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Abstract

Although the neural bases of numerical processing and memory have been exten-

sively studied, much remains to be elucidated concerning the spectral and temporal

dynamics surrounding these important cognitive processes. To further this under-

standing, we employed a novel numerical working memory paradigm in 28 young,

healthy adults who underwent magnetoencephalography (MEG). The resulting data

were examined in the time-frequency domain prior to image reconstruction using a

beamformer. Whole-brain, spectrally-constrained coherence was also employed to

determine network connectivity. In response to the numerical task, participants

exhibited robust alpha/beta oscillations in the bilateral parietal cortices. Whole-brain

statistical comparisons examining the effect of numerical manipulation during

memory-item maintenance revealed a difference centered in the right superior parie-

tal cortex, such that oscillatory responses during numerical manipulation were signifi-

cantly stronger than when no manipulation was necessary. Additionally, there was

significantly reduced cortico-cortical coherence between the right and left superior

parietal regions during the manipulation compared to the maintenance trials, indicat-

ing that these regions were functioning more independently when the numerical

information had to be actively processed. In sum, these results support previous stud-

ies that have implicated the importance of parietal regions in numerical processing,

but also provide new knowledge on the spectral, temporal, and network dynamics

that serve this critical cognitive function during active working memory maintenance.
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1 | INTRODUCTION

Numerical processing is key to everyday cognitive function, and

includes the processing of information such as times, dates, and

financial transactions, to successfully navigate everyday life

(Knops, 2017). Although numerical processing contributes heavily to

mathematical computation, more basic ordering, memory, and organi-

zation of numbers is also a key foundation for higher-level cognitive
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processes, such as those listed above. A specific area of numerical

processing, numerical comparison, involves the ability to correctly

identify the value and therefore the magnitude of a number compared

to other numbers, and correctly use that knowledge to perform a task

at hand. This basic ability to compare numbers plays a key role in

arithmetic, and is the foundation of more complicated numerical oper-

ations within working memory (WM) that are needed in day to day

functioning. Although numerical processing and its neural correlates

have been studied extensively (Chochon, Cohen, van de Moortele, &

Dehaene, 1999; Dehaene, Piazza, Pinel, & Cohen, 2003; Dehaene,

Spelke, Pinel, Stanescu, & Tsivkin, 1999; Eger et al., 2009; Feigenson,

Dehaene, & Spelke, 2004; Knops, 2017; Knops & Willmes, 2014; Mar-

uyama, Pallier, Jobert, Sigman, & Dehaene, 2012; Piazza, Izard, Pinel,

Le Bihan, & Dehaene, 2004; Piazza, Pinel, Le Bihan, & Dehaene, 2007;

Pinel, Dehaene, Rivière, & LeBihan, 2001), and many theoretical

models of the underlying mechanisms have been developed (Dehaene

et al., 2003; Dehaene & Changeux, 1993; Knops, 2017; Skagenholt,

Träff, Västfjäll, & Skagerlund, 2018; Stoianov & Zorzi, 2012), a great

deal remains to be understood about the spectral and temporal neural

dynamics that serve number processing and numerical comparison,

particularly during the active maintenance of numerical stim-

uli in WM.

In terms of its neural bases, numerical computation has been

found to heavily involve bilateral parietal cortices (Dehaene

et al., 1999, 2003; Maruyama et al., 2012), which also play a key role

in visuospatial representation and mapping of saliency (Chambers,

Payne, Stokes, & Mattingley, 2004; Kelley, Serences, Giesbrecht, &

Yantis, 2008; Thiebaut de Schotten et al., 2011; Wiesman, Heinrichs-

Graham, Proskovec, McDermott, & Wilson, 2017; Wiesman &

Wilson, 2018). Interestingly, the laterality of these responses seems

to be important, with the right parietal cortex being active during both

number comparison and arithmetic manipulation, while left parietal

circuits seem to be much more active during arithmetic manipulation

(Chochon et al., 1999). Besides the parietal cortices' general involve-

ment in the symbolic representations of numbers (e.g., Arabic

numerals), the intraparietal cortex also appears to be involved in one's

understanding of numerosity or the basic sense of amounts without

symbolic representation (Eger et al., 2009; Piazza et al., 2004; Piazza

et al., 2007). In addition to their well-defined role in numerical manip-

ulation, the bilateral parietal cortices are also well-established as com-

ponents of WM networks (Majerus et al., 2006; Majerus et al., 2007;

Sneve, Magnussen, Alnæs, Endestad, & D'Esposito, 2013), and are

thought to be essential for the maintenance and active manipulation

of short-term memories. Thus, numerical WM might be expected to

tax these regions particularly strongly.

