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Abstract

The differences in evolutionary patterns of young protein–protein interactions (PPIs) among distinct species have long been a puzzle.

However, based on our genome-wide analysis of available integrated experimental data, we confirm that young genes preferentially

integrate into ancestral PPI networks, and that this manner is consistent in all of six model organisms with widely different levels of

phenotypic complexity. We demonstrate that the level of restrictions placed on the evolution of biological networks declines with a

decrease of phenotypic complexity. Compared with young PPI networks, new co-expression links have less evolutionary restrictions,

soayounggenewithahighpossibility tobecoexpressedotheryounggenes relatively frequentlyemerges in the four simplergenomes

among the six studied. However, it is not favorable for such young–young coexpression in terms of a young gene evolving into a

coexpression hub, so the coexpressionpattern could gradually decline. Toexplain this apparent contradiction,we suggest that young

genes that are initially peripheral to networks are temporarily coexpressed with other young genes, driving functional evolution

because of low selective pressure. However, as the expression levels of genes increase and they gradually develop a greater effect on

fitness, younggenes start tobecoexpressedmorewithmembersofancestral networksand lesswithother younggenes.Ourfindings

provide new insights into the evolution of biological networks.
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Young Genes and the Evolution of
Protein–Protein Interaction Networks

Gene contents and complexity roughly increases with

increasing phenotypic complexity of an organism. The

number of genes tends to evolve via gene gain or loss

during long-term evolutionary processes (McLysaght et al.

2003; Hahn et al. 2007; Kettler et al. 2007; Chen et al.

2010). A gene is considered to be relatively young when its

detectable orthologs are limited to very closely related species

(Chen et al. 2013). Compared with ancestral genes, which are

less likely to be lost, the fate of young genes is more uncertain

because of their potentially unnecessary or redundant func-

tions (Vishnoi et al. 2010; Chen et al. 2012). To avoid

elimination over the course of evolution, young genes acquire

necessary functions by rapid amino acid changes, followed by

their adjustment of protein–protein interactions (PPIs) (Zhang

et al. 2004; Ross et al. 2013).

The emergence of young genes provides important genetic

novelties that could promote the evolution of PPI networks

(Qin et al. 2003; Capra et al. 2010; Zhang et al. 2015).

Proteins encoded by young genes integrate into and reshape

ancestral PPI networks to develop corresponding biological

roles, which has been confirmed in several individual young-

gene studies (Matsuno et al. 2009; Chen et al. 2012; Weng

et al. 2012). Using genome-wide data, a large number of

young genes were found to have integrated into biological
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networks throughout human and mouse evolution (Zhang

et al. 2015). However, it was observed in yeast that genes

of similar age and origin preferentially interact with each

other (Qin et al. 2003; Capra et al. 2010). Thus, in the case

of yeast, protein products of young genes were more likely to

interact with those of other young genes, but less likely to

participate in ancestral PPI networks.

The differences in evolutionary patterns of PPI networks

between mammals and simple living organisms (such as

yeast) have long been a puzzle. The STRING database quan-

titatively integrates interaction data for a large number of or-

ganisms and includes data from other well-known interaction

databases (Szklarczyk et al. 2015). To address this issue, we

used the latest release of PPI data (version 10) to investigate

the evolution of PPIs among six model organisms, listed here in

decreasing order of phenotypic complexity: Homo sapiens

(human), Mus musculus (mouse), Drosophila melanogaster

(fruit fly), Caenorhabditis elegans (worm), Saccharomyces cer-

evisiae (yeast) and Escherichia coli. All integrated PPI data were

in accordance with classic and robust power-law distributions

of connectivity (see “Material and Methods” section).

Phylogenetic ages were determined using a method

described by Wolf et al. (2009). First, we assigned reference

genomes (see “Material and Methods” section; supplementary

table S1, Supplementary Material online) into eight, seven, six,

six, four and five phylogenetic branches for human, mouse,

fruit fly, worm, yeast and E. coli, respectively, in accordance

with taxonomic classifications and divergence times. Second,

matching protein orthologs in the reference genomes were

determined using the best reciprocal hit (RBH) from a BLASTP

search. Finally, we assigned a gene to a certain branch if it

matched at least half of the genomes in the branch, consider-

ing a genome of a constant size under a steady-state process of

gene acquisition and loss (Wolf et al. 2009). Genes that could

not be assigned to any branches were classified as the youngest

one (branch 1).

