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Purpose: Advances in artificial intelligence have enabled the development of predictive models for glau-
coma. However, most work is single-center and uncertainty exists regarding the generalizability of such models.
The purpose of this study was to build and evaluate machine learning (ML) approaches to predict glaucoma
progression requiring surgery using data from a large multicenter consortium of electronic health records (EHR).

Design: Cohort study.
Participants: Thirty-six thousand five hundred forty-eight patients with glaucoma, as identified by Interna-

tional Classification of Diseases (ICD) codes from 6 academic eye centers participating in the Sight OUtcomes
Research Collaborative (SOURCE).

Methods: We developed ML models to predict whether patients with glaucoma would progress to glaucoma
surgery in the coming year (identified by Current Procedural Terminology codes) using the following modeling
approaches: (1) penalized logistic regression (lasso, ridge, and elastic net); (2) tree-based models (random forest,
gradient boosted machines, and XGBoost), and (3) deep learning models. Model input features included de-
mographics, diagnosis codes, medications, and clinical information (intraocular pressure, visual acuity, refractive
status, and central corneal thickness) available from structured EHR data. One site was reserved as an “external
site” test set (N ¼ 1550); of the patients from the remaining sites, 10% each were randomly selected to be in
development and test sets, with the remaining 27 999 reserved for model training.

Main Outcome Measures: Evaluation metrics included area under the receiver operating characteristic
curve (AUROC) on the test set and the external site.

Results: Six thousand nineteen (16.5%) of 36 548 patients underwent glaucoma surgery. Overall, the AUROC
ranged from 0.735 to 0.771 on the random test set and from 0.706 to 0.754 on the external test site, with the
XGBoost and random forest model performing best, respectively. There was greatest performance decrease from
the random test set to the external test site for the penalized regression models.

Conclusions: Machine learning models developed using structured EHR data can reasonably predict
whether glaucoma patients will need surgery, with reasonable generalizability to an external site. Additional
research is needed to investigate the impact of protected class characteristics such as race or gender on model
performance and fairness.
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Glaucoma is one of the leading causes of blindness world-
wide.1 Although many patients remain stable on medical
therapy for long periods of time without progression,
some will progress to vision loss and require invasive
surgery.2 Although there are risk factors known to affect
likelihood of glaucoma progression, such as elevated
intraocular pressure (IOP), reduced central corneal
thickness, and others,3e6 nevertheless, it is often difficult
for eye care professionals to predict whose glaucoma will
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license (http://creativeco
mmons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
remain stable or not. If we have a tool that can accurately
predict disease stability, it may be possible to focus efforts
on the highest risk patients for more frequent follow-up,
testing, recruitment to clinical trials, and interventions,
while safely relieving some of the burden of follow-up,
testing, and patient anxiety for those who are less likely to
progress.

Advances in machine learning (ML) and artificial intelli-
gence (AI) have enabled several prediction models for
1https://doi.org/10.1016/j.xops.2023.100445
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glaucoma to be developed leveraging electronic health record
(EHR) data. Our work and others have developed models
predicting which patients with glaucoma would progress to
requiring glaucoma surgery using structured EHR inputs.7e10

Ourwork has further advanced tomakepredictions on free-text
clinical progress notes and their combination.7,8,11 However,
most previous work has been limited to single-center data
and uncertainty exists regarding the generalizability of such
models to patients receiving care in other settings.

Challenges to evaluating performance on external data-
sets exist due to the difficulties of data-sharing for protected
health information between health centers and harmonizing
data to a common standard. The Sight Outcomes Research
Collaborative (SOURCE) was recently established to
combine rich granular EHR data from academic ophthal-
mology departments across the United States who use a
common underlying EHR system (Epic Systems), permit-
ting researchers to develop and test AI algorithms on a large,
diverse population of patients across multiple health sys-
tems. The purpose of this study was to develop and evaluate
ML and deep learning algorithms to predict which patients
with glaucoma will progress to require glaucoma surgery
using data from 6 SOURCE consortium sites.

