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MicroRNA (miRNA) detection has attracted widespread interest as a tumor detection
marker. In this work, a miRNA-responsive visual and temperature sensitive probe
composed of a horseradish peroxidase (HRP)-encapsulated DNA hydrogel was
designed and synthesized. The biosensor converted the miRNA hybridization signal to
a photothermal effect which was measured using a digital thermometer. The substrate
DNA linker strand of the hydrogel hybridizes with different sequences of miRNA resulting in
the collapse of the hydrogel and the release of HRP. HRP oxidizes 3,3′,5,5′-
tetramethylbenzidine (TMB) resulting in a color change and a strong photothermal
effect was observed after shining near-infrared light on the oxidized product. The
thermometer-based readout method has a wide linear range (0.5–4.0 µM) and a limit
of detection limit of 7.8 nM which is comparable with traditional UV-vis absorption
spectrometry detection and quantitative real time polymerase chain reaction methods.
The low cost, ease of operation, and high sensitivity shows that this biosensor has potential
for point-of-care biomolecular detection and biomedical applications.
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INTRODUCTION

MicroRNAs (miRNAs) are endogenous non-coding RNAs and post-transcriptional gene regulators
which are closely related to tumor occurrence and development (Wightman et al., 1993; Bartel, 2009;
Lin and Gregory, 2015; Das and Ghosal, 2018). Deregulated miRNAs exist in the plasma and serum
of many cancer patients (Lin and Gregory, 2015; Armand-Labit and Pradines, 2017; Ji and Guo,
2019; Si et al., 2020). Increased miRNA expression is correlated with cancer cells or the presence of
tumorous tissues and high levels are also found in the peripheral blood (Mitchell et al., 2008; Boeri
et al., 2011; Kelly et al., 2013). Thus, elevated miRNA levels are tumor markers and their detection
has attracted widespread interest. Detection of miRNA levels over the past decade has included
northern blotting, real-time quantitative polymerase chain reaction (qRT-PCR), flow cytometry,
microarray, and enzyme-catalyzed amplification technology (Calin et al., 2004; Guo et al., 2009; Git
et al., 2010; Pritchard et al., 2012; Porichis et al., 2014). However, high-efficiency and sensitive
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detection of miRNAs is challenging because they have low
abundance, readily degraded, require accurate temperature
control, and involve complex processes and expensive
equipment (Li et al., 2016). The current gold standard method
for detecting miRNA by northern blotting is time consuming, has
low sensitivity, is at risk of degradation by RNases, and involves
the use of carcinogenic chemicals (ethidium bromide and
formaldehyde). Meanwhile, qRT-PCR exhibits highly sensitive
detection but it suffers from poor selectivity and low specificity
(Li et al., 2020). Alternatively, biosensors based on fluorescence,
electrochemistry, photoelectrochemistry, and
chemiluminescence are promising analytical technologies with
high selectivity and sensitivity compared with conventional
miRNA detection methods (Zheng et al., 2019a; Wang et al.,
2020; Jin et al., 2021). Biosensing detection based on visual
recognition and quantitation through a portable readout is
potentially an ideal detection approach because output signals
are obtained by simple portable analytical instruments or the
naked eye which overcomes the limitations of assay readout
methods dependent on complex, expensive, and bulky
analytical equipment (Qu et al., 2011; Fu et al., 2016; Zheng
et al., 2019b; Zhao et al., 2019; Xu et al., 2020; Xu et al., 2021).