Large numbers of proteins encoded by young genes were

found to interact with other ones with similar origins (Qin et al.

2003). In the current study, it was necessary to consider the

variations in gene numbers among the age classes (supple-

mentary table S1, Supplementary Material online) to avoid

bias in the results. Thus, we used the proportion that the

number of an observed interaction was greater than the

number expected by chance to estimate the possibility that

the interaction emerges. For each gene in the “branch 1”, we

randomly picked its interacting genes in accordance with ob-

served connectivity with 10,000 Monte Carlo simulations. The

possibility of the birth of interactions involving “branch 1”

genes significantly increases with increasing divergence

times of the genes interacting with “branch 1” genes

(E. coli, r = 0.241, P< 2.2� 10� 16; yeast, r = 0.457,

P<2.2� 10� 16; worm, r = 0.412, P<2.2�10� 16; fruit

fly, r = 0.274, P<2.2�10� 16; mouse, r = 0.591, P< 2.2�

10� 16; human, r = 0.451, P<2.2�10� 16). This suggests

that a protein product of younger gene prefer to interact

with proteins encoded by older genes. To further confirm

the preference for “young–old” PPIs, we identified young

genes as those that had diverged fewer than 50 Ma, but

old genes as those belonging to the oldest branch (marked

in supplementary table S1, Supplementary Material online). All

six PPI datasets show that the possibility of novel “young–

young” interactions emerging is significantly lower than that

of “young–old” interactions doing so (t-test: P< 2.2�

10� 16; fig. 1A), suggesting that the establishment of

“young–old” PPIs could be an effective way to improve

young gene fitness.

To estimate the robustness of these results, we randomly

removed or added one or two reference species in accordance

with phylogenetic relationships by 20 times in the process of

human age estimation and then performed 10,000 Monte

Carlo simulations as mentioned earlier. All 20 validations sug-

gested that the possibility of “young–old” PPIs emerging was

significantly higher (t-test: P< 2.2� 10� 16). The finding of a

preference for “young–old” PPIs was also robust upon merg-

ing neighboring branches or separating a branch into several

individuals according to divergence times. Changing the spe-

cies in the phylogenetic tree did not affect our results. There is

no single, optimal method to define the age of a gene. Young

genes arise from not only de novo (orthologs) but also via

duplication (paralogs). In this work, we simply used a straight-

forward and crude procedure to identify gene ages based on

the absence and presence of orthologs in the genomes

through phylogenetic branches. Here, another dataset on

human gene age was retrieved from a study by Zhang et al.

(2010). Owing to being based on more sophisticated genome

alignment, rather than gene alignment, these data provided

excellent estimates of the ages of new genes that originated

from DNA-based duplication or RNA-based duplication, or

arose from de novo. From the data of Zhang et al. (2010),

we further confirmed that the possibility of novel PPIs emerg-

ing for genes from the youngest branch was significantly in-

creased with increasing divergence times of the interacting

genes (r = 0.386, P<2.2�10� 16). Thus, using the cruder

method of identifying gene-based age does not change the

results.

Fewer Restrictions on the Evolution of
Young Co-expression Links

Both PPI and co-expression link (CEL) networks reflect biolog-

ical communications, with the former being direct and phys-

ical, but the latter being functionally related; however, they

are controlled by similar transcriptional regulatory systems. At

present, we generally understand less about CELs than about

PPIs. However, it has been found that young genes were sig-

nificantly integrated into CELs associated with specific stages

of fruit fly development (Liu et al. 2014). In our study, CELs

were also independently investigated and their manner of
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evolution was compared with that of PPIs. All integrated CEL

data met the criteria for classic and robust power-law distri-

butions of connectivity, the same as the PPI data (see

“Material and Methods” section).

Using 10,000 Monte Carlo simulations, we observed that

the possibility of the emergence of a connection for the

“branch 1” gene significantly and positively correlates the di-

vergence times of the connected gene in both mouse

(r = 0.302, P< 2.2� 10� 16) and human (r = 0.463,

P<2.2�10� 16) in CEL networks, as well as in PPI networks.