Methods

Data Source and Study Population

Data Source. Data were derived from the SOURCE Ophthal-
mology Data Repository (https://www.sourcecollaborative.org/).
The SOURCE captures EHR data of all patients receiving any eye
care at academic health systems participating in this consortium
from the time each site went live on the EHR until the present. This
study used data from 6 active SOURCE sites, each of whom
contributed 7 to 14 years of data. The SOURCE captures infor-
mation on patient demographics, diagnoses identified based on
International Classification of Diseases (ICD) billing codes, eye
examination findings from every clinic visit, along with data on
medications, laser and surgical interventions. The data in SOURCE
are completely deidentified. However, privacy-preserving software
(Datavant Inc) permits researchers to follow patients longitudinally
over time and across institutions, while still protecting patients’
identities. This study was approved by the University of Michigan
and Stanford institutional review boards and adhered to the tenets
of the Declaration of Helsinki.

We identified all patients in SOURCE with a glaucoma-related
billing code (ICD 365, H40, H42, Q15.0 and their descendants).
We excluded patients with only glaucoma suspect codes (H40.0
and ICD 365.0 and their descendants). From among this set of
patients, we identified those who underwent glaucoma surgery
(including traditional surgery and minimally invasive glaucoma
surgery, but excluding selective laser trabeculoplasty or laser pe-
ripheral iridotomy) based on Current Procedural Terminology12

codes or who had � 2 separate encounters with a glaucoma
diagnosis identified by ICD13 coding (Table S1).

A final cohort was developed to predict which patients with
glaucoma would progress to require glaucoma surgery over the
following 12 months, using the previous 4 to 12 months of data, in a
similar formulation as our previous work7 and others.14 The
prediction formulation was designed in this manner so that a future
algorithm could be run on any patient with glaucoma at any time
in their treatment trajectory, rather than only on new patients using
their baseline data. Thus, models trained in this manner would
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retain maximum flexibility for practical clinical applications.
Briefly, a prediction date (or index date) was defined for each patient,
which divided the patient’s medical timeline into a lookforward
period overwhich themodel would predict likelihood of the patient’s
progression to surgery, and a lookback period of a minimum of 4
months and up to 12 months (if available) from which models’ input
data were drawn. This prediction formulation allows the resulting
model to predict which patients are at highest risk of progression over
the next year and allows the flexibility to apply the model to perform
a prediction at any point in a patient’s follow-up using themost recent
clinical data. Patients without � 4 months of lookback data were
excluded. For surgical patients, the date of first glaucoma surgery in
either eye was identified and the prediction date was defined as either
12 months prior to surgery or after the initial 4 months of follow-up
(whichever was later). For nonsurgical patients, � 12 months of
follow-up after the prediction date was required to ascertain that no
surgery was performed over the entire lookforward period. Thus, the
prediction date was defined as 12months prior to their last follow-up
date. Patients without � 4 months of available input data were
excluded. A summary of cohort construction timelines with exam-
ples is given in Fig S1.

Feature Engineering

An overview of the feature engineering and cohort construction
process is illustrated in Fig S2. Input features from the EHRs
included demographics, clinical variables, diagnosis codes, and
glaucoma and general medication usage. The model is laterality-
agnostic, in that it predicts future glaucoma surgery in either eye,
using input features from both eyes. This is because many feature
categories are inherently at the patient level (such as demographics
and systemic medications), and others have missing or ambiguous
laterality (ICD codes), and sometimes the decision to proceed to
surgery in 1 eye does depend on the status of the contralateral eye.
Demographics included age (calculated at the prediction date),
gender, race, ethnicity, urbanicity of residence using rural-urban
commuting area codes,15 and distressed communities index score,
a measure of the affluence level of the patient’s community of
residence.16 Age and distressed communities index score were
continuous variables which were scaled by dividing by 100.
Missing values for distressed communities index score were
filled with column mean imputation. Gender, race, ethnicity, and
rural-urban commuting area code were categorical variables
which were dummy encoded for model input. Clinical input
variables included best recorded visual acuity, IOP, most recent
central corneal thickness, and refraction spherical equivalent, all
for both eyes from the input time window. Best recorded visual
acuity was expressed in logarithm of the minimum angle of
resolution units and summarized into best-recorded, worst-recor-
ded, and most recent for both eyes. Intraocular pressures were
summarized into max, min, and mean for each eye and standard-
ized to mean 0 and standard deviation of 1. Central corneal
thickness was scaled by dividing by 1000, and refraction spherical
equivalent was scaled by dividing by 10; both of these had missing
values filled by column mean imputation and missing value indi-
cator variables were created. Encounter ICD codes (both ocular and
nonocular) were aggregated to the first decimal level, then con-
verted to Boolean vectors such that patients with an encounter in
the input period with that ICD code have a “1,” 0 otherwise. ICD
codes with near-zero variance (< 0.5%) were removed, yielding a
total of 92 ICD-based features. Similarly, medications (both ocular
and nonocular) from the input period were aggregated by their
generic name and turned into Boolean vector inputs as with
diagnosis codes. Medication features with near-zero variance (<
2%) were removed, yielding a total of 52 medication features
remaining. The total number of structured input features was 179.

