice to approx-
imately predict subjective refraction. This is an advan-
tage in diagnosis speed terms over the subjective tradi-
tional technique. The roles of the proposed features in
modeling each power vector component were assessed.

The traditional subjective refraction is nowadays
still considered the universal gold standard in the
evaluation of refractive error. However, it is time-
consuming, taking about 5 minutes per eye44 by a
well-trained eye care professional, and its subjective
nature implies deviations in the spherical component
around ±0.25 D45,46 and in the astigmatic compo-
nent above 0.75 D47 in both intra- and interoptometrist
variability.

The aim of this work was to develop of a machine
learning regression model that predicts patients’
subjective refractive prescription from the anterior
corneal surface and ocular biometry. It is an objective
technique that can be used tomeasure the spherical and
cylindrical refractive errors of the human eye. Objec-
tive refraction is not only useful but often essential, for
example, when examining young children and patients
with mental or language difficulties. Cycloplegic refrac-
tion, for example, requires little or no cooperation from
the patient. This is an advantage over other techniques,
such as the one proposed in this study, which requires
biometry and corneal surface measurements. However,
the administration of cycloplegics may cause undesir-
able ocular and/or systemic side effects. Moreover,
although objective refraction can provide good visual
outcomes, neural processing must also be considered.

Our proposal, compared to the work of Rampat et
al.,20 offers the advantages of using simpler measure-
ment devices, requiring fewer descriptive data, and,
therefore, having faster performance. It fits in with the
unsupervised methods’ trend of minimizing misunder-
standings between the clinician and the patient and the
measurement variability and time. However, we must

consider that the proposed approaches statistically
predict subjective refraction within a tolerance range
for a population, and, individually, the errors that they
may make can be intolerable. So although the choice
of input parameters in this work might not be the most
predictive efficient, a generalmodel should clearly show
its extreme errors and not merely its average perfor-
mance. Otherwise, establishing a standard predictive
method based on machine learning algorithms and big
data can be risky and impractical when evaluating a
particular patient.
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