This suggests that the possibility of generating a novel CEL

indeed increases with the age of the gene that is coexpressed

with during mammalian evolution. However, this situation is

reversed in the four simpler genomes (E. coli, r =�0.371,

P<2.2�10� 16; yeast, r =�0.257, P<2.2�10� 16;

worm, r =�0.198, P< 2.2� 10� 16; fly, r =�0.337,

P<2.2�10� 16). Furthermore, we observed more “young–

young” CELs than “young–old” among the genomes of E.

coli, yeast, worm and fruit fly (t-test: P< 2.2� 10� 16; fig. 1B).

Our results suggest that a young gene is more likely to be

coexpressed with other young genes in the four simpler

genomes.

We then investigated the evolutionary restriction on the

emergence of “young–young” CELs among six model organ-

isms with widely different levels of phenotypic complexity. We

used the proportion that the value of observed “young–

young” divided by “young–old” connection counts was

greater than expected by chance to estimate the possibility

of emergence of superior “young–young” PPIs (CELs) from

10,000 Monte Carlo simulations. With each Monte Carlo

repeat, we randomly picked the interacting genes for a

young gene in accordance with observed connectivity. As

shown in figure 2A and B, in either PPIs (r =�0.104,

P = 5.1�10� 16) or CELs (r =�0.262, P<2.2�10� 16), sim-

pler genomes are more likely to gain “young–young” connec-

tions. We compared the possibility of generating superior

“young–young” PPIs and CELs. Such possibilities for CELs

are significantly higher than those for PPIs in E. coli (t-test:

P<2.2�10� 16), yeast (P<2.2�10� 16), worm (P< 2.2�

10� 16), fruit fly (P< 2.2� 10� 16) and mouse (P = 1.4�

10� 7). However, there was no significant difference between

human PPIs and CELs (P = 0.272). These results suggest that

the restrictions placed on the evolution of networks decline

with decreasing phenotypic complexity. Compared with

young PPI networks, new CEL networks are under less strin-

gent evolutionary restrictions, so in the four simpler genomes,

young coexpression between pairs of young genes emerges

more often.

More Young Coexpression, Less
Evolutionary Restriction

The young gene with a high possibility to be coexpressed

other young genes relatively frequently emerges in the four

simpler genomes. To further explain this issue, here we fo-

cused on investigating network features of all genes rather

than the only young genes. We then investigated the coex-

pression connectivity of genes with such high possibility of

emerging novel CELs. We denoted the young CEL as that a

gene had coexpressed a young gene, whereas the old CEL as

that a gene had coexpressed an old gene. To estimate the

possibility that gain superior young CELs, we obtained the

proportion for a gene that the observed value of young di-

vided by old CEL counts was greater than expected by chance

from 10,000 Monte Carlo simulations. With each Monte

Carlo repeat, we randomly picked the interacting genes for

FIG. 1.—Comparison of the possibilities of “young–young” and “young–old” (A) PPIs and (B) CELs emerging in six organisms. The bars denote the mean

possibilities for the “young–young” and “young–old” groups and the error bars show the SEM for each group. All “young–young” distributions are

significantly different from “young–old” distributions (t-test: P< 2.2� 10� 16).
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an investigated gene in accordance with observed connectiv-

ity. The genes are classified into five groups with different

orders of magnitude of such superior possibilities

(�4,�3,�2,�1 and 0). Significant negative correlations

were found between connectivity and the possibility scales

(fig. 3; E. coli, r =�0.665, P< 2.2� 10� 16; yeast,

r =�0.645, P< 2.2�10� 16; worm, r =�0.351,

P<2.2�10� 16; fruit fly, r =�0.392, P<2.2�10� 16;

mouse, r =�0.652, P< 2.2� 10� 16; human, r =�0.589,

P<2.2�10� 16). Young genes usually shows low connectiv-

ity (Zhang et al. 2015), however, the possibility that the gene

with lower connectivity is coexpressed with other young genes

rises. This could be suggestive of a gradual process of young

genes evolving to become hubs as they show a decline in

terms of the proportion of “young–young” patterns of

coexpression.

