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Abstract 

Background:  Epidemiological evidence has shown an association between long-term exposure to fine particulate 
matter (PM2.5) and hypertension and diabetes, but few studies have considered the spatial properties of the samples. 
This study aimed to investigate the long-term effect of PM2.5 exposure on hypertension and diabetes among middle-
aged and elderly people in China based on a spatial study.

Methods:  We conducted a national cross-sectional study of the most recently launched wave 4 2018 data of the 
China Health and Retirement Longitudinal Study (CHARLS) to calculate the prevalence of hypertension and diabetes. 
The exposure data of annual average PM2.5 concentrations were estimated combined with satellite observations, 
chemical transport modeling, and ground-based monitoring. A shared component model (SCM) was used to explore 
the association of PM2.5 with hypertension and diabetes, in which these two diseases borrowed information on spatial 
variations from each other. Then, we evaluated the effect variations in PM2.5 in different periods and smoking status 
on changes in outcomes.

Results:  The prevalence of hypertension and diabetes was 44.27% and 18.44%, respectively, among 19,529 partici-
pants. The annual average PM2.5 concentration in 31 provinces ranged from 4.4 μg/m3 to 51.3 μg/m3 with an average 
of 27.86 μg/m3 in 2018. Spatial auto-correlations of the prevalence of hypertension and diabetes and PM2.5 concen-
trations were seen (Moran’s I = 0.336, p = 0.01; Moran’s I = 0.288, p = 0.03; Moran’s I = 0.490, p = 0.01). An interquartile 
range (IQR: 16.2 μg/m3) increase in PM2.5 concentrations was significantly associated with a higher prevalence of 
hypertension and diabetes with odds ratios (ORs) of 1.070 [95% credible interval (95% CrI): 1.034, 1.108] and 1.149 
(95% CrI: 1.100, 1.200), respectively. Notably, the effect of PM2.5 on both hypertension and diabetes was relatively 
stronger among non-smokers than smokers.

Conclusion:  Our nationwide study demonstrated that long-term exposure to PM2.5 might increase the risk of hyper-
tension and diabetes, and could provide guidance to public policymakers to prevent and control hypertension and 
diabetes according to the spatial distribution patterns of the above effects in China.
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Background
Hypertension and diabetes are common chronic dis-
eases worldwide. Approximately one-third of the adults 
aged 20  years or older in the world were reported to 
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have hypertension [1]. The global prevalence of diabetes 
was expected to reach 10.2% (578 million) by 2020 and 
10.9% (700 million) by 2045 [2]. As a developing coun-
try, the prevalence of hypertension and diabetes in China 
has remained at a relatively high level. According to the 
China Hypertension Survey Study, the prevalence of 
hypertension was about 23.2% in 2015 [3]. And the latest 
epidemiological study showed that approximately 11% of 
the population in China had diabetes [4]. The prevalence 
of hypertension and diabetes should continue to rise with 
the rapid aging of the Chinese population [5]. To improve 
the efficiency of prevention, determining the risk factors 
of hypertension and diabetes over a geographic area are 
crucial. It is worth noting that hypertension and diabetes 
share common risk factors, such as individual behavior, 
family history, genetic factors, and lifestyle [6–8]. Due to 
some shared pathogenic mechanisms, these two diseases 
coexist frequently and have similar spatial distribution 
patterns.

A few epidemiological studies have shown that both 
short-term and long-term exposure to PM2.5 was sig-
nificantly associated with the prevalence of hyperten-
sion and diabetes. Two study by Liu et  al. on the effect 
of long-term exposure to PM2.5 suggested that increases 
in PM2.5 were associated with a higher prevalence of 
hypertension and diabetes [9, 10]. Two cohort studies by 
Gu et al. also found similar positive associations in China 
[11, 12], whereas other studies suggested that there was 
no significant association between long-term exposure to 
PM2.5 and hypertension and diabetes [13, 14]. Variations 
in population characteristics, spatial regions, pollutant 
sources and composition, and exposure measurements 
may lead to inconsistencies in the results. Since the 
pathogenesis of hypertension and diabetes is complex, 
utilizing the location may serve as a useful surrogate for 
investigating the mixture of the above confounding fac-
tors that may underlie any spatial variations in disease 
risk. Applying spatial information offers further control 
of the confounding factors, which, in turn, can reveal the 
real association of PM2.5 with hypertension and diabetes.