https://www.sourcecollaborative.org/
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The data were split for model training, model validation, and
evaluation. Data from 1 site was reserved as an “external site”
(N ¼ 1550). The remaining 5 sites of SOURCE data were split by
patient in an 80:10:10 ratio for training (N ¼ 27 999), validation
(N ¼ 3500), and test sets (N ¼ 3499).

Modeling

Machine Learning. Several classical ML models were fit on the
training data using the Python sklearn version 1.2.1 package (Python
Software Foundation, open-source software library). These models
included penalized logistic regression models (L1, L2, and elastic
net penalization), random forest, gradient boosted trees, and
XGBoost. Hyperparameters were tuned using threefold cross-
validation on the training set to optimize the area under the
receiver operating curve (AUROC). Grid search was used to tune
penalization for regression models, and random search was used for
tree-based models. A summary of hyperparameters is in Table S2.

Deep Learning. Two deep learning models were built and
evaluated using the Python tensorflow version 2.11.0 package. The
first deep learning model was a fully connected model using the
same structured features as the ML models, constructed with an
input size of 179 and passed through 2 dense layers, a dropout
layer between those 2, and an output layer with a sigmoid acti-
vation function (Input (179)- > Dense (512, batch normalization)-
> Dropout (0.8)- > Dense (64, batch normalization)- > Output (1,
sigmoid). The second deep learning model was an embedding-
based model, structured by grouping ICD-related features,
medication-related features, and the remaining features (i.e., de-
mographics and eye exam information) as separate inputs into the
model. International Classification of Diseases-related features and
medication-related features were each individually processed by an
embedding layer followed by 2 dense layers. The 2 output vectors
are then concatenated with the third input group and goes through a
dense layer and a final output layer with a sigmoid activation
function. Batch normalization and dropout layers were included
throughout the architecture to add regularization. The full archi-
tecture of the multi-input model is shown in Figure 3.

Evaluation

We used standard classification evaluation metrics including sensi-
tivity (recall), specificity, positive predictive value (precision), nega-
tive predictive value, F1-score (the harmonic mean of recall and
precision), AUROC, and the area under the precision-recall curve, all
evaluated on both the test set and the independent external site data.
The classification threshold for eachmodelwas tuned for the optimum
F1-score on the test set. Confidence intervals (CIs) were generated
using boostrapping with 1000 replicates. We also performed
explainability studies for the structured models using Shapley values,
also known as SHapley Additive exPlanations values.17,18 This
technique calculates the importance of the features based on the
magnitude of feature attributions, using a game theory approach to
explain the results of any ML model and make them interpretable.
Shapley values represent the marginal contribution to the model
predictions for each feature, calculated over all combinations of
subsets of features. We estimated the SHapley Additive
exPlanations values on the XGBoost model on the test set.