Although previous research has identified the neural underpin-

nings of numerical processing and consistently found relevant neural

activity in the parietal cortices (Chochon et al., 1999; Dehaene

et al., 1999; Dehaene et al., 2003; Eger et al., 2009; Feigenson

et al., 2004; Knops, 2017; Knops & Willmes, 2014; Maruyama

et al., 2012; Piazza et al., 2007; Pinel et al., 2001), these studies have

almost exclusively relied on fMRI, and thus have largely not examined

the spectral and temporal dynamics of numerical manipulation and/or

numerical WM. In fact, numerical processing studies using magneto-

encephalography (MEG), which combines relatively high spatial reso-

lution with extremely precise temporal resolution, are extremely rare.

In addition, the cognitive paradigms that have been used to study

numerical processing have primarily focused on simple arithmetical

operations, and have not addressed the manipulation of previously-

encoded numerical stimuli within WM during a state of equivalent

visual stimulation.

To specifically address the lack of research surrounding the spec-

tral and temporal neural dynamics serving numerical manipulation, we

have developed a novel numerical WM task, wherein encoded numer-

ical representations are either manipulated or maintained in the con-

text of a visually-balanced maintenance period. Herein, we report on

28 healthy adult controls who completed this paradigm during MEG

recording. Due to its high temporal and spatial precision, MEG

allowed us to study the spatial, spectral, and temporal dynamics of the

neural oscillations associated with numerical processing and manipula-

tion in the human brain. In line with previous research, we hypothe-

sized that numerical manipulation of items in WM would involve

more widespread and stronger neural responses in parietal areas that

have previously been identified as essential to numeric computation,

compared to a control condition where no manipulation of such items

was required. Specifically, due to literature suggesting the importance

of bilateral parietal activity in numerical computation, we expected

robust neural responses in the bilateral parietal cortices, with the most

robust manipulation-related activity in the right hemisphere. Further,

we expected that these neural responses would be within oscillatory

rhythms commonly associated with active processing in these regions

(i.e., alpha oscillations in occipito-parietal cortices). Finally, we also

hypothesized that coherence between bilateral parietal cortices would

be altered by numerical manipulation of items in WM, providing fur-

ther evidence for the functional role of these regions during such

numerical processing. Importantly, we did not have an a priori hypoth-

esis regarding the direction of this coherence effect. It could be

expected that the coherence between these regions would decrease,

signaling a reduced communication between them during numerical

manipulation and thus functional specialization of right versus left

parietal cortex in such processing. Alternatively, enhanced coherence

between these regions would also be interpretable as shared

processing of the manipulated numerical stimuli. To investigate these

hypotheses, we used a data-driven approach, as this allows for a more

unbiased approximation of the spectral, spatial, and temporal extents

of the neural responses of interest in our specific sample, and enables

discovery of other brain regions and oscillatory dynamics may contrib-

ute to numerical processing.

2 | METHODS

2.1 | Participants

We collected data from 28 healthy young adults for this study. All par-

ticipants were between the ages of 19 and 31 years (15 females;
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Mean age = 24.00 years; SD = 3.16 years; 26 right-handed). Exclu-

sionary criteria included any medical illness affecting CNS function,

any neurological disorder, history of head trauma, current substance

abuse, and any nonremovable metal implants that would interfere

with MEG data acquisition. The Institutional Review Board of the Uni-

versity of Nebraska Medical Center reviewed and approved this

investigation. Written informed consent was obtained from each

participant following a detailed description of the study. With the

exception of the counter-balancing of the task instructions (see Task

Paradigm, below), all participants completed the same experimental

protocol during the visit.