With the development of the Markov chain Monte 
Carlo (MCMC) method, multiple methods have been 
derived from the Bayesian hierarchical model (BHM), 
including the shared component model (SCM) which 
is an advancement of the BHM. The SCM was first pro-
posed by Knorr and Best [15] for the joint spatial analysis 
of two diseases and extended to multiple diseases by Held 
et al. [16]. The basic assumption of the SCM is that many 
diseases may depend upon each other and share common 
risk factors. Thus, the key idea of the model is to separate 
the underlying risk for each disease into a shared com-
ponent, common to both diseases, and a disease-specific 
component. The shared component is further divided 

into two parts, which can be interpreted as surrogates 
for unobserved covariates that display spatial structures 
and non-spatial structures. Similarly, the disease-specific 
component represents the spatially varying risk factors 
and non-spatially varying risk factors that are specific 
to the respective disease. Therefore, when diseases with 
similar spatial distribution characteristics and risk factors 
are modeled jointly, one disease is used as a surrogate for 
the unobserved risk factors of the other disease. Different 
from traditional statistical methods, the SCM modeling 
procedure utilizes dependency, not only among diseases 
but also among spatially varying variables. This model 
can better control the unobserved confounding factors 
and describe the epidemiologic features of the risk fac-
tors associated with a certain disease [17]. Recently, the 
SCM has been applied to analyze gender variations in 
disease risk, the effects of PM2.5 on hypertension, esti-
mate the relative risk of multiple cancers, and recognize 
spatial patterns [18–20].

Considering that hypertension and diabetes are two 
highly prevalent chronic diseases, both have similar spa-
tial distribution patterns and risk factors. Therefore, this 
study was proposed to explore the association between 
long-term PM2.5 exposure and the prevalence of hyper-
tension and diabetes simultaneously by applying SCM 
from a spatial perspective. Furthermore, some studies 
suggested that the impact of PM2.5 on humans varied 
among people with different smoking statuses [21]. Thus, 
we explored the effect of smoking status on association 
changes. Our study was based on the nationally repre-
sentative China Health and Retirement Longitudinal 
Study (CHARLS) survey, which provided a high-quality 
public database with abundant health information on 
middle-aged and elderly people in the China mainland. 
Ultimately, our study could provide guidance to public 
policymakers to prevent and control hypertension and 
diabetes according to the local context.

Methods
Study population and health data
This study obtained the data from CHARLS. To ensure 
the adoption of the best practices and international com-
parability, the CHARLS was harmonized with leading 
international research studies following the Health and 
Retirement Study (HRS) model. The national baseline 
survey was launched between 2011 to 2012, with wave 
2 in 2013, wave 3 in 2015, and wave 4 in 2018. Details 
on this project were presented in a previous study [22]. 
In brief, to ensure the national representation of the 
project, the study populations were selected by a four-
stage, stratified, and cluster sampling method from 28 
provinces and 150 counties or districts of China. We 
used the most recently launched data from wave 4 to 
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calculate the prevalence of hypertension and diabetes in 
middle-aged and elderly people in China. In this wave, a 
total of 19,816 individuals completed the survey. Finally, 
after excluding individuals born after 1973, a total of 
19,529 individuals were included in our study. Individ-
ual information on self-reported hypertension, diabetes, 
and smoking status was obtained from the standardized 
questionnaire. Information on systolic blood pressure 
(SBP), diastolic blood pressure (DBP), fasting plasma 
glucose (FPG), and hemoglobin (Hb)A1c levels were 
obtained from wave 3 since the information on biomark-
ers was not collected in wave 4.

In this analysis, the main definition of hypertension 
was (1) individuals who self-reported having been diag-
nosed with hypertension, (2) self-reported hypertension 
in a previous wave, or (3) an SBP of ≥ 140 mmHg, DBP 
of ≥ 90  mmHg, or both. Notably, since the measure-
ments were unstable when the differences in the last two 
measurements were greater than 5 mmHg, another one 
to three measurements were taken until the differences 
were less than 5  mmHg. The SBP and DBP were calcu-
lated by the average of the second and third measure-
ments [9]. Diabetes was defined as: (1) individuals who 
self-reported having been diagnosed with diabetes, (2) 
self-reported diabetes in a previous wave, (3) had a fast-
ing plasma glucose of ≥ 7 mmol/L, or (4) an HbA1c level 
of ≥ 6.5%, or both [23].

