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Abstract: Phage stability is important for the successful application of bacteriophages as alternative
antibacterial agents. Considering that temperature is a critical factor in phage stability, this study
aimed to explore the possibility of improving long-term phage stability through adaptive evolution
to elevated temperature. Evolution of three wild-type ancestral phages (Myoviridae phage Wc4 and
Podoviridae phages CX5 and P-PSG-11) was induced by subjecting the phages to heat treatment at
60 ◦C for five cycles. The adapted phages showed better stability than the wild-type ancestral phages
when subjected to heat treatment at 60 ◦C for 1 h and after 60 days of storage at 37 ◦C. However, the
adapted phages could not withstand thermal treatment at 70 ◦C for 1 h. The infectivity and the lytic
properties of the phages were not changed by the evolution process. Whole-genome sequencing
revealed that single substitutions in the tail tubular proteins were the only changes observed in the
genomes of the adapted phages. This study demonstrates that adaptive evolution could be used as a
general method for enhancing the thermal stability of phages without affecting their lytic activity.
Sequencing results showed that bacteriophages may exist as a population with minor heterogeneous
mutants, which might be important to understand the ecology of phages in different environments.

Keywords: bacteriophage; phage therapy; biocontrol; adaptation; natural selection; thermal stability;
genetic variation

1. Introduction

Bacteriophages (phages) are viruses that replicate within bacteria, often resulting in the lysis of
the bacterial cell. With an estimated total world-wide number of 1031, phages are considered the most
abundant forms of life on earth [1–3]. They are present in every environment where bacteria can be
found: animals, humans, plants, water, soil, and sewage [4–7]. Research on phage ecology has also
shown that desert soil (Sahara and Namib) contains abundant and diverse phage populations [8,9].
These desert soil phage populations vary considerably from those in aquatic systems, since they can
withstand intense UV radiation and high temperatures [10]. Due to the increase in antimicrobial
resistance, there also has been an upsurge in studies of phages as plausible antibacterial agents in
clinical medicine, agriculture, food processing, and surface decontamination [11–14]. The interest in
phages as antibacterial agents is attributed to their specificity, self-replication, minimum disruption of
normal flora, low inherent toxicity, biofilm clearance, and counteractive adaptation against resistant
bacteria [15].
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Phage stability is a critical aspect for ensuring the activity of phages during transportation and
storage after preparation [16]. Considering that phages are primarily made of a protein envelope
encapsulating nucleic acid, most of the strategies exploited in stabilizing phages are similar to
those applied to protein-based therapeutics [17]. The conventional strategies of stabilizing liquid
phage preparations involve adding excipients (e.g., sugars and polyols) into the phage preparations
and/or converting the liquid formulations into powder [16]. Powder formulations are widely
considered to be more stable than liquid formulations [18]. Liquid preparations can be converted into
powder formulations through lyophilization/freeze drying [17,19], spray drying [18,20], and spray
freeze-drying [21]. However, besides the extra cost, phage activity could be reduced during this process,
and different settings would be needed for converting liquid preparations of phages into powder.

Temperature is a critical factor in the survivability of phages as it influences the occurrence, activity,
and storage of phages [22]. It is therefore worthy to explore the effect of adaptive thermal evolution on
the stability of phages during storage. Adaptive evolution has previously been used to adapt phages to
different environmental conditions such as various temperatures [23–27] and ultraviolet (UV) light [28].
Despite the knowledge acquired from previous evolutionary adaptation studies of phages, there is a
paucity of information on whether evolving phages with respect to an elevated temperature has an
impact on the stability of phages during storage at a lower temperature.

The phytobacterial pathogens Ralstonia solanaceraum and Pectobacterium species are a major
hindrance to the global production of potatoes. R. solanacerum causes bacterial wilt in the plant while
in the field and brown rot in the tuber [29]. Pectobacterium carotovorum subsp. carotovorum (Pcc)
and Pectobacterium atrosepticum (Pba) cause blackleg in the growing plant and soft rot in the potato
tuber during storage and transportation [30]. Phages have been considered in the biocontrol of these
phytopathogens [31,32]. A major challenge in phage-mediated biocontrol of phytopathogens is phage
inactivation by UV light, desiccation, and excess heat. It is therefore essential to ensure that phages can
remain active during storage and following application in a plant environment.