The horseradish peroxidase (HRP)-3,3′,5,5′-
tetramethylbenzidine (TMB)-H2O2 system (HRP-TMB- H2O2)
has been explored as a classical system for portable qualitative
detection. HRP catalyzes the one-electron oxidation of TMB to
generate a blue colored charge-transfer complex of oxidized TMB
(oxTMB) with an absorbance maximum of 652 nm. OxTMB also
exhibits a strong near infrared (NIR) laser-driven photothermal
effect which could be used as a highly sensitive photothermal
probe (Fu et al., 2016). However, HRP is easily affected by the
detecting environment. Hydrogel is a type of cross-linked
hydrophilic polymer and a large amount of water can be

absorbed. Hydrophilic polymers can be dissolved in water
without a defined shape, however, after cross-links, the
solid-like three-dimensional structures are formed, which
bring a uid-like properties (Guan et al., 2020; Wei et al.,
2020). Stimulus-responsive (or target-responsive) DNA
hydrogels composed of multifunctional polymers as the
backbone and functional DNA as the cross-linker are
potential colorimetric sensors carrying enzymes because of
their biocompatibility, encapsulation and release capability,
flexibility, and mechanical stability (Xiang and Lu, 2012; Kahn
et al., 2017; Amalfitano et al., 2021; Liu et al., 2021). They are
widely used for the determination of various targets including
ions, small molecules, nucleic acids, and proteins (Zhu et al.,
2010; Lin et al., 2011; Yan et al., 2013).

Herein, a target-responsive DNA hydrogel-based biosensor
was generated and applied for visual recognition and portable
photothermal quantification of miRNAs using a common
thermometer readout (Scheme 1). PA and PB were
synthesized by copolymerization of acrylic DNA and
acrylamide monomers, cross-linked with a substrate DNA
linker strand containing partial complementary sequences with
PA and PB, and complete complementary sequence of miRNA to
form a hydrogel with encapsulated HRP. In the presence of
miRNA, the substrate DNA linker strand hybridized with
miRNA which led to the collapse of the hydrogel and HRP
release. Then, released HRP oxidized TMB-H2O2 and formed
a blue colored product. Laser NIR irradiation of oxidized TMB at
808 nm exhibited a strong photothermal effect resulting in the
conversion of the miRNA hybridization signal to heat. A digital
thermometer detected the signal with a linear detection range
from 0.5 to 4.0 µM and a limit of detection of 7.8 nM. Therefore,
this strategy achieved visual recognition and portable
photothermal quantitation of miRNAs.

SCHEME 1 | Schematic illustration of the synthesis of stimuli-response DNA hydrogels and photothermal sensing detection of miRNAs based on HRP-Mediated
TMB-H2O2 colorimetric system.
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MATERIALS AND METHODS

Materials and Reagents
Acrylamide, ammonium persulfate (APS), and H2O2 (30%) were
obtained from Sinopharm Chemical Reagent (Shanghai, China).
3,3′,5,5′-tetramethylbenzidine (TMB), N,N,N′,N′-
tetramethylethylenediamine (TEMED), tris(hydroxymethyl)
aminomethane (Tris), Dulbecco’s modified Eagle’s medium
(DMEM), fetal bovine serum (FBS), and penicillin-
streptomycin were obtained from Sigma-Aldrich (St. Louis,
MO, USA). HRP was purchased from J&K Scientific Ltd.
(Beijing, China). TRIzol solution, acrylic-DNA and all other
oligonucleotides used in this study (Supplementary Table S1)
were synthesized by Sangon Biotech Co., Ltd. (Shanghai, China).
Other reagents were purchased from Damao Chemical Reagent
Factory (Tianjin, China). HeLa cells were obtained from Sangon
Biotech Co., Ltd.

Synthesis of the DNA Functional Linear
Polyacrylamide Chains
A typical synthesis involved mixing 10 μL acrylamide (25% w/v)
with 20 μL Tris-HCl pH 8.0 (10 mM), followed by the addition of
16 μL acrydite-DNA solution (10 μMSA or SB in Supplementary
Table S1). The mixture was kept in a N2 atmosphere at 20°C for
10 min to remove air. Next, 2 μL of APS (4% w/v) and 2 μL
TEMED (5% v/v) were added, and the solution was incubated in a
N2 atmosphere for a further 15 min. The resulting functional
DNA linear polyacrylamide chains (PA and PB) were stored at
4°C for subsequent use.