Young genes may have a reduced chance of becoming

coexpression hubs if they have already developed a large

number of “young–young” coexpressions. The interactions

in “young–young” CELs could be unstable and thus would

decline in the long term over the course of evolution, espe-

cially for E. coli, yeast, worm and fruit fly. However, if this were

the case, why do these genes with low CEL network connec-

tivity have such high young coexpression levels? One answer

to this might be that this is a potential mechanism to improve

the likelihood of survival during early evolution because young

genes are gradually integrated into networks to form newer

and less connected nodes (Zhang et al. 2015). High expression

and strong essentiality are both considered to be critical fea-

tures of topologically central genes. Next, to confirm this, the

correlations between the possibility scales of gaining superior

young CELs and critical features, focusing on the four simpler

genomes among the six included in this study, were

compared.

In this study, we assessed the RPKM or FPKM values (reads

or fragments per kilobase per million mapped reads) from the

RNA-seq data obtained from public data. Then, the RPKM/

FIG. 2.—Correlations of phenotypic complexity (genome size) and possibility of generating superior “young–young” (A) PPIs or (B) CELs among six

organisms. The dots denote the mean possibilities for six organisms and the error bars show the SEM. The line indicates the significant regression correlation

between genome sizes and possibilities.

FIG. 3.—Trends of gene connectivity and its possibility of generating

superior young CELs among six organisms. The x-axis and y-axis represent

log-transformed data. The genes are classified into five groups with dif-

ferent orders of magnitude of possibilities (�4,�3,�2,�1 and 0). The

dots denote the mean log10-transformed connectivity of each possibility

group and the error bars show the SEM. The lines indicate the significant

regression correlation between log10-transformed connectivity and possi-

bility scales (P<2.2�10� 16).
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FPKM values were scaled by a log function to describe mRNA

levels. Through comparative analysis of mRNA levels, a

significant negative correlation between mRNA levels and

the possibility scales of the emergence of superior young

CELs was observed (fig. 4A; E. coli, r =�0.307,

P<2.2�10� 16; yeast, r =�0.412, P<2.2�10� 16;

worm, r =�0.377, P< 2.2� 10� 16; fruit fly, r =�0.305,

P<2.2�10� 16). Meanwhile, a negative relationship be-

tween essentiality and young coexpression percentage was

confirmed in three experimental knock-out datasets for the

genomes of E. coli and yeast (fig. 4B; EC01, r =�0.203,

P<2.2�10� 16; SC01, r =�0.337, P< 2.2�10� 16; SC02,

r =�0.312, P< 2.2� 10� 16). This could indirectly confirm

that young genes are initially coexpressed with other young

genes, temporarily, before they are integrated into core net-

works. However, as evolutionary time passes, the expression

of genes increases and they have more of an effect on essen-

tiality, and establish more interactions with older genes and

networks.

Mutations are the driving force of variation on which nat-

ural selection acts (Lynch 2010). The Ka/Ks ratios are usually

used as a signature for selection. These selection signatures

were computed by comparing the following genomes: C. ele-

gans versus C. briggsae, D. melanogaster versus D. yakuba,

S. cerevisiae versus S. mikatae and E. coli versus Salmonella

typhimurium. Significant correlations of Ka/Ks ratios and the

possibility scales of the emergence of superior young CELs

indicated that the genes with a higher proportion of young

FIG. 4.—Relationships between the possibility of genes generating superior young CELs and their (A) mRNA levels, (B) essentiality, (C) Ka/Ks and (D)

mutation rates in four simpler genomes. In (A–C), the y-axis represents log10-transformed data and the genes are classified into five groups with different

orders of magnitude of possibilities (�4,�3,�2,�1 and 0). The dots denote the mean of (A) log10-based R(F)PKM values, (B) essentiality and (C) Ka/Ks. The

error bars show the SEM. The lines indicate the significant regression correlation (P< 2.2�10� 16). In (D), the genes are classified into two groups (P> 0.1

and P< 0.1). The bars denote the mean mutation rates of each possibility group and the error bars show the SEM.

