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ABSTRACT
Osteoarthritis (OA) occurs mostly in the knees, hips, finger interphalangeal joints, and spinal facet 
joints, and is characterized by cartilage degeneration. The existing bulk RNA sequencing (bulk 
RNA-seq) and single-cell sequencing (scRNA-seq) data for chondrocytes in the osteoarthritic knee 
joint provide the expression profiles of entire cell populations and individual cells, respectively. 
Here, we aimed to analyze these two types of sequencing data in order to obtain a more 
comprehensive understanding of OA. We compared the analysis results of bulk RNA-seq and 
scRNA-seq from the dataset GSE114007 and the dataset GSE104782, respectively, and identified 
the differentially expressed genes (DEGs). Then, we tried to find the key The transcription factor is 
a more fomal term (TFs) and long non-coding RNA (lncRNA) regulation. We highlighted 271 genes 
that were simultaneously suggested by these two types of data and provided their possible 
expression pattern in OA. Among the 271 genes, we identified 14 TFs, and TWIST2, MYBL2, RELA, 
JUN, KLF4, and PTTG1 could be the key TFs for the 271 genes. We also found that 8 lncRNAs 
among the 271 genes and the lncRNA regulation between CYTOR and NRP1 could contribute to 
the pain and vascularization of cartilage in the osteoarthritic knee. In short, our research com
bined the analysis results of bulk RNA-seq and scRNA-seq data for OA chondrocytes, which will 
contribute to further elucidation of the molecular mechanisms of OA pathogenesis.
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1. Introduction

Osteoarthritis (OA) is the most common form of 
arthritis affecting the joints, including knees, hips, 
finger interphalangeal joints, and spinal facet joints. 
And it usually occurs after middle age, causing joint 

pain and restricted activity [1]. OA is the leading cause 
of lower limb disability in the elderly. Estimated 
240 million people worldwide suffer from OA [2], 
with symptomatic OA found in 9.6% of men and 
18.0% of women over 60 years old (World Health 
Organization, n.d.). Pathologically, OA is 
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a degenerative disease due to the cartilage deteriora
tion that occurs. Cartilage, which is the main lesion 
site, has been the focus of OA research.

Sequencing technology can reveal intracellular 
transcription and further assist in inferring signaling 
pathways. Bulk RNA sequencing (bulk RNA-seq) and 
single-cell RNA sequencing (scRNA-seq) are cur
rently used in mainstream sequencing technologies. 
They reflect cell transcription at different levels. Bulk 
RNA-seq provides a tissue-wide transcription land
scape. It enables deep investigation into the transcrip
tome, but it may obscure critical differences between 
individual cells. The emerging scRNA-seq reveals the 
expression profiles of individual cells [3]. Due to the 
small amount of material that is analyzed, it is not 
possible to obtain information as deep as that obtained 
by bulk RNA-seq, although patterns of gene expres
sion can be identified through gene clustering analy
sis [3,4].

The sequencing data for human chondrocytes in 
the osteoarthritic knee exist for these two types of 
sequencing. Studies have examined bulk RNA-seq 
sampled from healthy and end-stage osteoarthritic 
cartilage. Chen et al. [5] used RNA-Seq to screen the 
differentially expressed genes (DEGs) in chondro
cytes of normal adults and patients with knee OA. 
Fisch et al. [6] collected knee cartilage tissue from 5 
females and 13 males (aged 18–61 years, mean 38) 
normal human, and 12 females and 8 males (aged 
52–82 years old, mean 66) patients with OA. RAN- 
seq revealed 1332 DEGs in OA and non-OA sam
ples. The only scRNA-seq study involved 1464 label
ing chondrocytes that were obtained from 10 end- 
stage osteoarthritic cartilages with different patholo
gical stages of cartilage lesions [7]. Thus, the bulk 
RNA-seq studies could reflect the overall gene 
expression differences between OA and normal sam
ples, and the scRNA-seq study could simulate the 
dynamic gene expression pattern of OA progression. 
Previous bulk RNA-seq studies focused on differen
tially expressed genes (DEGs) between OA and nor
mal samples or co-expressed genes under OA or 
normal conditions, and revealed several dysregulated 
transcription factors (TFs) [6,8], microRNAs 
(miRNAs) [5,9], long non-coding RNAs (lncRNAs) 
[10–12], and circular RNAs (circRNAs) [13]. The 
scRNA-seq study focused on identifying different 
cell clusters of OA chondrocytes and, to some extent, 

explored the expression of transcription factors for 
early-stage and late-stage OA [7].