As for the smoking status, individuals who self-
reported having smoked in a previous wave but exclud-
ing those who answered that they never smoked in this 
wave, and who self-reported having smoked in this wave 
were defined as smokers, while the others were defined as 
nonsmokers.

Air pollution data
We obtained high-spatial-resolution  ground-level PM2.5 
concentrations from  the Atmospheric Composition 
Analysis Group at Dalhousie University [24, 25]. The data 
were based on the Twin MODerate Resolution Imaging 
Spectroradiometer (MODIS), Multiangle Imaging Spec-
troRadiometer (MISR), and Sea-viewing Wide Field-of-
view Sensor (SeaWIFS) of the US National Aeronautics 
and Space Administration (NASA) inversed to obtain 
aerosol optical depth (AOD) data, combined with the 
GEOS-Chem chemical transport model, and ground 
monitoring data, which were incorporated into the geo-
graphically weighted regression model (GWR) to obtain 
ground-level annual PM2.5 concentration in China with 
a resolution of 0.01°*0.01° (approximately equal to 1 km 
*1 km). These data are the highest precision and largest 
PM2.5 coverage data to date.

Then, we geocoded the individuals’ addresses and 
assigned PM2.5 concentration measurements in ArcGIS 

software (ESRI Corporation). Specifically, the average con-
centration in each grid cell (0.01°*0.01°) was merged with 
the geographic shapefiles with information on the province 
boundaries of the China mainland. The PM2.5 exposure 
concentrations were then equally assigned to each prov-
ince. Then we calculated the annual average PM2.5 from 
2014 to 2018, the data in 2018 were added into primary 
model, other data were used in sensitivity.

Statistical analysis
Descriptive analysis
The prevalence of hypertension and diabetes was cal-
culated for 28 provinces using data from wave 4 of the 
CHARLS. The data relating to Ningxia, Tibet, and Hainan 
were determined by the average of 28 provinces. Based on 
the China mainland map, spatial mapping was conducted 
to describe the spatial distribution patterns of the preva-
lence of hypertension and diabetes among middle-aged 
and elderly people and PM2.5 concentrations.

Spatial auto‑correlation analysis
Spatial auto-correlation analysis aims to describe the inter-
relationship of a variable among neighboring regions. This 
analysis can quantitatively explore the type and degree of 
correlation, which can provide clues for the exploration 
of disease risk factors from a spatial perspective. Here, 
Moran’s index (Moran’s I) [26] was calculated to initially 
understand whether there was spatial auto-correlation in 
the prevalence of hypertension and diabetes and PM2.5. 
The index scores range from -1.0, meaning completely spa-
tially dispersed, to + 1.0, meaning completely spatially clus-
tered, considering p-values smaller than 0.05 as statistically 
significant.

Shared Component Model (SCM)
We conducted a national cross-sectional study using the 
SCM to study the association of PM2.5 with the prevalence 
of hypertension and diabetes. The results were mapped 
to explore the spatial distribution patterns of the risk of 
hypertension and diabetes due to PM2.5. The formula was 
as follows [16]:

Oji ∼ bin
(

pji, nji
)

logit
(

pji
)

= αj + βjxji + etaji

eta1i = ϕi ∗ δ + v1i

eta2i = ϕi/δ + v2i

η1 = var(ϕi ∗ δ)/(var(ϕi ∗ δ)+ var(v1i))
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where i denoted spatial regions, j denoted different dis-
eases (1 for hypertension and 2 for diabetes), Oji denoted 
the actual number of participants with the diseases in 
each region, nji represented the total population surveyed 
in each region, αj was the intercept representing the base-
line risk, xji denoted the annual average PM2.5 exposure 
in each region, βj represented the risk of PM2.5 exposure 
for hypertension and diabetes, pji represented the poten-
tial underlying prevalence of each disease in each region, 
and ϕi represented the area-level spatially shared com-
mon variability in both disease risks. The contribution of 
the shared component ϕi to the risks of a specific disease 
was weighted by δ and 1/δ, and the logarithm of these 
two numbers added up to 0. νji, denoted disease-specific 
variability and ηj denoted the proportion of the shared 
common component’s contribution to the overall spatial 
random effect.