Since most phage preparations are frequently utilized in an aqueous form [19], it is interesting to
explore the possibility of maintaining or enhancing phage stability during storage in ambient conditions
or elevated temperatures without the use of excipients and/or conversion of liquid formulations to
powder. In this study, we aimed to adapt phages to an elevated temperature, compare the stability of
the ancestral phages and the adapted phages during storage, and identify any genomic changes in the
adapted phages.

2. Materials and Methods

2.1. Bacterial Strains, Phages, and Culture Conditions

The bacterial hosts and phages used in this study are listed in Table 1.

Table 1. Information on the bacterial hosts and phages used.

Bacteria Phage Source Area and Year of Phage Isolation

Pectobacterium carotovorum subsp
carotovorum (Pcc) strain KPM17 Wc4 [32] Soil Wuhan, China (2016)

Pectobacterium atrosepticum (Pba)
strain WHG10001 CX5 Fresh Water Wuhan, China (2017)

Ralstonia solanacearum strain
GIM1.74. P-PSG-11 [31] Fresh Water Migori, Kenya (2014)

The bacterial strains Pcc KPM17 and Pba WHG10001 were routinely cultured on Luria–Bertani
agar plates (1.5% wt/vol, agar) and broth at 28 ◦C while R. solanaceraum GIM1.74 was cultured on CTG
agar plates (1% casamino acid hydrosylate, 1% tryptone, and 1.5% wt/vol, agar) and broth at 28 ◦C.
Tris-HCl buffer pH 7.5 (50 mM Tris-base, 150 mM NaCl, 10 mM MgCl2·6H2O, and 2 mM CaCl2) was
used for routine phage experiments.
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2.2. Phage Adaptive Evolution

To determine the thermal stability of the phages, 500 µL of the lysates at concentrations of ca.
109 PFU/mL was subjected to heat treatment at 50 ◦C, 60 ◦C, and 70 ◦C in a water bath for 1 h.
The temperature that resulted in a substantial decline of phage titer without complete loss of activity
for all the three phages was considered for downstream experimental evolution processes.

The phages were evolved as previously described [26] with a few modifications. Briefly, 500 µL of
phage lysate in 1.5 mL Eppendorf tubes was subjected to heat treatment at 60 ◦C in a water bath for
1 h. The surviving phages were then allowed to cool to room temperature and amplified by mixing
an equal volume (500 µL) of the phage lysate and its respective host solution and then incubating at
28 ◦C, 160 rpm for 15 min to allow phage–host adsorption. The lysate was then added to 4 mL of soft
agar, poured as an overlay onto agar plates, and incubated overnight at 28 ◦C. The surviving phages
(now as plaques) were obtained by scraping off the overlay on agar plates into a 15 mL centrifuge
tube containing 2 mL Tris-HCl buffer, which was vortexed and centrifuged at 5500 rpm for 15 min at
4 ◦C. Five hundred microliters of the phage lysate obtained in the supernatant was then transferred
to 1.5 mL Eppendorf tubes, subjected to heat treatment again at 60 ◦C for 1 h, and then amplified as
explained above. This process was repeated for five cycles to obtain heat-adapted phages.

2.3. Stability of the Ancestral and Heat-Adapted Phages

The ancestral phages and the adapted phages were subjected to heat treatment in a water bath
at 60 ◦C for 1 h to evaluate the short-term stability of the phages. The stability of the phages was
also evaluated after 14, 30, and 60 days during storage at 37 ◦C. Reduction in phage titer was used to
compare the difference in stability between the ancestral phages and the adapted phages. Phage titers
were determined by diluting the phages in 10-fold serial dilutions in Tris-HCl buffer, and 10 µL of the
dilutions was spotted on the double agar overlay containing their respective host bacteria, allowed to
adsorb, and incubated overnight at 28 ◦C.