Results

Study Population

Population characteristics for the entire study cohort of
36 548 patients with glaucoma are summarized in Table 3.
Patients who progressed to surgery represented 16.9%
(N ¼ 6019) of the population. The rate of surgery ranged
from 14.1% to 22.5% across all institutions, with the
median rate of 16.1%. The rate of surgery for the
institution held out as the external site was 16.9%. The
overall mean age was 70.1 years (standard deviation
14.6). The majority of the population was White (63.5%,
N ¼ 23 202) and Black (23.0%, N ¼ 8417). There were
1526 Hispanic patients (4.2%). Additional population
demographic information by individual site is available in
Table S4.

Model Performance

Receiver operator characteristic curves and precision-recall
curves for the ML models are depicted in Figure 4A,
evaluated both on the test set and the external site data.
XGBoost demonstrated the highest AUROC which was
0.771 (95% CI, 0.770e0.772) on the test set and 0.750
(95% CI, 0.749e0.751) on the external site set. Tree-
based models (random forest, gradient boosted trees,
XGBoost) demonstrated much superior performance
compared with penalized regression models. For all models,
performance was slightly degraded on the external test site
data compared with the test set, although drops in perfor-
mance were typically < 3% on AUROC. The AUROCs for
all models on the test and external site set are shown with
95% CIs in Table S5.

Receiver operator characteristic curves and precision-
recall curves for the deep learning models are depicted in
Figure 4B, evaluated both on the test set and the external site
data. The embedding model outperformed the fully
connected model, with AUROC of 0.755 (95% CI,
0.755e0.756) on the test set and 0.741 (95% CI,
0.740e0.742) on the external site. Classification metrics
are summarized in Table 6, with individual classification
thresholds tuned to maximize F1 score on the validation
set. The F1 score is the harmonic mean of the precision
and recall, so that higher values (closer to 1) indicate
better performance. Under these circumstances, specificity
and negative predictive value was generally higher than
sensitivity and positive predictive value, respectively.
Overall accuracy ranged up to 0.792.

Explainability

We performed explainability analyses to determine which
input features contributed most to the model predictions,
calculating Shapley values for the XGBoost model (Fig 5),
the gradient boosted model (Fig S6A), and the elastic net
model (Fig S6B). Shapley values are plotted for the most
important features for patients in the test set; for each
patient, negative Shapley values indicate that the feature
influenced the model toward a prediction of no surgery,
and positive Shapley values indicate that the feature
influenced the model toward a prediction of surgery. Of
note, the purpose of explainability studies is for
reassurance that the model is relying on reasonable
features rather than spurious associations. The purpose
therefore is not to discover new associations and risk
factors for glaucoma progression, for which traditional
3



Figure 3. Deep learning model architecture. Depiction of the architecture of deep learning model predicting which patients would progress to surgery within
12 months. This model passes the medication and International Classification of Diseases (ICD) code features through an embedding layer.
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hypothesis-driven inferential studies are more appropriate.
Model explainability studies showed that the most important
features included various demographic and clinical factors
including age, maximum IOP, glaucoma diagnosis type,
phakic status, and use of certain glaucoma medications.
These features are similar to those that would be assessed by
a glaucoma specialist when predicting whether a patient
may progress to need surgery. Furthermore, as is clinically
reasonable, for patients where the IOP values are high, the
Shapley values indicate that the IOP feature influenced the
model toward a prediction of surgery, and vice versa.
Discussion

This multicenter study developed and evaluated AI algo-
rithms to predict whether patients with glaucoma would
require surgery in the coming year, based on data extracted
from the EHR. The study compared several ML and deep
learning approaches and investigated which features are
most important to the predictive models. The clinical fea-
tures identified by these models align with characteristics
that past studies have demonstrated to represent risk factors
for glaucoma progression and features that most glaucoma
specialists would find clinically relevant. By using data from
4

multiple centers, we were able to explore the performance of
our models on a single external test site and found that the
generalizability was better preserved with tree-based and
deep learning models as compared with regression models.