To ensure that the model can be estimated, the ϕi and 
νji were further decomposed:

where ush and bind acted as surrogates for some unob-
served nonspatial covariates, which were not spatially 
structured. Then, ssh and bspat acted as surrogates for 
some unobserved spatial covariates, which were spatially 
structured. To describe the effect of PM2.5, we calculated 
the odds ratio (OR) as exp (βj) per interquartile range 
(IQR) increments in PM2.5 concentrations.

For prior distributions, as suggested by Knorr-Held 
and Best [15], we assigned flat priors distributions to αj 
and βj , and assumed that log(δ) has a normal prior dis-
tribution. To increase the identifiability and decrease 
the complexity of the models, conditional autoregres-
sive (CAR) was assigned for ϕi and vji . The Markov 
chain Monte Carlo simulation (MCMC) method was 
used to achieve Bayesian inference for the above model. 
To ensure that the results were reliable and easily com-
parable, two mutually independent Markov chains were 
run for the model, each with a 5000-pre-iteration burn-
in period followed by 50,000 iterations. The number of 
pre-iterations was adjusted appropriately according to 
the results of the model convergence diagnosis [27].

The classical variance ratio method combined with 
dynamic trajectory plots and auto-correlation plots 
(ACF) were used for model convergence diagnosis. 
Meanwhile, in MCMC algorithms with multiple chains, 
dynamic trajectory plots were usually used to determine 
convergence by whether different chains had been mixed. 

η2 = var(ϕi/δ)/(var(ϕi/δ)+ var(v2i))

ϕi = ushi + sshi

vji = bindji + bspatji

ACF plots showing no correlation between the param-
eters could also suggest that the MCMC algorithm had 
converged. After the convergence diagnosis, the devia-
tion information criterion (DIC) was used to select the 
optimal models, which could evaluate the degree of 
model fit to the data and the complexity of the model.

Sensitivity analysis
Sensitivity analysis was conducted to explore the effect of 
variations in PM2.5 in different periods and smoking sta-
tus on outcome changes, and the robustness of the pri-
mary results.

Sensitivity analysis 1: The annual average PM2.5 con-
centrations in 2015, 2016, and 2017 and the average 
PM2.5 concentrations for 2016–2018 and 2014–2018 were 
added to the SCM, and these results in different periods 
were compared.

Sensitivity analysis 2: The entire study population was 
divided into two subgroups based on smoking status, the 
smoker group and the non-smoker group. The SCM was 
applied separately in the two subgroups, and the outcome 
changes were compared.

Sensitivity analysis 3: The entire population was 
divided into two subgroups based on age less than or 
equal to 60 years old and over 60 years old. The SCM was 
applied separately in the two subgroups and the outcome 
changes were compared.

Sensitivity analysis 4: The SCM was applied removing 
the Ningxia, Tibet and Hainan missing data, then com-
paring the outcome with the primary model.

Sensitivity analysis 5: We performed our mod-
els with three different priori distributions: priori 1, 
logdelta ~ dnorm (0.0, 10); priori 2, logdelta ~ dnorm (0.0, 
30); and priori 3, logdelta ~ dnorm (0.0, 80). Then, the 
results were compared.

Software
Data cleaning, preparation, descriptive analyses, and 
mapping were performed using R 4.1.1. Moran’s I was 
calculated in GeoDa 1.8.16.4. The SCM was run in Open-
Bugs 3.2.3.

Results
Description and spatial auto‑correlation
The basic characteristics of the study individuals were 
summarized as follows. The study individuals consisted of 
19,529 middle-aged and elderly people with ages ranging 
from 45 to 118, and an average age of 62.06 years. There 
was an approximately equal sex distribution (47.57% 
males and 52.43% females). Nearly 42.37% of the individ-
uals had smoked. According to the main definition, there 
were 8644 patients with hypertension, for a prevalence of 
44.27%, and 3600 patients with diabetes, for a prevalence 
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of 18.44%. The average annual PM2.5 concentration in all 
provinces ranged from 4.4 μg/m3 to 51.3 μg/m3 with an 
average of 27.86 μg/m3 in 2018.