2.2 | Task paradigm

This study utilized a novel numerical manipulation WM paradigm,

designed to tap the comparison of numerical digits in the context of

equivalent visual input (Figure 1). Briefly, participants were shown a

centrally-presented fixation surrounded by an empty horizontal grid

for 1.0 s. A horizontal array of four integers between 1 and 9 then

appeared at fixed locations within this grid for 1.2 s. Following this,

the numbers disappeared and the screen was empty for 2.5 s. During

this time, the value (i.e., the relative darkness/lightness of a color) of

the grid changed to either a darker or lighter color than what was pre-

sent during the encoding period, and this change denoted whether

the subject was to mentally rearrange the numbers into numerically

ascending order, or maintain the order of digits as originally seen.

Importantly, the meaning of the light versus dark value change was

counter-balanced across participants, and the instructions given was

the only difference between these counter-balanced administrations.

After the maintenance period, a single target integer, which was

always a member of the previous set, appeared at a random position

within the grid for 1.6 s, and the participant was instructed to respond

whether this number was in the correct position based on the instruc-

tions to maintain/manipulate the sequence. Responses were recorded

by right-handed button presses, where the index finger indicated that

the location of the number matched the maintained/manipulated

sequence and the middle finger indicated that this location did not

match. A total of 200 trials were completed per participant, and these

trials were equally split and pseudorandomized between manipulate

and maintain trial conditions. Total MEG recording time was about

21 min.

2.3 | MEG acquisition and coregistration

All recordings were conducted in a one-layer magnetically-shielded

room with active shielding engaged. Neuromagnetic responses were

sampled continuously at 1 kHz with an acquisition bandwidth of

0.1–330 Hz using an Elekta/MEGIN MEG system with 306 magnetic

sensors (Elekta, Helsinki, Finland). Using MaxFilter (v2.2; Elekta), the

MEG data from each participant were individually corrected for head

motion and subjected to noise reduction using the signal space

separation method with a temporal extension (Taulu & Simola, 2006;

tSSS; Suma Taulu, Simola, & Kajola, 2005). Of note, the application of

tSSS reduces the effects of interfering signals originating from outside

of the persons head space, including signals related to the active

shielding component of our environmental noise compensation.

Prior to starting the MEG experiment, four coils were attached to

the subject's head and localized, together with the three fiducial

F IGURE 1 Numerical working memory manipulation task. Each
trial began with an empty 4 × 1 grid with a blue fixation cross in the
center presented for 1 s, followed by a 4 × 1 grid of single numerical
digits (1–9) presented for 1.2 s (encoding). The digits then disappeared
for 2.5 s (maintenance), and the underlying color of the grid became
darker or lighter. The color indicated whether the participant was to
maintain the original sequence, or rearrange the sequence into a
numerically ascending order. After the 2.5 s, a 4 × 1 grid with a single
probe digit was presented in any of the four boxes for 1.6 s (retrieval),
and participants were tasked with responding (by button press) if the
digit was in the correct box in the grid (right index finger) or not (right
middle finger). It is important to note that the meaning of the light or
dark color change was pseudorandomized between participants
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points and scalp surface, with a 3-D digitizer (Fastrak 3SF0002,

Polhemus Navigator Sciences, Colchester, VT). Once the subject was

positioned for MEG recording, an electric current with a unique fre-

quency label (e.g., 322 Hz) was fed to each of the coils. This induced a

measurable magnetic field and allowed for each coil to be localized in

reference to the sensors throughout the recording session. Since the

coil locations were also known in head coordinates, all MEG measure-

ments could be transformed into a common coordinate system. With

this coordinate system, each participant's MEG data were cor-

egistered with structural MRI data prior to source space analyses

using BESA MRI (Version 2.0). These data were aligned in parallel to

the anterior and posterior commissures and transformed into stan-

dardized space. Following source analysis (i.e., beamforming), each

participant's 4.0 × 4.0 × 4.0 mm MEG functional images were trans-

formed into standardized space using the transform that was previ-

ously applied to the structural MRI volume and spatially resampled.