This study expands on past work developing models
predicting which patients with glaucoma would soon require
surgery that used EHR data from a single center. Baxter
et al9 explored a variety of ML models and a fully connected
deep learning model for structured EHR data, achieving the
best performance at predicting need for surgery with a
logistic regression model (AUROC 0.67). Our previous
work developing models using EHR structured and free-
text data achieved AUROC ranging from approximately
0.70 up to 0.90.7,8,11 Current results using multicenter data
demonstrate performance within this range, with an
AUROC up to 0.76 on the test data. Although prediction
models using EHR data generally do not achieve the 0.99
AUROCs commonly seen in imaging classification
models, the baseline human performance on prediction
tasks is also lower, as shown in a prior study where a
glaucoma specialist predicting likelihood of future surgery
achieved only 0.25 sensitivity and 0.34 positive predictive
value.11 In the results, we show performance metrics for a
threshold tuned to provide the best F1 score (balancing
precision and recall), but with any potential use case, the



Table 3. Population Characteristics

No Surgery Surgery Total

N ¼ 30 529 N ¼ 6019 N ¼ 36 548

Mean Std Dev Mean Std Dev Mean Std Dev

Age (years) 70.8 14.4 66.7 15.3 70.1 14.6
Best logMAR VA, OD 0.6 1.1 0.6 1 0.6 1.1
Best logMAR VA, OS 0.7 1.1 0.6 1 0.7 1.1
IOP max, OD (mmHg) 17 6.2 19.7 8 17.5 6.6
IOP max, OS (mmHg) 17.1 6.2 19.9 8.1 17.5 6.7
IOP max of either eye (mmHg) 18.7 7.1 22.3 9.1 19.3 7.6
Spherical equivalent, OD �1.1 3.5 �1.1 3.6 �1.1 3.5
Spherical equivalent, OS �1.1 3.4 �1.1 3.5 �1.1 3.5
CCT, OD (um) 550.7 52.3 549.7 53.2 550.5 52.4
CCT, OS (um) 551.3 53.6 549.9 54.9 551.1 53.8

N % N % N %
Female 16 722 54.8% 3231 53.68% 19 953 54.6%
Race
White 19 579 64.1% 3623 60.2% 23 202 63.5%
Black 6904 22.6% 1513 25.1% 8417 23.0%
Asian 1942 6.4% 386 6.4% 2328 6.4%
American Indian or Hawaiian 91 0.3% 27 0.4% 118 0.3%
Other 1614 5.3% 411 6.8% 2025 5.5%
Unknown 399 1.3% 59 1.0% 458 1.3%

Ethnicity
Hispanic 1185 3.9% 341 5.7% 1526 4.2%
Non-Hispanic 28 139 92.2% 5547 92.2% 33 686 92.2%
Unknown 1205 3.9% 131 2.2% 1336 3.7%

Rural/urban
Rural 865 2.8% 231 3.8% 1096 3.0%
Urban 27 158 89.0% 5334 88.6% 32 492 88.9%
Missing 2506 8.2% 454 7.5% 2960 8.1%

CCT ¼ central corneal thickness; IOP ¼ intraocular pressure; logMAR ¼ logarithm of the minimum angle of resolution; OD ¼ right eye; OS ¼ left eye;
VA ¼ visual acuity.
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classification threshold can be tuned such that the model
performs better on either precision or recall, depending on
the desired operational characteristics. Thus, such EHR
prediction models may still augment clinical predictions.
In addition, as the current model was trained and tested on
a much larger dataset across different medical centers,
performance is less subject to overfitting on small
validation datasets or instability in estimates due to small
test datasets. Similar to previous studies,7 we also show
that deep learning and tree-based models generally out-
performed simpler penalized regression models. Deep
learning still faces many challenges in modeling for EHR
data,19 especially when using structured (tabular) datasets20

with many features that may be sparse and noisy, such as
diagnoses and medications. In such cases, tree-based
models remain state-of-the-art,20 as is consistent with our
results, where the XGBoost model slightly outperformed
the deep learning embedding model. Given that the
differences in performance between the top models are
small, the choice of what type of model to actually deploy
in the future may ultimately be driven more by other
factors such as computational cost.