Wei et al. GBE
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coexpressions are rapidly evolving (fig. 3C; E. coli, r = 0.294,

P<2.2�10� 16 yeast, r = 0.325, P< 2.2�10� 16; worm,

r = 0.270, P<2.2�10� 16; fruit fly, r = 0.281, P< 2.2�

10� 16). Next, we focused on an analysis of the impact of

neutral mutations on young CEL evolution using integrated

mutation accumulation (MA) experimental data. Here, we

only classified the genes into two subgroups (one group

with P>0.1, the other with P<0.1), to reduce the noise

from abundant unmutated sites. As figure 4D shows, there

was no significant mutation bias within coding regions be-

tween the two gene subgroups among E. coli (t-test,

P = 0.752), yeast (P = 0.245) and fruit fly (P = 0.116); however,

weak but significant bias was shown in worm (P = 0.026).

These results imply that young genes gradually come under

increasing selective pressure or decreasing evolutionary rates

while they increase their rates of coexpression with older

genes. This relationship holds regardless of the level of gene

mutation.

Conclusions

In this work, we compared the evolutionary patterns between

PPI and CEL networks among different genomes. Although

similar patterns were obtained for all of the PPI networks,

networks were found to be subjected to less evolutionary re-

strictions with decreasing phenotypic complexity. Compared

with young PPI networks, the evolution of new CEL networks

is less restricted, so that the evolutionary patterns change in

CEL networks in simple organisms. In these simple organisms,

young genes preferentially generate novel “young–young”

CELs, but they tend to interact with ancestral links in PPI net-

works. These young genes are initially coexpressed with other

young genes, which could be a way to drive functional evo-

lution because of the low selective pressure that they are

facing. Upon increasing their expression and having more of

an effect on fitness, young genes develop more patterns of

coexpression with core networks and fewer with young

genes. However, “young–young” CELs are limited in human

and mouse, possibly because of the phenotypic complexity of

such higher animals. Such young networks could, however,

have important phenotypic effects in brain development

(Zhang et al. 2015). Our results indicate that the impact of

evolutionary pressure on biological networks increases with

increasing phenotypic complexity.

Material and Methods

Phylogenetic Ages

We downloaded completely sequenced eukaryotic genomes

from Ensembl Genomes (http://www.ensembl.org/; V31) and

bacterial/archaeal genomes from RefSeq (http://www.ncbi.

nlm.nih.gov/refseq/). In accordance with NCBI taxonomic clas-

sifications and divergence times from publications listed in

supplementary table S1, Supplementary Material online, we

assigned the genomes into eight, seven, six, six and four phy-

logenetic branches for H. sapiens (Ensembl assembly version:

GRCh38), M. musculus (GRCm38), D. melanogaster (BDGP6),

C. elegans (WBcel235) and S. cerevisiae (R64), respectively.

These branches indicated that the genes diverged from 0 to

1,296 Ma. Closely related genomes were removed in each

branch and then we randomly chose at most 12 reference

genomes, ensuring that the references were not closely re-

lated to each other in each branch (Langille et al. 2008).

Finally, 35, 27, 39, 32 and 26 genomes were used for deter-

mination of the gene origins of human, mouse, fruit fly, worm

and yeast, respectively (supplementary table S1,

Supplementary Material online). However, 40, 235, 113,

69 and 86 randomly collected genomes from Archaea,

Bacteria, Proteobacteria, Gammaproteobacteria and

Enterobacteriaceae classes (supplementary table S1,

Supplementary Material online), respectively, was used to de-

termine the phylogenetic relationships of the bacterial species

E. coli (RefSeq accession: NC_000913). This relationships sug-

gested a longer evolutionary time scale (>4,000 Ma).

All raw homologous matches of H. sapiens, M. musculus,

D. melanogaster, C. elegans and S. cerevisiae were obtained

from Ensembl’s BioMart homology track. Then, we confirmed

protein orthologs using the RBH from a BLASTP search with an

E-value cut-off of 10� 6 and 80% minimum alignable resi-

dues, based on an age-identifying method described by

Wolf et al. (2009). In a similar way, all-against-all BLASTP

was used for an ab initio search of homologs of E. coli

genes (E-value< 10� 6 and coverage>80%).

Considering gene loss and gain events, the number of

matched genomes required to assign a protein to a specific

age class was determined as half the effective number of

collected genomes in each branch (Wolf et al. 2009; Chen

et al. 2012). The oldest age was adopted if a gene could be

assigned to multiple branches. Additionally, if only one

genome involved in a branch, we required genes to assign

into this branch unless they also matched at least in one

genome in the next younger branch. Genes that could not

be assigned to any branches were classified as the youngest

ones (branch 1).