2.4 | MEG time frequency transformation and
statistics

Cardiac artifacts were removed from the data using signal-space pro-

jection (SSP), which was accounted for during source reconstruction

(Uusitalo & Ilmoniemi, 1997). The continuous magnetic time series

was divided into epochs of 6.3 s duration, with the onset of the

encoding grid defined as time 0.0 s and the baseline being defined as

−0.9 to −0.3 s prior to the onset of this grid. Epochs containing arti-

facts (e.g., eye blinks, muscle artifacts, etc.) were rejected based on

individual amplitude and gradient thresholds, supplemented with

visual inspection. An average amplitude threshold of 1,210.71

(SD = 330.08) fT and an average gradient threshold of 83.62

(SD = 36.24) fT/s was used to reject artifacts. Further, only trials

where participants responded correctly were used for analysis. This

resulted in an average of 182.14 (SD = 11.57) trials per participant. Of

note, there was no significant difference between the number of trials

used between the manipulate and maintain conditions (t[28] =

−.15; p = .88).

Artifact-free epochs were transformed into the time-frequency

domain using complex demodulation (Hoechstetter et al., 2004;

Kovach & Gander, 2016; Papp & Ktonas, 1977), and the resulting

spectral power estimations per sensor were averaged over trials to

generate time-frequency plots of mean spectral density. These

sensor-level data were normalized using the respective bin's baseline

power, which was calculated as the mean power during the −0.9 to

−0.3 s time period. The specific time-frequency windows used for

imaging were determined by statistical analysis of the sensor-level

spectrograms across the entire array of gradiometers. To reduce the

risk of false positive results while maintaining reasonable sensitivity, a

two-stage procedure was followed to control for Type 1 error. In the

first stage, paired-samples t-tests against baseline were conducted on

each data point and the output spectrogram of t-values was

thresholded at p < .05 to define time-frequency bins containing

potentially significant oscillatory deviations relative to baseline across

all participants. In Stage 2, time-frequency bins that survived the

threshold were clustered with temporally and/or spectrally neighbor-

ing bins that were also above the (p < .05) threshold, and a cluster

value was derived by summing all of the t-values of all data points in

the cluster. Nonparametric permutation testing was then used to

derive a distribution of cluster-values, and the significance level of the

observed clusters (from Stage 1) were tested directly using this distri-

bution (Ernst, 2004; Maris & Oostenveld, 2007). For each comparison,

1,000 permutations were computed to build a distribution of cluster

values. Based on these analyses, the time-frequency windows during

the interval of interest (i.e., the maintenance period) that contained

significant oscillatory events across all participants (final threshold of

p < .05; two-tailed) were subjected to a beamforming analysis, and

these source images were then used to test our hypothesized effects.

Further details regarding our data analysis pipeline can be found in

(Alex I Wiesman & Wilson, 2020).

2.5 | MEG source imaging and statistics

Cortical networks were imaged using dynamic imaging of coherent

sources (DICS; Gross et al., 2001), which employs spatial filters in the

frequency domain to calculate source power and/or coherence for

the entire brain volume. The single images were derived from the

cross-spectral densities of all combinations of MEG gradiometers

averaged over the time-frequency range of interest, and the solution

of the forward problem for each location on a grid specified by input

voxel space. Following convention, we computed noise-normalized,

source power and/or coherence per voxel in each participant using

active (i.e., task) and passive (i.e., baseline) periods of equal duration

and bandwidth (Hillebrand, Singh, Holliday, Furlong, & Barnes, 2005;

Van Veen, van Drongelen, Yuchtman, & Suzuki, 1997). For neural

response power, such images are typically referred to as pseudo-t

maps, with units (pseudo-t) that reflect noise-normalized power differ-

ences (i.e., active vs. passive) per voxel. In contrast, coherence images

reflect noise-normalized changes in connectivity from baseline levels

between a prespecified seed voxel of interest and every other voxel

in the brain. MEG preprocessing and imaging used the Brain Electrical

Source Analysis (BESA V6.1) software.