Preparation of the HRP -Encapsulated
Stimulus-Responsive Hydrogel
10 μL (10 μM) DNA functional linear polyacrylamide solution,
PA and PB, were mixed at room, and then 40 ng HRP (10 μL 4 μg/
ml) was added to them. 10 μL (10 μM) DNA (L1) was added into
the above mixture was incubated at 37°C for 30 min. After being
washed three times with 10 μL wash buffer (containing Tris-HCl
(10 mM), NaCl (50 mM), and MgCl2 (10 mM), pH 8.0) and
followed by lyophilization the HRP-encapsulated stimulus-
responsive hydrogel was obtained.

Detection of miRNA
For the target miRNA assay, 5 μL H2O2 (0.4 mM) and 10 μL of
TMB (0.4 mM) were added to a 0.5 ml tube at room temperature
and incubated until the solution was separated into two colorless
layers. Then, 10 μL miRNA target with different concentrations
was added into the hydrogel-containing tube and incubated for
15 min at 37°C to ensure the complete disassociation reaction. A
series of blue solutions was obtained. 5 μL of this solution was
taken to measure the absorbance at 650 nm with a UV
spectrophotometer. Another 5 μL was taken to investigate the
photothermal effect by recording the temperature using a
common digital thermometer [Sangon Biotech Co., Ltd.
(Shanghai, China)] under 808 nm laser at a power density of
5.26 W cm−2 for 300 s.

miRNA Extraction From HeLa Cells
HeLa cells, were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS),
penicillin (100 units/mL), and streptomycin (100 μg/ml) in an
incubator containing (5% CO2, 37°C). After the cells were all over
the bottom of the bottle, the target miRNA was extracted using
TRIzol solution following the instructions and was analyzed by
above photothermal biosensor. Moreover, the results were
verified by qRT-PCR method.

RESULTS AND DISCUSSION

Characterization of the HRP -Encapsulated
Stimulus-Responsive Hydrogel
PA and PB synthesized by copolymerization of acrylic DNA and
acrylamide monomers were validated by polyacrylamide gel
electrophoresis (PAGE, Supplementary Figure S1). The
substrate DNA linker strand containing partial complementary
sequences with both PA and PB, and complete complementary
sequence of miRNA cross-linked with PA and PB formed the
HRP-encapsulated stimulus-responsive hydrogel (Figure 1A)
which formed a porous, three-dimensional network structure
observed by SEM (Figure 1B). A vial inversion test was adopted
to show hydrogel formation as Supplementary Figure S2. The
element mapping images demonstrated the distribution of Fe, P,
and N (Supplementary Figure S3) which provided direct
evidence that HRP was trapped in the hydrogels and DNA
strands participated in the construction of HRP-encapsulated
hydrogels. TEM images indicated that the functional linear DNA
polyacrylamide chains were interconnected in HRP-encapsulated
hydrogels (Figure 1C). The surface area was calculated as
15.9 m2 g−1 (Figure 1D) by Brunauer-Emmett-Teller (BET)
model (Naderi and Tarleton, 2015).

Principle and Feasibility of Visual
Recognition and Photothermal Quantitation
of MicroRNAs Based on Target-Responsive
DNA Hydrogels
In the absence of miRNA, HRP was stably trapped inside the
hydrogel and physically separated from TMB-H2O2 which was
in the solution outside the hydrogel. After the addition of target
miRNA, hybridization of the substrate linker strand with
miRNA led to the collapse of the hydrogel and the release of
HRP. HRP oxidized TMB-H2O2 with the one-electron transfer
generated in TMB forming the blue-colored, charged, oxidized
TMB (oxTMB) complex which generated heat following NIR
laser irradiation at 808 nm (Fu et al., 2018). Hence the
hybridization signal of miRNA was converted into a
photothermal effect.