Explainability studies comprise an important component
of model evaluation, to assess whether models rely mostly
upon reasonable input features rather than spurious
associations. Our explainability studies indicated that the
most important features included clinically reasonable fea-
tures such as age, visual acuity, IOP, glaucoma diagnosis
type, and use of certain glaucoma medications such as bri-
monidine or dorzolamide/timolol. These features are fairly
consistent with results of explainability studies on previously
single-center work, which also showed that IOP, visual acu-
ity, and medication features were highly important.7,8

Additionally, for some patients, diagnosis of cataract or
phakic status were also important model inputs; this may
reflect the fact that the threshold for taking patients to
minimally invasive glaucoma surgery might depend more
heavily on cataract status. Future iterations of the model
could include experiments with predicting different
subtypes of surgery as separate outcomes, modeling on
subtypes of patients (such as pseudophakic only), or
predicting alternative outcomes such as progression on
visual fields. Finally, although Shapley values are a
convenient mathematical technique for understanding
model behavior to some extent, it is crucial to acknowledge
that there are limitations to this technique, including prior
studies that have suggested that results can sometimes be
inaccurate and misleading.21,22 Therefore, it is still essential
to consider explainability results in the context of prior
similar studies and overall established medical knowledge.
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Figure 4. Receiver operating characteristic curves and precision-recall curves for machine learning and deep learning prediction models. This figure depicts
receiver operating characteristic curves and precision-recall curves for models predicting glaucoma progression to surgery. A, Curves for machine learning
models. B, Curves for deep learning models. All models were evaluated on the test set (comprising individuals from from the same sites as the training set)
and an external test site (comprising individuals from a site that was not included in the training set). LASSO ¼ least absolute shrinkage and selection
operator.

Table 6. Model Performance Metrics

Model

Sensitivity (Recall) Specificity

Positive
Predictive Value

(Precision)

Negative
Predictive
Value F1 Accuracy

ThresholdTest External Test External Test External Test External Test External Test External

L2 regression 0.536 0.603 0.808 0.708 0.364 0.296 0.895 0.898 0.434 0.397 0.762 0.690 0.56
L1 regression 0.471 0.538 0.838 0.752 0.373 0.307 0.885 0.889 0.416 0.391 0.775 0.716 0.59
Elastic Net Regression 0.509 0.595 0.818 0.725 0.365 0.306 0.891 0.898 0.425 0.404 0.766 0.703 0.57
Random Forest 0.439 0.611 0.865 0.759 0.399 0.340 0.883 0.905 0.418 0.437 0.792 0.734 0.48
Gradient Boosted Trees 0.494 0.592 0.847 0.759 0.399 0.333 0.891 0.901 0.441 0.426 0.787 0.731 0.21
XGBoost 0.551 0.645 0.822 0.693 0.388 0.300 0.899 0.906 0.456 0.409 0.776 0.685 0.21
Deep Learning Embedding Model 0.501 0.630 0.834 0.727 0.382 0.319 0.891 0.906 0.433 0.423 0.777 0.710 0.61
Deep Learning FCN 0.588 0.706 0.753 0.627 0.328 0.278 0.899 0.913 0.421 0.399 0.725 0.641 0.54

FCN ¼ Fully Connected Model.

Ophthalmology Science Volume 4, Number 3, June 2024
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Figure 5. Model explainability with Shapley feature importance. The figure depicts the Shapley value for the top most important features for predicting
whether a patient would progress to the point of requiring surgery within the next year, using the XGBoost model and calculated across the test set. Points
represent individual observations (patients) in the test. The feature value color of each point indicates whether the value of that feature was high or low for
that individual observation. A positive Shapley value for a feature for an individual point indicates influence toward a model prediction of surgery, whereas a
negative Shapley value indicates influence toward a model prediction of no surgery. ICD ¼ International Classification of Diseases; IOP ¼ intraocular
pressure; logMAR ¼ logarithm of the minimum angle of resolution; OD ¼ right eye; OS ¼ left eye; SHAP ¼ SHapley Additive exPlanations.