The distribution of the prevalence of hypertension is 
shown in Fig.  1(A). The prevalence of hypertension in 
all provinces ranged from 34.47% to 55.88%. Xinjiang, 
Beijing, and Shanghai had the top three prevalence at 
55.88%, 54.72%, and 54.55%, respectively. In terms of spa-
tial distribution patterns, the prevalence of hypertension 
was generally higher in eastern China, especially in the 
northeastern regions, and lower in the central region. A 
higher prevalence was seen in some western provinces, 
such as Xinjiang.

The analysis of the prevalence of diabetes is shown in 
Fig.  1(B). Xinjiang, Tianjin, and Beijing had the highest 
prevalence at 30.39%, 25.35%, and 24.53%, respectively. 
The spatial distribution pattern of the prevalence of dia-
betes was similar to that of hypertension. We conducted 
spatial auto-correlation analysis of the prevalence of 
hypertension and diabetes. As shown in Table 1, Moran’s 
I for the prevalence of hypertension and diabetes was 
0.336 (p = 0.01) and 0.288 (p = 0.03), respectively, which 
was statistically significant. The above results indicated 
that there was a significant spatial auto-correlation for 
the prevalence of hypertension and diabetes, and spatial 
studies were necessary.

The average annual PM2.5 exposure in the China main-
land ranged from 4.4  μg/m3 to 51.3  μg/m3 with large 
regional differences among the provinces investigated. 
Further, spatial mapping was performed to reveal the 
spatial distribution patterns, and the results are shown 
in Fig. 2. The most serious PM2.5 problems occurred in 
Henan, Tianjin, and Jiangsu, with average concentrations 
of 51.3 ug/m3, 48.2 ug/m3, and 46.1 ug/m3, respectively. 
In addition to that, the average concentration of PM2.5 
in Shandong and Anhui reached a relatively high level 
of more than 40 ug/m3. While the light pollution were 
reported in Tibet, Qinghai, Hainan, and Heilongjiang 
whose PM2.5 concentrations were 4.4 ug/m3, 12.6 ug/
m3, 14.2 ug/m3, 14.2 ug/m3, respectively.Generally, the 
Beijing-Tianjin-Hebei region had relatively heavy pol-
lution problems, and at most of the central regions, the 
PM2.5 concentrations were much higher than the national 
average. However, the air pollution problems in the 
northeastern and southeastern regions have been allevi-
ated in recent years. The regions with relatively low con-
centrations were located in the western provinces, except 
for Xinjiang. The spatial auto-correlation analysis results 
of the average PM2.5 concentration are shown in Table 1. 
Moran’s I was 0.490 (p = 0.01). The results were statisti-
cally significant, indicating that there was a significant 
spatial auto-correlation of PM2.5 concentrations and thus, 
spatial aggregation.

SCM results
By applying the SCM to study the association of PM2.5 
with hypertension and diabetes, we established model 1 
without PM2.5 and model 2 including PM2.5. Both mod-
els were estimated by the MCMC method. The estimated 
results of the key parameters of the models are shown in 
Table 2. From the overall goodness-of-fit of the models, 
the goodness-of-fit index of model 2 (DIC = 707.5), was 
smaller than that of the corresponding index of model 1 
(DIC = 738.7), and the pD increased slightly after adding 
PM2.5, which indicated that although model 2 was more 
complicated, with more parameters to be estimated than 
model 1, it had a more reliable model fit. Meanwhile,  in 
model 1, η1 = 0.5619 and η2 = 0.5383 suggested that 
the unobserved common risk factors would determine 
56.19% of the risk of hypertension and 53.83% of the risk 
of diabetes, respectively. From the results of model 2, the 
proportion of the contribution of the shared components 
slightly decreased to η1 = 0.5043, η2 = 0.5027 after adding 
PM2.5, suggesting that PM2.5 was a shared spatial risk fac-
tor for hypertension and diabetes. The posterior median 
of the shared component weight δ was 1.005, greater 
than 1, indicating that other unobserved shared risk fac-
tors affected hypertension slightly more than diabetes.