The intensity of the 650 nm absorption peak representing
oxTMB was used to determine the encapsulation and release of
HRP in hydrogels (Figure 2A). Weak oxTMB absorption was
observed in the presence of crosslinking DNA (L1) and in the
absence of miRNA (R1) indicating that most of the HRP was
trapped inside the DNA hydrogel. When the crosslinking DNA
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(L1) and target miRNA (R1) were absent, a stronger absorption
peak appeared after TMB-H2O2 was added (black line) indicating
that PA and PB did not trap HRP in the DNA hydrogel. When
miRNA (R1) was added, the absorption peak of oxTMB slightly
increased (red line) indicating that crosslinking DNA is required
to trap HRP inside the DNA hydrogel. This was confirmed by the
addition of crosslinking DNA (L1) resulting in decreased

absorption indicating that the DNA hydrogel was constructed
and some HRP was encapsulated. The addition of TMB-H2O2

resulted in little absorbance change showing that there were only
trace amounts of free HRP in the supernatant. Subsequent
addition of target miRNA resulted in a gradual increase in the
oxTMB absorption peak demonstrating that HRP was released
from the hydrogel (purple line).

FIGURE 1 | (A) Digital photographs, SEM image (B), TEM image (C), N2 physisorption isotherm (D) of HRP -encapsulated stimulus-responsive hydrogel.

FIGURE 2 | (A) Feasibility test of the release of HRP in hydrogels based on the intensity of absorption peak of oxTMB at 650 nm (B) Photothermal evolution of
different components including HAc-NaAc buffer, TMB, TMB-H2O2, HRP, HRP-TMB-H2O2 under 808 nm laser at a power density of 5.26 W cm−2 for 300 s.
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The photothermal properties of HAc-NaAc buffer, TMB,
TMB-H2O2, HRP, and HRP-TMB-H2O2 were determined
under 808 nm laser at a power density of 5.26 W cm−2 for
300 s to investigate the feasibility of the HRP-catalyzed
TMB-H2O2 system for photothermal conversion
(Figure 2B). A dramatic temperature increase appeared in
the HRP-TMB-H2O2 system, while no apparent temperature
increases were exhibited in all other cases. Therefore, the
HRP-TMB-H2O2 system based on target-responsive DNA
hydrogels is a suitable biosensor to detect miRNA using a
thermometer.

Optimization of Assay Condition for Visual
Recognition and Photothermal Quantitation
of MicroRNAs
The optimal incubation time, temperature, amount of HRP
and H2O2 was tested to achieve sensitive detection of miRNA
using the HRP-encapsulated DNA hydrogel/TMB-H2O2

probe (Figure 3). 4 μg/ml HRP was chosen as the optimal
loading concentration, since higher concentrations would
result in the leakage of enzyme, which would bring the
false positives of investigation (Figure 3A). The intensity
of oxTMB absorption increased from 1 to 4 nM H2O2

however, the intensity of the absorption peak sharply
decreased beyond 4 nM demonstrating that inhibition of
the catalytic reaction occurred (Figure 3B). Therefore,
4 nM H2O2 was chosen as the optimal concentration for
miRNA detection.

The absorption intensity of oxTMB plateaued at 120 min
incubation time (Figure 3C) demonstrating that the
hybridization process of substrate linker strand with miRNA
was complete. Therefore, 120 min was chosen as the optimal
incubation time. OxTMB absorption intensity increased from
20°C to 30°C, then stabilized up to 40°C (Figure 3D). Therefore,
30°C was taken as the optimal assay temperature. Finally, a pH of
4.0 was chosen as the ideal condition for maximal oxTMB
absorption intensity (Figure 3E).

FIGURE 3 | The influence of (A) amount of HRP (a) 4 μg/ml (b) 6 μg/ml (c) 8 μg/ml (d) 9 μg/ml (e)10 μg/ml, (B) quantity of H2O2 (C) incubating time (D) temperature
and (E) pH value for sensing system.
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Performance of Biosensor Based on HRP
Encapsulated DNA Hydrogels/TMB- H2O2

System for miRNA Determination
The biosensor exhibited a concentration-dependent effect
following the addition of increasing amounts of miR-21
extracted from HeLa cells under the optimized conditions
(Figure 4A). The transition from colorless to blue (Figure 4B,
inset) is easily distinguished by the naked eye. There is a linear
relationship between the intensity of the absorption peaks at
650 nm and miRNA concentration between 0 and 4 µM