2.4. Determination of the Host Range and Lytic Curve Pattern of the Phages

To evaluate whether there was a trade-off between stability and lytic efficacy in the adapted
phages, the host range and the lytic curve patterns of the ancestral phages and the adapted phages
were compared. Host range analysis was performed as previously described [33]. Briefly, an overnight
bacterial culture (500 µL) was mixed with 4 mL of soft agar and poured on agar plates. Ten microliters
of serially diluted phage solution was then spotted on the respective double agar overlay, allowed
to adsorb, and incubated overnight at 28 ◦C. The presence of clear zones and plaques on the spotted
section of the lawn was used as an indication of the ability to lyse the bacteria. The lytic curve
pattern was determined by measuring the change in bacterial optical density (OD600) during a 12 h
incubation. The liquid medium (100 µL) was transferred into a 96-well culture plate first. The overnight
host–bacterial (50 µL) culture (108 CFU/mL) was then added and mixed, followed by adding the
respective phage lysate (50 µL). For control experiments, the liquid medium was mixed with the
bacteria or phage and double-distilled water. The changes in OD600 of the final mixtures were then
monitored continuously using a microplate reader (SynergyH1, BioTek, Winooski, VT, USA) for 12 h at
28 ◦C. The experiment was repeated three times.

2.5. Genome Extraction, Sequencing, and Analysis

A single plaque of the ancestral and adapted phages was picked and propagated by double agar
overlays to obtain 40 mL of phage lysate for DNA extraction. Solid sodium chloride and PEG 8000
were added to the lysate to concentrations of 1 M and 10% (w/v) respectively. This was dissolved
and incubated at 4 ◦C overnight. The phage lysate was centrifuged at 10,000 rpm for 20 min at 4 ◦C.
The pellet obtained was re-suspended in 500 µL of Tris-HCl buffer and transferred to a clean 2 mL
Eppendorf tube. Exogenous nucleic acids were removed from the phage lysates by treatment with
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2.5 µl of DNase I (3 U/µL, RNase free, Thermo Fisher Scientific) and 1.5 µL of RNase (20 mg/mL,
Thermo Fisher Scientific). The lysates were then treated with 0.2 M EDTA, proteinase K, and 10%
SDS. Extraction of phage genomes was done through the phenol–chloroform protocol as described
previously [34]. The quality and quantity of the DNA were determined using a Nanodrop reader
(ND-2000, Thermo Fisher, Waltham, MA, USA).

Genome sequencing was done by Sangon Biotech (Shanghai, China) using an Illumina
HiSeq sequencer. The sequencing was paired-end of 150 bp ×2. The reads were trimmed using
Trimmomatic-0.36 [35], and quality assessment was done using FastQC (v 0.11.8) to remove adaptors and
reads with low-quality bases. De novo assembly was done using SPAdes 3.11.1 [36] or MEGAHIT [37]
with default settings. The whole genome sequences of phages were aligned with the NT database to
identify potential homologues using Blastn [38]. Complete genomes sequences of 40 Ralstonia phages
and 63 Pectobacterium phages were downloaded from the GenBank database to perform multiple
sequence alignment with the genome sequences of phages in this study. The alignment was performed
using MAFFT software with default settings [39]. The phylogenetic trees were constructed by FastTree
software (Version: 2.1.4) [40] and visualized using the ITOL online website (https://itol.embl.de/).
Annotation of complete genomes was performed using Prokka v 1.12 [41], and the coding sequences
(CDS) were predicted using Prodigal [42]. The putative function of the mutated genes was predicted
through alignment with the NR database using Blastp [38]. The genome sequences were deposited
in GenBank (NCBI) under the accession numbers MN270887 (CX5), MN270888 (CX5-1), MN270889
(P-PSG-11), MN270890 (P-PSG-11-1), MN270891 (Wc4), and MN270892 (Wc4-1).