Normalized differential source power was computed for the

statistically-determined time-frequency bands (see below) over the

entire brain volume per participant at 4.0 mm isotropic resolution.

The resulting 3D maps of brain activity were first group-averaged per

time bin and condition to provide a visualization of the spatio-

temporal evolution of the response, before being averaged across all

maintenance time bins (i.e., 1.2–3.7 s after onset of the encoding grid)

per participant and condition. To assess the neuroanatomical basis of

significant oscillatory neural response differences as a function of

manipulation condition in a data-driven manner, these averaged maps

were subjected to whole-brain paired samples t-tests (i.e., manipulate

vs maintain). To control for Type-I error, we conducted nonparametric

permutation testing using a cluster-based permutation method similar

to that performed on the sensor-level spectrograms, with 10,000

3712 KOSHY ET AL.



permutations per comparison (final threshold of p < .05; two-tailed).

To further elucidate the temporal dynamics of numerical processing,

we extracted peak voxel time series using the statistical comparison

power images, and plotted the resulting time series per condition for

visualization purposes. To compute the virtual sensors/voxel time

series, we applied the sensor weighting matrix derived from the for-

ward solution to the preprocessed signal vector, which yielded a time

series for the specific voxel coordinates of interest.

To examine network-level effects of numerical WM processing,

a similar statistical approach was used on the coherence maps. Briefly,

this consisted of averaging these whole-brain coherence maps per

participant and condition across the maintenance period, before per-

forming voxel-wise paired-samples t-tests across the whole brain vol-

ume, with follow-on correction using cluster-based permutation

testing (10,000 permutations; final threshold of p < .05; two-tailed).

To limit the confound of source power, any region exhibiting

F IGURE 2 MEG sensor-level
neural responses. Time-frequency
spectrograms of a peak parietal-
occipital sensor (sensor label:
MEG1943) that has been grand
averaged across both conditions (top),
manipulate trials only (middle), and
maintain trials only (bottom). Time is
shown on the x-axis in seconds, and

frequency is shown on the y-axis in
Hz. Changes in power are shown as
percent change from baseline, with
the scale color bar at the top. We
found a significant decrease in alpha/
beta response power across both
encoding and maintenance periods.
The white box demarcates the
maintenance period that was of
primary interest for this study, as this
is when participants were performing
differently (i.e., manipulating or
maintaining) based on the task
instructions

F IGURE 3 Right hemispheric neural responses in each condition. The beamformer maps for each condition have been averaged across all
participants separately for each .5 s time bin and are shown above. As can be seen, there were strong alpha/beta decreases throughout the
maintenance period in the manipulate condition, but these largely dissipated after 1 s in the maintain condition. In the initial time bin, this
response was localized to the parietal and occipital regions for both conditions, but then weakened in the maintain condition and spread more
anterior into the parietal and frontal regions in the manipulate condition. There was also a notable frontal shift in activity during the later
maintenance periods in the manipulate condition
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significant conditional differences in coherence was entered into a

posthoc analysis, where the source amplitudes of the seed and target

regions were co-varied out of this relationship to ensure that any sig-

nificant differences found were not the result of biases resulting from

systematic power differences.

3 | RESULTS

3.1 | Behavioral effects

Participants performed generally well on the WM task (mean

RT = 992.95 ms, SD = 213.24 ms; accuracy = 91.07%; SD = 5.79%).

There were no significant differences in reaction time (t[28] = −.77;

p = .45) or accuracy (t[28] = −1.89; p = .07) as a function of condition

(i.e., between manipulation and maintain trials).

3.2 | Sensor- and source-level responses to the
WM task

Cluster-based permutation testing (final threshold: p < .05; 10,000

permutations) of the sensor-level spectrograms across both conditions

revealed significant oscillatory responses in the alpha and beta bands

during the entirety of the maintenance phase (Figure 2; 8–18 Hz,

1.2–3.7 s). Beamformer source imaging revealed that this response

corresponded to robust decreases in 8–18 Hz power in bilateral parie-

tal, occipital, and supramarginal regions. Qualitatively, these decreases

were more robust and prolonged during manipulate trials compared to

maintain trials (Figure 2).