Table  2 shows that the model estimates of the OR 
of hypertension and diabetes per IQR increment in 
PM2.5 concentrations (16.2 μg/m3) were 1.070 (95% CrI: 
1.034,1.708) and 1.149 (95% CrI: 1.100,1.200), respec-
tively, both of which were statistically significant and 
slightly greater for diabetes than for hypertension. 
These results indicated that the effect of PM2.5 exposure 
on diabetes was relatively higher than that on hyper-
tension. In terms of the risk attributed to PM2.5 expo-
sure by provinces, the OR ranged from 1.019 to 1.239 
for hypertension and from 1.039 to 1.553 for diabetes. 
The regions with the highest risk were Henan (OR for 
hypertension = 1.239, OR for diabetes = 1.553), Tianjin 
(OR for hypertension = 1.223, OR for diabetes = 1.513), 
and Jiangsu (OR for hypertension = 1.212, OR for dia-
betes = 1.486). The provinces with the lowest risks 
were Tibet (OR for hypertension = 1.019, OR for dia-
betes = 1.039), Qinghai (OR for hypertension = 1.054, 
OR for diabetes = 1.114), and Hainan (OR for hyperten-
sion = 1.061, OR for diabetes = 1.130).

From the spatial map of ORs shown in Fig. 3, the over-
all spatial distribution patterns were consistent with 
those of PM2.5.

Sensitivity analyses and convergence diagnosis
Figure 4 shows the estimated results of the key parame-
ters for all models in the sensitivity analyses. In sensitivity 
analysis 1, the estimated OR of PM2.5 for different years 
was not significantly different for either hypertension or 
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Fig. 1  The prevalence of hypertension and diabetes among middle-aged and elderly people
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diabetes. In sensitivity analysis 2, we found that the OR 
of PM2.5 for non-smokers was greater than that for smok-
ers. To be specific, for the effect on hypertension, the OR 
was 1.056 (95% CrI:1.001–1.113) for smokers and 1.082 
(95% CrI:1.034–1.132) for non-smokers. This difference 
was even more pronounced for diabetes, with an OR of 
1.073 (95% CrI:1.001–1.148) for smokers and 1.204 (95% 
CrI:1.137–1.274) for non-smokers. These results sug-
gested that non-smokers exposed to PM2.5 had a higher 

risk of developing both hypertension and diabetes. In 
sensitivity analysis 3, the OR of PM2.5 for the elder over 
65 was slightly larger than that for less than or equal 65, 
and this difference was more pronounced for hyperten-
sion, with ORs were 1.053 (95% CrI:1.008 ~ 1.101) for 
the younger group and 1.100 (95% CrI:1.038 ~ 1.167) for 
the older group. For sensitivity analysis 4, the results of 
removing these three provinces missing data were simi-
lar to that of primary model. In sensitivity analysis 5, we 
applied our primary model with three different priors, 
and the estimated results of the key parameters were 
basically consistent with the primary model, indicating 
that the prior distribution of the primary model was set 
reliably and the estimated results were robust.

We also analyzed the results of convergent diagnoses. 
The convergence of the OR for hypertension and diabe-
tes in the primary model is shown in Figure S1 in sup-
plementary material. According to Brooks and Gelman 

Table 1  Moran’s I for the prevalence of hypertension, diabetes, 
and PM2.5

Moran’s I P

hypertension 0.336 0.001

diabetes 0.288 0.003

PM2.5 0.490 0.001

Fig. 2  The annual average of PM2.5 concentration
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statistics, all of the key variables tested fluctuated around 
1, indicating that the two Markov chains showed good 
convergence. The model based on these prior distribu-
tions reached convergence and the estimation was rela-
tively robust.