Comparative genome analysis between the ancestral and the adapted phages was performed
by two programs (NUCmer and show-snps) of Mummer 3.23 software package [43] to identify any
changes in the genomic sequences of the adapted phages. NUCmer (NUCleotide MUMmer) is suitable
for the alignment of highly similar nucleotide sequences, and show-snps is a program for reporting
single-nucleotide polymorphisms (SNPs) contained in a delta file output by NUCmer. The SNPs
between ancestral and adapted phages were identified by the two steps mentioned above. After this,
alignment between 150 bp Illumina raw reads archived by high-throughput sequencing with reference
genome sequences was done using Bwa software (Version: 0.7.17-r1188) [44]. In the alignment process,
whole-genome sequences of the ancestral phage and adapted phages were used as references, and the
number of nucleotides mapped to the corresponding position was calculated by Samtools software [45].
The sequences of the mutated genes were aligned with those of the ancestral phages using MEGA
7.0.26 [46]. The mutated genes were confirmed by PCR and sequenced using the ABI 3730 DNA
analyzer (Applied Biosystems™). Virfam [47] was used to predict the morphology of the phages using
the genomic sequences and confirmed by transmission electron microscopy.

2.6. Electron Microscopy

The ancestral phages (Wc4, CX5 and P-PSG-11) were amplified and concentrated using a CsCl
density gradient (2 mL of each of 1.45 g/mL, 1.50 g/mL, and 1.70 g/mL solutions of CsCl in Tris-HCl
buffer) and ultracentrifugation at 35,000 rpm at 4 ◦C for 2 h. The phage band (blue) collected was
dialyzed using a cellulose membrane in Tris-HCl buffer for 12 h. Then, 20 µL of phage suspensions
was placed on a carbon-coated copper grid and allowed to adsorb for 10 min. Excess liquid was drawn
off carefully using filter paper, and the grid was allowed to air-dry. Phages were negatively stained
with freshly prepared 2% phosphotungstic acid (PTA) for 3 min. The copper grids were air-dried
for 2 h and then observed under a transmission electron microscope (Instrument model: H-7000FA;
Manufacturer: Hitachi Japan) at an operating voltage of 75 kv.

3. Results

3.1. Thermal Stability of the Phages

An initial thermal stability test was done to evaluate the temperature at which to evolve the
phages. Thermal treatment of the ancestral phages (Wc4, CX5 and P-PSG-11) at 50 ◦C caused a slight

https://itol.embl.de/
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titer decline of less than 1 log in all three phages. At 60 ◦C, there was a titer decline in all three
phages, without complete loss of activity. However, at 70 ◦C, the three phages lost all the activity, as no
plaques were observed on the double-layer agar plates. Based on these results, 60 ◦C was chosen as the
temperature to evolve the phages.

3.2. Phage Evolution

After the first cycle of heating and amplification in the evolution process, a decline in the phage
population was observed, since few plaque-forming units (PFU) were observed on the bacterial lawn.
Pcc KPM17 phage Wc4 showed the most drastic decline of PFU on the bacterial lawn. However, as the
number of cycles increased, the number of PFU on the bacterial lawn following the same treatment
protocol also increased progressively. These phenomenon suggested that the phages were adapting to
the thermal pressure applied. By the fifth cycle, the entire bacterial lawn could be found cleared by the
phages, which was not previously the case, indicating a minimal or no reduction of the activity of the
phages by heating.

3.3. Stability of the Ancestral and Adapted Phages at 60 ◦C

The stability of the adapted phages was compared to that of the ancestral phages at 60 ◦C and 70 ◦C
for 1 h. The adapted phages showed better stability than the wild-type ancestral phages when subjected
to heat treatment at 60 ◦C (Figure 1). Pcc KPMI7 phage Wc4 had a titer loss of 5.47 ± 0.25 log, while the
adapted phage Wc4-1 showed a titer decline of 0.34 ± 0.13 log under the same conditions. Phage CX5
showed a titer reduction of 3.30 ± 0.36 log compared to the adapted phage CX5-1, which exhibited
a decline of 1.90 ± 0.20 log. R. solanaceraum phage P-PSG-11 had a titer reduction of 3.60 ± 0.53 log,
while the adapted phage P-PSG-11-1 showed a titer reduction of 1.29 ± 0.26 log. However, the adapted
phages could still not withstand heat treatment at 70 ◦C for 1 h, as no plaques were observed on the
bacterial lawn after heat treatment at this temperature.
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at 60 ◦C for 1 h. Error bars represent ± SD. (n = 3).