CEL and PPI Data

We extracted the integrated CEL and PPI data from the

STRING database (http://string-db.org/), which quantitatively

integrates protein interaction data for a large number of or-

ganisms and includes data from other well-known interaction

databases. Each interaction in the database was assigned a

confidence score (0–1) corresponding to the probability of

finding the interaction in experiments. Only interactions with

itself were excluded from further analysis. The reconstructed

network should be scale-free and in accordance with the

power-law distribution of connectivity (Barabási 2009;

Zhang et al. 2015). We found strong and significant negative
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log10-transformed relationships between connectivity and

gene counts with corresponding connectivity in six recon-

structed PPIs (r =�0.962 ± 0.029, P< 2.2�10� 16) and six

reconstructed CELs (r =�0.964 ± 0.009, P< 2.2� 10� 16),

which indicated that the power-law distribution of connectiv-

ity was followed in all integrated scale-free CEL and PPI data

(supplementary table S2, Supplementary Material online). To

examine the robustness of the integrated network, we re-

moved interactions using different quantile cut-offs and re-

estimated the log10-transformed relationships. The correlation

coefficients with high similarity suggest that power-law distri-

butions were robust when data were removed using confi-

dence score cut-offs (supplementary table S2, Supplementary

Material online). However, the removal of interactions would

be responsible for reducing the average connectivity; thus, we

retained integrated networks in their entirety.

Expression Levels

E. coli RNA-seq data (of SRR794833, SRR794834, SRR794835,

SRR794836, SRR794837 and SRR794838) were extracted

from the Sequence Read Archive database (http://www.ncbi.

nlm.nih.gov/sra). The reads were mapped to the correspond-

ing reference genomes and RPKM values were estimated

using Rockhopper (McClure et al. 2013). Previously assembled

RNA-seq data of S. cerevisiae were used to estimate FPKM

values (Nookaew et al. 2012). C. elegans and D. melanogaster

RNA-seq data were downloaded from WormBase (http://

www.wormbase.org/) and FlyBase (http://flybase.org/), re-

spectively. We used average RPKM values for D. melanogaster

and average FPKM values for C. elegans to assess transcript

abundance.

Essentiality

We downloaded fitness data on E. coli and S. cerevisiae from

the Integrated Fitness Information for Microbial Genes (IFIM;

http://cefg.uestc.edu.cn/ifim) database (Wei and Ye et al.

2014). The S. cerevisiae datasets of SC01 and SC02 and E.

coli of EC01 were estimated from experiments on single-gene

deletion mutants. IFIM records the fitness upon the deletion of

a gene, and we used these data (1� deletion fitness) to esti-

mate the essentiality effects.

Substitution Rates

Complete coding sequences of C. briggsae (release CB4),

D. yakuba (release 1.04), S. mikatae (release 1.1) and S. typhi-

murium (NC_003197) were obtained from WormBase,

FlyBase, the Saccharomyces Genome Database (http://www.

yeastgenome.org/) and RefSeq, respectively. Orthologs of the

coding sequences were identified by RBH from a BLASTP

search with an E-value cut-off of 10� 6, a minimum of 80%

aligned residues, and 30% shared identity. We only retained

orthologs for which the protein sequences matched their nu-

cleotide sequences. Protein alignments were generated with

ClustalW (Thompson et al. 1994) and then back-translated

into nucleotide alignments based on their original nucleotide

sequences. The numbers of substitutions per nonsynonymous

site (Ka) and per synonymous site (Ks) were computed by

PAML (Xu and Yang 2013).

Mutation Data

There are 33 sequenced MA datasets in the current version

(v1.7) of the SMAL (http://cefg.uestc.edu.cn/smal) database

(Wei and Ning et al. 2014). We integrated MA datasets:

CELE1001/2/3/4 for C. elegans (598 mutated bases),

DMEL1001/3/4 for D. melanogaster (936 mutated bases),

SCER1001/2 for S. cerevisiae (298 mutated bases) and

ECOL2001/2 for E. coli (1,857 mutated bases). The mutation

rate of coding regions at each gene was estimated directly

from MA lines.

Supplementary Material

Supplementary tables S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjour-

nals.org/).
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