Discussion
In this study, we first described the spatial distribution 
patterns of the prevalence of hypertension and diabetes 
among middle-aged and elderly Chinese people and the 
average PM2.5 concentrations in the China mainland by 
mapping. Moran’s I was further calculated to confirm 
the existing spatial auto-correlation of the above three 
indicators, which were consistent with previous stud-
ies. Pei et  al. reported the high prevalence of hyperten-
sion in parts of eastern China, especially the northeast, 
based on data from the newest China Hypertension 
Survey that included 451,755 participants [28]. Yin et al. 
analyzed the prevalence of hypertension among mid-
dle-aged and elderly people and found that there were 
significant spatial differences in the prevalence of hyper-
tension in China, with a relatively higher prevalence in 
Shanghai, Beijing, and Inner Mongolia, and a relatively 
lower prevalence in Fujian [29]. As for diabetes, Zhou 
et al. conducted a study based on China Noncommuni-
cable Disease Surveillance data, which included 98,058 
participants, and showed that Guizhou and Yunnan had 
the lowest prevalence, whereas Beijing had a signifi-
cantly higher prevalence, which was also consistent with 
the results of our study [30]. In conclusion, the effect of 
the differences in lifestyle, environmental factors, and 
socioeconomic development levels may contribute to 
the above geographic patterns. The PM2.5 results showed 
that the highest PM2.5 concentrations were in the Beijing-
Tianjin-Hebei region, which was consistent with a previ-
ous study conducted in China [31]. It can be speculated 
that the higher PM2.5 concentrations in these regions 
were related to coal-based industries such as coal-fired 
power plants, and iron and steel manufacturing [32].

Furthermore, this spatial study demonstrated that 
long-term exposure to PM2.5 was significantly associated 
with an increased prevalence of hypertension and diabe-
tes among middle-aged and elderly people in China. Our 
estimate was also robust since the PM2.5 concentrations 
of multiple years were considered in the sensitivity analy-
ses. To our knowledge, this was the first time to study the 
long-term effect of air pollution on hypertension and dia-
betes simultaneously from spatial perspective.

Our results estimated an OR of 1.07 in the prevalence 
of hypertension associated with each IQR (16.2  μg/
m3) increase in long-term PM2.5 exposure. Our findings 
were comparable to those of another study in China, 
which reported an OR of 1.11 with an IQR (41.7 μg/m3) 
increase in PM2.5 [33]. Gu et  al. further confirmed the 
positive association based on a cohort study in China, 
which showed that each 10  μg/m3 increment in PM2.5 
exposure increased the risk of hypertension by 11% [11]. 
Similarly, the American Cancer Society Cancer Preven-
tion Study (ACSCPS) and another Canadian cohort 
study both showed a positive association of PM2.5 with 
hypertension [34, 35]. Our study found an OR of 1.149 
for diabetes associated with an IQR (16.2 μg/m3) increase 
in long-term PM2.5 exposure, which was consistent with 
previous studies. For example, Liu et.al. found a preva-
lence ratio of 1.17 in type 2 diabetes mellitus (T2DM) 
associated with each 41.1  μg/m3 increase of PM2.5 con-
centration [10]. Gu et.al. estimated the percent increase 
in the prevalence of diabetes to be 15.66% for an increase 
of 10 μg/m3 in PM2.5 exposure in a study also conducted 
in China [12]. Several meta-analyses further confirmed 
the above positive associations [36–38]. Notably, the 
effect of PM2.5 exposure on hypertension and diabetes 
in our study was slightly less than that in previous stud-
ies. The differences may be partly explained by the differ-
ences in PM2.5 composition as well as the vulnerability of 
the populations. Moreover, compared to previous stud-
ies, which did not control for spatial confounding factors 
related to diseases, our study used the SCM to control 

Table 2  SCM results

* Model 1 without PM2.5. Model 2 included PM2.5

OR Odds ratios, n the proportion of the shared common component’s contribution to the overall spatial random effect, δ The weight of the contribution of the shared 
component, DIC Deviance information criterion

Parameters Model 1 Model 2

Hypertension Diabetes Hypertension Diabetes

OR.PM2.5 1.070(1.034,1.108) 1.149(1.100,1.200)

η 0.562(0.309,0.789) 0.538 (0.303,0.762) 0.504 (0.278,0.730) 0.503(0.279,0.726)

δ 1.041(0.772,1.409) 1.005(0.760, 1.324)

DIC(pD) 738.700(2.564) 707.500(4.236)
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Fig. 3  Spatial distribution of ORs of disease from PM2.5 exposure
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for the effect of other confounding factors in the spatial 
perspective, making the PM2.5 effect estimates closer the 
actual effects. Although the exact biological mechanisms 
behind the effect of PM2.5 on hypertension and diabe-
tes are unclear, several plausible explanations have been 
proposed. One is that the inhalation of PM2.5 induces the 
activation of pulmonary responses, which may cause an 
imbalance in the autonomic nervous system, resulting in 
high blood pressure and insulin resistance [39, 40]. Adi-
pose tissue inflammation, oxidative stress, endothelial 
dysfunction, and DNA methylation can be also induced 
by PM2.5, which further results in endoplasmic reticulum 

stress, insulin signaling abnormalities, and apoptosis. 
These processes might finally result in blood pressure 
elevations, insulin resistance, and metabolic disturbances 
[41–45].