(Figure 4B). The regression equation is y � 7.8 × 10−6 x +7.95
× 10−7 (R2 � 0.9933), where x is miR-21 concentration; y is the
intensity of absorption peaks at 650 nm; R2 is the correlation
coefficient. The detection limit was approximately 10 nM (signal-
to-noise ratio � 3). Similarly, the temperature increase following
NIR illumination was linearly proportional to the miR21
concentration between 0.5–4.0 µM when the irradiation time
was 90 s (Figure 4C, Supplementary Figure S4). The
regression equation was ΔT � 1.367x + 2.459 (R2 � 0.9997),
where x is the miRNA concentration, ΔT is the temperature
increase, and R2 is the correlation coefficient. The detection limit

FIGURE 4 | (A) Absorbance intensities at 650 nm were obtained upon addition of miR21 with different concentrations (0.1, 0.2, 0.5, 1.0,2.0, 4.0 µM). (B) The
relationship of absorbance intensities andmiRNA concentration. The range of miR21 concentration is from 0 to 4.0 µM. (C) The relationship of temperature evolution and
miRNA concentration from 0.5 to 4.0 µM. (D) Investigation of the selectivity of the miRNA-responsive HRP encapsulated DNA hydrogels/TMB- H2O2 (S1, miR18; S2,
miR205; S3, miR141; S4, miR25; S5, miR183; S6, miR21).

FIGURE 5 | (A) Temperature changes with the endogenous miR21 extracted from different amounts of HeLa cells. An asterisk indicates a statistically significant
difference (*p < 0.05). (B) Detection of miR-21 using current photothermal sensor and qRT-PCR from HeLa cells (concentration: 9 × 106).
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was approximately 7.8 nM (signal-to-noise ratio � 3). Six
experiments were carried out at 2 ngml−1 miR-21, and the
relative standard deviation was 5.2% over a 5-week period
showing that the biosensor results were stable and reproducible.
Moreover, other miRNAs with different sequences were similarly
detected by the biosensor due to the precise base pairing (Figure 4D).

Detection of miRNA in Cell Lysates
As the detection for miRNA above, the proposed photothermal
sensor based on thermometer-based readout composed of miRNA
-responsive HRP encapsulated DNA hydrogels/TMB-H2O2

showed high selectivity, sensitivity and reproducibility. We
detected miR-21, which was extracted from HeLa cells using
TRIzol, through this biosensor to further evaluate its feasibility
in real biological samples. As we expected, as the amount of HeLa
cells increased as Figure 5A shown in, the temperature increased
accordingly. Moreover, when the detection ofmiR-21 in cell lysates
of HeLa was performed through this photothermal biosensor, a
standard qRT-PCR detection was also carried out simultaneously
to verify this. No obvious difference in detecting miR-21 in them as
shown in Figure 5B which indicated the effectiveness of this
biosensor using for miRNA detection in real biological samples.

CONCLUSION

In summary, we designed and synthesized a novel and simple
photothermal detection method of miRNA using a common
thermometer based on a target-responsive HRP encapsulated
DNA hydrogel/TMB-H2O2 biosensor. The dissociation of the
hydrogel was directly controlled by miRNA, and the released
HRP catalyzed the TMB-H2O2 system to form oxTMB which
exhibited photothermal properties under 808 nm laser irradiation.

The resulting temperature evolutionwas proportional to themiRNA
concentration. The limit of detection was 7.8 nM and the linear
range was between 0.5–4.0 µM. Moreover, compared with
traditional spectrophotometric or RT-qPCR methods, this
method exhibited the distinct advantage including no need for
specialized equipment and reagents, high selectivity and
specificity of ease of use and greatly reduced cost since there is
no need for specialized equipment and reagents. This biosensor
method which showed great potential for point-of-care miRNA
detection and biomedical applications.
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