3.3 | Conditional differences on alpha/beta
oscillatory responses

Alpha/beta oscillatory responses during the maintenance period were

much stronger, widespread, and prolonged in the manipulate com-

pared to the maintain condition (Figure 3). This activity was strongest

in the bilateral parietal and occipital areas, and clearly progressed

anterior toward superior parietal and frontal areas in the manipulate

condition. In contrast, alpha/beta activity was much weaker in the

maintain condition and had largely dissipated after the first second of

maintenance processing.

To statistically examine the effects of numerical manipulation on

these neural oscillations, we used the participant level-whole brain maps

and averaged across all maintenance time bins per participant and con-

dition, and then performed voxel-wise paired-samples t-tests (Figure 4,

top). Multiple comparisons were controlled using cluster-based permu-

tation testing, with a final significance cutoff of p < .05 and 10,000 per-

mutations (see Section 2.5). We found that numerical manipulation was

associated with significantly stronger alpha/beta responses in the right

parietal region relative to the numerical maintain condition. To aid in

visualization of the time course of the observed neural responses in

each condition, virtual sensors were extracted from the peak voxel of

this right superior parietal cluster and are plotted in Figure 4 (bottom).

Finally, to examine whether network connectivity with this right

parietal peak differed as a function of numerical WM processing

F IGURE 4 Effects of numerical manipulation on alpha/beta
oscillations. (Top) Grand averages over the maintenance period time
bins (i.e., the five bins represented in Figure 3) per condition revealed
much stronger activity in the manipulate condition across widespread
regions. Rigorous paired-samples t-tests with permutation testing for
multiple comparisons revealed significantly stronger alpha/beta
oscillatory activity in the right superior parietal region. Virtual sensor
extraction from this region showed that the manipulate condition
sustained a much stronger alpha/beta decrease relative to the maintain
condition for about 2.0 s of the total 2.5 s maintenance period
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condition, we computed whole-brain alpha/beta coherence maps dur-

ing the maintenance period using the peak voxel from the significant

amplitude difference as the seed, and then compared the output using

voxel-wise paired-samples t-tests and cluster-based permutation tests

(final threshold: p < .05; 10,000 permutations). Interestingly, we found

a pattern of decreased coherence between the right and left superior

parietal regions when participants were required to perform numerical

manipulation, compared to when they just had to maintain the stimuli

(Figure 5). Importantly, to limit the impact of potential confounds of

power on coherence, we covaried out the power values of the seed

(right superior parietal) and peak difference (left superior parietal)

voxels and the significant difference in coherence remained.

4 | DISCUSSION

Despite a voluminous literature examining numerical processing, very

few studies have explored the underlying neural dynamics and

network-level processing of numerical manipulation during WM

maintenance. In addition, the few studies that have examined such

processing have relied on fMRI, which although exceedingly useful,

lacks the temporal precision needed to understand the dynamics.

Here, we applied the high temporal and spatial precision of MEG to

explore these neural dynamics during performance of a novel digit

reordering WM paradigm. Using advanced source imaging and whole-

brain statistical analyses, we found stronger alpha/beta oscillatory

activity during the maintenance period when manipulation of the

numbers was necessary, compared to when it was not. This difference

was strongest in the bilateral parietal and occipital areas, and qualita-

tively displayed an anterior progression toward more superior parietal

and frontal cortical areas later in the maintenance period. Moreover,

the bilateral parietal regions displayed decreased coherence during

the manipulation condition compared to the maintain condition, indi-

cating that these regions were likely performing different functions

toward the goal of numerical processing. These results, as well as their

implications for future research in this field, are discussed below.