3.4. Stability of the Ancestral and Adapted Phages at 37 ◦C

The stability of the ancestral and adapted phages was evaluated during 60 days of storage at
37 ◦C. The three ancestral phages showed higher titer declines compared to the adapted phages. After
60 days of storage, a titer loss of 4.6 ± 0.38 log was observed for the ancestral phage Wc4, while the titer
reduction for the adapted phage Wc4-1 was 1.3 ± 0.099 log (Figure 2A). Phage CX5 showed a decline
in titer of 1.995 ± 0.01 log, while titer decline for the adapted phage CX5-1 was 1.14 ± 0.16 log during
the same period (Figure 2B). A titer reduction of 5.17 ± 0.05 log was observed for the ancestral phage
P-PSG-11, while the adapted phage P-PSG-11-1 showed a reduction of 2.89 ± 1.05 log (Figure 2C).
Although the phage titers were reduced with time for both the ancestral and the adapted phages
during storage, the adapted phages showed better stability than the ancestral phages, indicating that
the adaptive evolution process had an impact on the stability of the phages.
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incubation at 37 ◦C. (A) Wc4 and Wc4-1 (B) CX5 and CX5-1 (C) P-PSG-11 and P-PSG-11-1. The results
are the mean values of two independent experiments; error bars represent ± standard deviation of the
phage titer obtained.

3.5. Determination of Infectivity and Lytic Curve Patterns

To determine if there was a trade-off between stability and infectivity, the host range and lytic
curve patterns of the adapted and ancestral phages were compared. As shown in Supplementary
Figure S1, the lytic curve patterns of the ancestral phages and adapted phages were moderately similar
throughout the phage infection and lysis of the bacteria. It was also observed that the adapted phages
were able to lyse all the bacterial strains that were sensitive to the ancestral phages. Clear zones
and plaques were observed on the sections of bacterial lawns of 16 Pcc strains and 3 R. solanacearum
(Supplementary Tables S1 and S2) strains that were tested against their respective phages. The adapted
phages CX5-1 and the ancestral phage CX5 showed similar lytic activity on P. atrosecpticum WHG10001.

3.6. Genomic Sequence Analysis

Genome analysis revealed that the genome length of the adapted phages was consistent with
that of the corresponding ancestral phage. Phages Wc4 and Wc4-1 contain 92,039 bp of DNA with
144 predicted CDS, phages CX5 and CX5-1 contain 43,885 bp of DNA with 55 predicted CDS, and
phages P-PSG-11 and P-PSG-11-1 contain 40,313 bp of DNA with 48 predicted CDS. All phages were
double-stranded circular DNA bacteriophages. According to Blastn analysis and phylogenetic analysis
of the complete phage genomes (Figure 3), phages Wc4 and Wc4-1 share no significant sequence
similarity with other phages. Phages CX5 and CX5-1 showed 93.55% and 93.54% identity with
Pectobacterium phage PP16 (GenBank accession no. NC_031068.2), respectively, which is the most
similar phage (E-value, 0.0; query coverage, 83%). Phages P-PSG-11 and P-PSG-11-1 have 94.86%
identity with Ralstonia phage RsoP1EGY (GenBank accession no. MG711516.1), which is the most
similar phage (E-value, 0.0; query coverage, 88%) and was isolated in Egypt [48]. No studies have been
made on the adaptability of these phages to temperature, however. It is also shown that Wc4 and CX5
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belong to different clades of Pectobacterium phages in the phylogenetic tree (Figure 3A). The genomic
sequences were also used to predict the morphology of the phages. Wc4 was found to belong to the
Myoviridae family, while CX5 and P-PSG-11 belong to the Podoviridae family. This was confirmed by
transmission electron microscopy (Figure 4).Viruses 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 3. Phylogenetic analysis of the ancestral and adapted phages showing their relationship with
closely related phages from the GenBank database. (A) Relationship of Pectobacterium phages (Wc4,
Wc4-1, CX5, and CX5-1) with other 63 Pectobacterium phages. (B) Relationship of Ralstonia phages
(P-PSG-11 and P-PSG-11-1) with other 40 Ralstonia phages. The trees were constructed using the
maximum likelihood method based on the complete sequences of phages in 1000 bootstrap replications.