Wang et al � Prediction Models for Glaucoma in the Sight Outcomes Research Collaborative
A unique strength of this multicenter study was the ability to
test whether models trained on data from 1 set of sites could
generalize to another site not used at all in training. Every model
was thus evaluated on a test set (comprising data from in-
dividuals at the same sites as used for training) and an external
held-out site. In almost all cases, the performance on the external
held-out site was slightly decreased, although the decrease in
AUROCwas< 3%.Our embedding-based deep learningmodel
actually had improved performance on the external site
(AUROC 0.76 external vs. 0.74 test). Overall, generalizability
was remarkably preserved on the external test site, with tree-
based ML models and deep learning models performing best.
These generalizability results are consistent with or improved
over prior work in other medical domains. A study predicting
heart failure using data from> 400 sites showed approximately
3.6% reduction inAUROCwhen applied to external hospitals,23

while a study predicting sepsis across 5 different emergency
departments showed variable reductions in AUROC up to
approximately 10% when trained and tested on different
sites.24 The authors postulated in their case that models trained
on tertiary care emergency departments might not be expected
to generalize well to critical-access emergency departments.24

In our study, generalizability may have been enhanced by the
fact that the rate of surgery at the external site was close to the
mean overall rate of surgery, despite some variation in surgical
patterns as evidenced by the range of surgery rates across sites.
Additionally, different centers shared the same underlying
EHR system and were all academic ophthalmology centers,
despite being in different areas of the country and with patients
of varying sociodemographic profiles. Model performance in
other settings, such as individual or small group private
practices, may be different. Regardless, a perfectly
generalizable prediction algorithm is likely not a reasonable
goal; models would benefit from transfer learning and fine-
tuning25 or complete retraining on local site data in service of
achieving the best predictive performance and precision health
for local patient populations.26

This study has several limitations. Centers participating
in SOURCE were academic and typically serve as referral
centers; as such, clinical data from prior to referral could not
be incorporated as input features into our models. This lack
of distinction between new and previously treated patients
with glaucoma may be a limitation, as prior exposure to
medications or other treatments may indicate their glaucoma
severity upon inclusion into the study and could influence
decisions for further surgery. Future research may be per-
formed to evaluate how the model may perform differently
for newly diagnosed versus follow-up glaucoma patients. In
addition, glaucoma was defined by ICD coding, which can
have inaccuracies and be subject to different patterns across
different providers and institutions, likely leading to a
somewhat heterogeneous population upon which the model
was trained. However, this nature of the training data and
cohort can translate into a strength for future deployment,
where suchmodels could potentially be used on patients who
do have imperfectly coded diagnoses in their EHRs. Another
limitation is that input features were derived from structured
data within the EHRs and did not include imaging or free
text. Our previous models combining structured data with
free-text clinical notes suggest that incorporation of free-text
7
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may improve performance.7,8 Possibly, incorporation of
free-text could capture some of the data from prior to
referral which may be recorded into patients’ initial progress
notes, or it could capture information on other factors such as
medication adherence. Similarly, we hypothesize that
incorporation of imaging parameters either from optic nerve
photos or retinal nerve fiber layer OCT could be of additional
prognostic value, as may data from standard automated
perimetry. Collecting, deidentifying, and harmonizing such
text and imaging data across multiple sites are part of large-
scale ongoing efforts to further develop the SOURCE re-
pository. Once this data is available, we plan to integrate it
into our models. Furthermore, there are multiple approaches
to developing models that incorporate the time-horizon in
prediction; our approach predicts progression to surgery in
the next 12 months, but other survival-based AI approaches
can also be tried. The temporal nature of EHR inputs (fea-
tures) also have multiple potential representations27 which
8

will be an area of future comparison and studies. Finally,
future studies will include a more comprehensive
investigation of algorithm performance and fairness in
subgroups of patients, such as by race, ethnicity, gender,
and other characteristics.

In conclusion, we have shown that machine- and deep
learning models can predict reasonably well whether pa-
tients with glaucoma will soon progress to requiring surgery
using structured data from EHRs. We learned that tree-based
and deep learning-based models outperformed the
regression-based models for this complex high-dimensional
data. We demonstrated that our model performance was
relatively well preserved when tested on data from a new
site, suggesting they can be applied to patients across mul-
tiple health systems. Explainability studies showed that
important input features were clinically reasonable. Future
studies could incorporate imaging or text data to further
improve model performance.
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