We found a robust decrease in the alpha/beta range (8–18 Hz)

throughout the maintenance period during the numerical manipula-

tion condition in bilateral brain regions, extending anteriorly from

occipito-parietal to frontal cortices. Such alpha decreases in posterior

parieto-occipital regions are known to represent the active processing

of stimuli, and have been reported in a number of different tasks

requiring the maintenance of encoded verbal stimuli (Embury,

Wiesman, Proskovec, Heinrichs-Graham, et al., 2018; Embury,

Wiesman, Proskovec, Mills, et al., 2018; Heinrichs-Graham &

Wilson, 2015; Jensen & Mazaheri, 2010; McDermott, Badura-Brack,

Becker, Ryan, Bar-Haim, et al., 2016; McDermott, Badura-Brack,

Becker, Ryan, Khanna, et al., 2016; Proskovec, Heinrichs-Graham, &

Wilson, 2016, 2019; Proskovec, Wiesman, Heinrichs-Graham, &

Wilson, 2018; van Dijk, Schoffelen, Oostenveld, & Jensen, 2008;

Wiesman et al., 2016; Wilson et al., 2017). These patterns of alpha/

beta activity also spread noticeably into cerebellar and posterior tem-

poral regions in both conditions. The cerebellum is essential for a

range of cognitive functions, and has been reported numerous times

as being active during WM (Heinrichs-Graham & Wilson, 2015;

Proskovec et al., 2016) and semantic comprehension (Kujala

et al., 2007), while the posterior temporal cortices are essential for the

processing of visual stimuli, feature binding, and identification (i.e., the

“what” pathway; Ishai, Ungerleider, Martin, Schouten, & Haxby,

1999). Taken together, the recruitment of these distributed cortical

regions for the maintenance of items in WM is well supported by pre-

vious literature.

Further, our data showed that the manipulate condition was asso-

ciated with a qualitatively stronger and more widespread alpha/beta

decrease throughout the majority of the maintenance period. In con-

trast, the maintain condition was associated with a weaker alpha/beta

decrease initially, and this activity further decreased in strength rap-

idly as the maintenance period progressed. This is intuitive, as the

manipulate condition requires greater processing, as participants were

not only required to commit the digit sequence to WM, but also to

actively rearrange that sequence in ascending numerical order for

correct task completion. This greater processing requirement was

F IGURE 5 Coherence analysis of right superior parietal seed.
(Top) Grand average coherence maps in each condition revealed
decreased coherence between the right superior parietal seed and left
parieto-occipital cortices during the maintenance period relative to
the baseline. This decrease was especially strong in the manipulate
condition. (Bottom) Paired-samples t-tests showed significantly
weaker coherence in the manipulate condition, which survived
stringent multiple comparisons correction and covarying out the
power of each response peak
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reflected by a larger decrease in parietal and other regions required to

complete the task. It is important to note that despite being a

decrease in amplitude from basal levels of neural activity, the patterns

observed throughout the maintenance phase in the alpha/beta fre-

quency band actually represent the activation of these areas

(Jensen & Mazaheri, 2010; Klimesch, 2012; Klimesch, Sauseng, &

Hanslmayr, 2007), leading to a dis-inhibition of these cortical regions

during stimulus manipulation. Subsequent statistical testing of these

data confirmed that the significant differences in alpha/beta activity

were strongest over right superior parietal cortices, which is in agree-

ment with previous studies of numerical manipulation (Chochon

et al., 1999; Dehaene et al., 1999, 2003; Eger et al., 2009; Feigenson

et al., 2004; Knops, 2017; Knops & Willmes, 2014; Maruyama

et al., 2012; Piazza et al., 2007; Pinel et al., 2001), however until now

the spectral and temporal parameters of this effect have remained

unknown. Identifying these parameters is essential, as differing oscilla-

tory frequencies have been found to index distinct cognitive functions

in the human brain (Başar, Basar-Eroglu, Karakas, & Schurmann,

2001), even when overlapping temporally in the same regions. Fur-

ther, a number of neurological and psychiatric patient populations

have been found to exhibit aberrant neural responses at specific fre-

quencies of oscillatory activity (Badura-Brack et al., 2017; Başar &

Güntekin, 2013; Groff et al., 2020; Heinrichs-Graham et al., 2014;

Kurz, Wiesman, Coolidge, & Wilson, 2017; Lew et al., 2018; Spooner

et al., 2018; Wiesman et al., 2016; Wiesman et al., 2018; Wilson,

Heinrichs-Graham, Proskovec, & McDermott, 2016; Wilson

et al., 2013; Wilson, Lew, Spooner, Rezich, & Wiesman, 2019; Wilson,

Rojas, Reite, Teale, & Rogers, 2007; Wilson et al., 2011), signaling the

importance of a greater understanding of the spectral organization of

human brain activity for potential neuromodulatory interventions.