3.7. Genomic Variation in the Ancestral Phages and Adapted Phages

Comparative genomic results showed that some mutations (substitutions) occurred in the coding
region of the adapted phages genomes (Table 2), and no insertions or deletions were found. No
mutations occurred in non-coding regions. The mutated gene of the adapted phages Wc4-1 encodes a
putative protein with unknown function. Interestingly, the mutations of phage CX5-1 and P-PSG-11-1
occurred on tail tubular proteins gp12 and gp11, respectively.
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Table 2. Mutations observed in the adapted phages.

Adapted
Phage

Genome Size
(bp)

Genome
Position

Protein Encoded by
the Mutant Gene

Protein Length
(aa)

Amino Acid Change
and Position

Wc4-1 92,039 56238 Putative protein 261 Asp→ Tyr (96)

CX5-1 43,885 17228 Tail tubular protein
(gp12) 776 Tyr→ Cys (555)

P-PSG-11-1 40,313 7037 Tail tubular protein
(gp11) 195 Val→ Ala (81)

3.8. Stability of the Mutations during Growth under Non-Selective Conditions

NGS (Next-Generation Sequencing) results showed that the coverage was 100% for both the
ancestral and the adapted phages. Further analysis of all the reads in the genome sequence data (the
coverage of each position was about 2980) showed that although one genome could be obtained by
assembling the majority of reads, there were some very minor reads showing other bases at each
nucleotide position, as shown in Table 3. For example, at the genome site 56238, the nucleotide of
the ancestor phage Wc4 is C (99.78%) but has 0.21% of the reads showing A, which is the nucleotide
of the adapted phage Wc4-1. As shown in Table 3, all the nucleotide positions showed a similar
polymorphism. These results reveal that the phages were actually a genetic population, although they
were picked from a single plaque. Therefore, it can be speculated that the adapted phage may have
been present in the population of the ancestor phage, though at a very minor level. In the adapted
phages’ genomes, more than 99.6% of the mapped nucleotides were the nucleotides with corresponding
mutations, revealing that the mutations are stably maintained within the adapted phage populations
even under non-selective conditions.

Table 3. Percentages of the nucleotides mapped to the positions on the phage genomes.

Phage Nucleotide Position in
Genome

Percentage or Average Percentage of Reads Mapped
to the Nucleotides (% of All Reads)

A T C G

Wc4
C 56238 0.21 0 99.78 0.01

All positions 0.29 0.01 99.68 0.02

Wc4-1
A 56238 99.61 0.05 0.33 0.01

All positions 99.69 0.05 0.25 0.01

CX5
A 17228 98.61 0.15 0.93 0.31

All positions 99.71 0.10 0.18 0.01

CX5-1
G 17228 0.01 0.15 0.02 99.82

All positions 0.01 0.16 0.02 99.81

P-PSG-11
T 7037 0.13 99.74 0.01 0.12

All positions 0.09 99.77 0.01 0.13

P-PSG-11-1
C 7037 0.12 0.01 99.87 0

All positions 0.14 0.01 99.83 0.02

3.9. Morphology of the Phages

Morphological examination of the three ancestral phages by transmission electron microscopy
(Figure 4) showed that Wc4 belongs to the Myoviridae family, with an icosahedral capsid (57.5 ± 5.0 nm,
n = 5) and a long contractile tail (97.3 ± 3.6 nm, n = 5). The phages CX5 and P-PSG-11 belong to
the family Podoviridae, with a short non-contractile tail of 18 ± 2.0 nm and 12.0 ± 2.3 nm of length,
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respectively. The icosahedral capsid head diameters of phages CX5 and P-PSG-11 are 55.6 ± 3.0 nm
and 42.7 ± 2.6 nm, respectively (mean ± SD; n = 5).Viruses 2019, 11, x FOR PEER REVIEW 11 of 15 