The effect of PM2.5 on hypertension and diabetes in 
this study was stronger among non-smokers, consist-
ent with the results of Puett et al. [46] and Weinmayr 
et  al. [47], whose studies showed that non-smokers 
were more sensitive to PM2.5 than smokers for devel-
oping hypertension and diabetes. Smoking is a risk 
factor for hypertension and diabetes, and the inha-
lation of cigarette smoke was shown to stimulate 

Fig. 4  Sensitivity analysis results
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physiological responses similar to those from the inha-
lation of PM2.5, and the two related exposures shared 
plausible biological mechanisms, leading to adipose 
tissue inflammation and oxidative stress. Thus, it was 
plausible that smokers were much less sensitive to 
PM2.5 [48]. Another finding of sensitivity analyses was 
that effects of PM2.5 on hypertension were pronounced 
in the older (< 65  years) group. For older people, life-
time PM2.5 exposure causes longer-term oxidative 
stress and accumulated systemic inflammation, finally 
leading to older individual being more vulnerable to 
hypertension induced by PM2.5 [49]. Previous papers 
studying on the effects of air pollutions on hyperten-
sion also demonstrated the vulnerability of older peo-
ple [50, 51].

Our study had several strengths. First, this was the 
first time the association of long-term exposure to 
PM2.5 with hypertension and diabetes was simultane-
ously explored in China, and since the two diseases 
have similar risk factors, they were modeled by bor-
rowing variation information from each other, which 
well overcame the problem of the insufficient inclusion 
of control variables. Thus, the revealed associations 
between PM2.5 and hypertension and diabetes were 
closer to the real situations. Second, for the risk fac-
tors, PM2.5, with spatial correlation, we utilized Bayes-
ian spatial analysis to explore the spatial effect, which 
could not be handled by classic statistical methods. 
Third, we combined satellite observations, chemical 
transport modeling, and ground-based monitoring to 
calculate PM2.5 exposure in all provinces of the China 
mainland, which had little bias in predicting ground-
level PM2.5 concentrations. Fourth, this study included 
multiple periods of PM2.5 exposure concentrations in 
the sensitivity analysis, which ensured the robustness 
of the results.

Conversely, some limitations for this study should 
be also noted. First, the exposures were for out-
door pollution and did not estimate personal expo-
sure levels. However, previous studies suggested 
a relatively strong correlation between outdoor 
PM2.5 concentrations and the corresponding indi-
vidual exposure concentrations for middle-aged and 
elderly people [52, 53], which provided the basis 
for our study to use outdoor PM2.5 as the exposure 
variable. Second, this study failed to consider varia-
tions in PM2.5 within the province, which could lead 
to an underestimate of the associations. Third, this 
study did not consider that the use of drugs such as 
anti-hypertensives would be a possible effect modi-
fier because we did not have access to drug use infor-
mation in this survey. Fourth, limited evidence was 
available regarding the causal relationship between 

PM2.5 and hypertension and diabetes in our study. 
However, we considered the effect of multiple peri-
ods of PM2.5 exposure on the outcome, which pro-
vided a basis for a future causal study.

Conclusions
This study found distinct spatial distribution patterns for 
the prevalence of hypertension and diabetes among mid-
dle-aged and elderly people and PM2.5 concentrations in 
the China mainland. Furthermore, our findings demon-
strated that long-term exposure to PM2.5 might increase 
the risk of hypertension and diabetes and that non-smok-
ers were more sensitive to the effect of PM2.5. Therefore, 
it provided a better understanding of hypertension and 
diabetes attributable to PM2.5 exposure, which will ben-
efit policy-making and intervention designs for chronic 
disease prevention in China.
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