Next, to identify the network-level relationships between this

right parietal region and the rest of the brain, we investigated differ-

ences in whole-brain connectivity using a frequency-resolved coher-

ence beamformer. We found a relative decrease in coherence

between the right and left superior parietal regions during the manip-

ulate compared to the maintain condition, signifying reduced network

connectivity when numerical manipulation in WM was necessary.

Importantly, due to the potential confound of amplitude on coherence

measurements, we also covaried out the effects of the seed and target

region amplitude on this conditional difference, and our results

remained significant. These results indicate that the right superior

parietal cortex, which has been traditionally associated with numerical

processing, actively disconnects from the left superior parietal to per-

form numerical manipulations. Given previous literature suggesting

differing roles of the bilateral parietal regions in numerical processing

(Chochon et al., 1999), this is additional evidence that these regions

are performing discrete computations from each other during this kind

of task. In other words, this decrease in coherence suggests that infor-

mation sharing between the bilateral parietal cortices is reduced dur-

ing numerical manipulation, and that the two regions appear to be

functioning more independently during manipulation trials. However,

future studies using methods with higher spatial precision will need to

investigate whether this directly relates to enhanced processing in dis-

crete local networks. Regardless, our new data are critical, as although

left parietal recruitment in numerical processing has been widely

established (Chochon et al., 1999; Dehaene et al., 1999, 2003;

Dehaene & Changeux, 1993; Piazza et al., 2004, 2007; Pinel et al.,

2001), this is the first report of significant disconnection between

these regions during numerical manipulations.

Despite the robust effects observed on neural activity, behav-

iorally, there were no significant differences between manipulate

and maintain conditions in terms of reaction time or accuracy. How-

ever, this null finding is not entirely surprising, as participants were

given ample time to perform the required numerical reordering dur-

ing the maintenance period. Further, it is likely that the increased

recruitment of bilateral parietal networks to complete the numerical

manipulation was sufficient to compensate for any differences in

difficulty between the conditions, as all of our participants were

healthy young adults with good cognitive abilities. In fact, the rela-

tively long amount of time provided to participants for the manipu-

lation was by design, and it was fortuitous that no behavioral

differences emerged, as this allowed us to examine the underlying

neurophysiology without any worry of confounding performance

differences. Note that although condition effects on accuracy were

trending, this was not a biasing factor here, as we only examined

neural data from correct trials.

Before closing, it is important to note the limitations of this study.

For one, our numerical WM manipulation task was relatively simple,

and there is certainly motivation for future studies to incorporate

more complex manipulation paradigms (e.g., longer sequences, more

than two outcomes, etc.) that may have greater sensitivity to behav-

ioral differences. Although concerns over performance differences

would have to be considered in this circumstance, a more difficult task

might also allow researchers to more effectively parse out which of

the responses found here are contributing directly to certain aspects

of numerical processing. Additionally, this task only considered the

reordering of numerical stimuli, whereas the reordering of other stim-

ulus types (e.g., letter stimuli) needs further study. Finally, although

cluster-based permutation testing is likely the best method for con-

trolling Type-I error in MEG data, it provides only weak evidence

regarding the spatial/spectral/temporal extents of significant clusters.

Thus, it is possible, and even likely, that additional brain regions are

necessary for numerical WM processing in the healthy adult brain,

and that our methods were simply too conservative to detect these

other cortical areas. Despite these limitations, this study confirms the

importance of parietal regions during numerical WM processing, while

also adding essential new knowledge concerning the underlying tem-

poral and spatial dynamics.
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