 

  
Figure 4. Transmission electron microscopy images of phage Wc4, CX5, and P-PSG-11. Scale bar, 100 
nm. 

4. Discussion 

This study explores the feasibility of improving the long-term stability of phages through 
adaptive evolution under elevated thermal conditions. The three obtained adapted phages showed a 
titer reduction between 0.20 ± 0.13 and 0.61 ± 0.18 log10 after 14 days of storage at 37 °C, while the 
ancestral phages showed titer declines between 0.78 ± 0.17 and 1.41 ± 0.16 log during the same period. 
These results demonstrate that adaptive evolution in the lab can be used to enhance the thermal 
stability of phages. However, it is important to note that while the adaptive evolution process 
improved the stability of the three adapted phages during storage at 37 °C, a decline was still 
observed. Therefore, the adaptive evolution process may need to be improved to ensure even better 
phage stability. Although phages may not necessarily be stored at 37 °C, ambient storage conditions 
are not always constant, and temperatures are likely to fluctuate especially in hot climates where 
refrigeration is not available. Other factors such as phage type and solute available in a sample may 
also influence phage stability [49].  

The phages P-PSG-11 and Wc4 used in this study have previously been shown to be potential 
biocontrol agents of the potato phytobacteria R. solanacearum [31] and P. carotovorum subsp. 
carotovorum [32], respectively. Improved stability would be especially beneficial to ensure that the 
phages can survive the temperature in the plant environment following application. At the same 
time, improved stability would mean less titer reduction during storage and transportation, which is 
also needed for ensuring the efficacy of phage therapy. For example, in a recent clinical trial, the 
reduction in the phage titer during storage might be a possible reason for the failure of the PhagoBurn 
trial [50]. 

In this study, the thermal stabilities of all three phages was improved by adaptive evolution in 
the lab. Therefore, it is possible to use adaptive evolution as a general method of improving the 
stability of phages for real applications. Furthermore, changes were not observed in the infectivity 
and lytic activity of the adapted phages on the host strains tested (Supplementary Figures S1A, S2A, 
S3A).  

Whole-genome analysis revealed that substitutions in the genomic sequences of the tubular 
proteins gp11 (P-PSG-11-1) and gp12 (CX5-1) were the only type of mutation observed in the adapted 
phages (Table 2). It is not yet clear how the single mutations in the tubular proteins contributed to 
the increased thermal tolerance of the adapted phages. One possible explanation is that the mutated 
amino acid residues of the tubular proteins improve the phage conformation stability under high 
temperatures, so that the adapted phage can recognize the host and deliver its genome. However, 
this needs to be confirmed by testing phage absorption at 60 °C. The morphology of the ancestral 

Figure 4. Transmission electron microscopy images of phage Wc4, CX5, and P-PSG-11. Scale bar,
100 nm.

4. Discussion

This study explores the feasibility of improving the long-term stability of phages through adaptive
evolution under elevated thermal conditions. The three obtained adapted phages showed a titer
reduction between 0.20 ± 0.13 and 0.61 ± 0.18 log10 after 14 days of storage at 37 ◦C, while the ancestral
phages showed titer declines between 0.78 ± 0.17 and 1.41 ± 0.16 log during the same period. These
results demonstrate that adaptive evolution in the lab can be used to enhance the thermal stability
of phages. However, it is important to note that while the adaptive evolution process improved the
stability of the three adapted phages during storage at 37 ◦C, a decline was still observed. Therefore, the
adaptive evolution process may need to be improved to ensure even better phage stability. Although
phages may not necessarily be stored at 37 ◦C, ambient storage conditions are not always constant, and
temperatures are likely to fluctuate especially in hot climates where refrigeration is not available. Other
factors such as phage type and solute available in a sample may also influence phage stability [49].

The phages P-PSG-11 and Wc4 used in this study have previously been shown to be potential
biocontrol agents of the potato phytobacteria R. solanacearum [31] and P. carotovorum subsp. carotovorum [32],
respectively. Improved stability would be especially beneficial to ensure that the phages can survive
the temperature in the plant environment following application. At the same time, improved stability
would mean less titer reduction during storage and transportation, which is also needed for ensuring
the efficacy of phage therapy. For example, in a recent clinical trial, the reduction in the phage titer
during storage might be a possible reason for the failure of the PhagoBurn trial [50].

In this study, the thermal stabilities of all three phages was improved by adaptive evolution in the
lab. Therefore, it is possible to use adaptive evolution as a general method of improving the stability
of phages for real applications. Furthermore, changes were not observed in the infectivity and lytic
activity of the adapted phages on the host strains tested (Supplementary Figures S1A, S2A, S3A).

Whole-genome analysis revealed that substitutions in the genomic sequences of the tubular
proteins gp11 (P-PSG-11-1) and gp12 (CX5-1) were the only type of mutation observed in the adapted
phages (Table 2). It is not yet clear how the single mutations in the tubular proteins contributed to
the increased thermal tolerance of the adapted phages. One possible explanation is that the mutated
amino acid residues of the tubular proteins improve the phage conformation stability under high
temperatures, so that the adapted phage can recognize the host and deliver its genome. However,
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this needs to be confirmed by testing phage absorption at 60 ◦C. The morphology of the ancestral
phages P-PSG-11 and CX5 revealed that these phages are similar to the T7 phage, which also belongs
to the Podoviridae family and has a short, non-contractile tail. The tail is a complex formed by a central
tubular structure that makes up the channel for DNA ejection, which is surrounded by fibers that are
essential in the initial steps of host recognition. The tail tubular proteins gp11 and gp12 have been
proposed to form the central tubular structure of the tail [51,52]. Previous studies have shown that a
conformational change is needed in the tail for genome delivery [53]. Normally, the tail of Podoviridae
phages formed of tubular proteins and fibers is involved in host recognition and genome delivery [54].

Lastly, we found that some phages remained active after the first round of heat treatment at
60 ◦C, although most of the phages were deactivated. These results suggest that the ancestral phage
population would contain some heat-resistant mutants. The genome sequencing results also showed
that there is polymorphism at each mutant position of the ancestral and adapted phages’ genomes
(Table 3). Consecutive cycles of heat treatment and amplification gradually enriched the genetically
stable heat-resistant mutations. After five cycles, phages with higher heat resistance would become
dominant in the adapted phage population. However, it is also highly possible that the genotype
compositions after heat treatments 1, 2, 3, 4, and 5 could be quite different from those of the sequenced
phages amplified from single plaques, and the thermo-tolerant phenotypes observed after the fifth
heat treatment could be due to different mutants of the adapted phages. Further studies, such as
next-generation sequencing, characterizing the phage population after the fifth treatment instead of
phages from single plaques, are required to confirm or deny these conclusions. Therefore, it is not
surprising to find one mutation per genome after five generations of a heat-treated population, because
it likely is the most prevalent genotype in the adapted phage population.

5. Conclusions

To conclude, phage evolution at elevated thermal conditions was found able to improve the
stability of phages during storage, without affecting the infectivity and the lytic efficacy of the phages.
Single substitutions in the genomic sequences of tubular proteins were observed in the adapted phages.
To our knowledge, there is little information on stabilizing phage suspensions, especially phytobacterial
phages, via natural selection. Evolving phages to adapt them to high thermal conditions could enable
longer storage and easier transportation of the phages, with better activities for real applications.
These results might also help to understand the ability of phages to adapt to rising environmental
temperatures due to the process of global warming.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/4/423/s1:
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