To identify genes that play an important role in 
the pathogenesis of OA and their expression pattern, 
we compared the genes suggested by these two types 
of data from the dataset GSE114007 and the dataset 
GSE104782, respectively, of the knee OA samples, 
using their own unique analytical methods. Based on 
the genes that were simultaneously suggested by 
these two types of data, we further explored the key 
transcriptional regulators and long non-coding RNA 
(lncRNA) regulation among them. Our research 
may provide some enlightenment for the under
standing and treatment of OA.

2. Materials and methods

2.1 Data collection and preprocessing.

The Gene Expression Omnibus (GEO) database 
was searched using the keywords ‘Osteoarthritis,’ 
‘cartilage,’ ‘chondrocyte,’ ‘knee joint,’ and ‘human.’

Samples from the dataset GSE114007 [6] were sepa
rately sequenced on two platforms, Illumina HiSeq 
2000 (GEO accession number: GPL11154) and 
Illumina NextSeq 500 (GEO accession number: 
GPL18573), using an RNA-seq technique. There 
were 38 samples, 18 of which were derived from tissue 
banks and were normal knee cartilage tissues without 
joint disease or trauma history, and 20 of which were 
OA-affected tissues harvested from knee arthroplasty. 
The normal tissues came from 5 women and 13 men 
(18–61 years of age, mean 36.6). The OA tissues were 
derived from 12 women and 8 men (51–82 years of 
age, mean 66.2).

The dataset GSE104782 [7] followed a modified 
single-cell tagged reverse transcription (STRT) proto
col to generate sequencing libraries and was 
sequenced on an Illumina HiSeq 4000 platform. 
Knee cartilage was procured from 10 patients under
going knee replacement surgery. Distinct areas of 
cartilage were divided into five different stages, S0 to 
S4, corresponding to the five grades of ICRS cartilage 
lesion classification system ranging from ‘normal’ to 
‘severely abnormal’. For each patient staging area, 
a sample of 32 cells was removed, and a total of 1600 
chondrocytes were obtained. After quality control, 
1464 chondrocytes were suitable for subsequent 
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analysis. The samples were from seven women and 
three men (60–77 years of age, mean 66.5).

Because the datasets were from different time 
periods, the gene symbols may be inconsistent. We 
corrected the gene symbols based on the online 
tool of official gene symbols (HUGO Gene 
Nomenclature Committee, n.d.). The procedure 
was as follows: previous or alias symbols were 
replaced with approved ones; if more than one 
approved symbol was matched with one symbol, 
only the first one was selected; the withdrawn gene 
symbols were removed, and the median expression 
value of the repeated probes was taken.

2.2 Differential gene expression analysis

R package DESeq2 v1.28.1 [14] was utilized to per
form differential gene expression analysis of bulk 
RNA-seq data comparing osteoarthritic samples 
with normal samples, taking into account the batch 
effect of different sequencing platforms. We use the 
default Wald test for differential expression analysis. 
The method used for adjusting p-values was 
Benjamini–Hochberg method. Genes with adjusted 
p value less than 0.05 and absolute value of fold 
change greater than 2 were considered to be DEGs. 
The logarithmic transformed data were calculated 
using DESeq2 and the batch effect of sequencing plat
form was removed using the R package limma 
v3.44.3. After batch effect correction, the data were 
used for principal component analysis (PCA) and 
weighted correlation network analysis (WGCNA).

2.3 WGCNA

R package WGCNA v 1.69 [15] was used to identify 
the gene modules most relevant to the OA. The net
work adjacency was calculated by squared Euclidean 
distance. A sample would be discarded if its standar
dized connectivity was less than −2.5. A signed net
work was built, and the correlation analysis employed 
bi-weight mid-correlation. The soft threshold enabled 
the scale-free topology fit index to reach 0.85.

2.4 Pseudotime analysis

The R package monocle v2.16.0 [16–18] was applied 
for pseudotime analysis, also known as single-cell 
trajectory analysis. To obtain the genes required for 

calculating pseudotime, differential gene expression 
analysis was performed among chondrocytes from 
different pathological stages. After calculating the 
pseudotime, the differential gene expression analysis 
was repeated to determine the genes that changed as 
a function of pseudotime. The cell state containing the 
greatest number of S0-stage cells was considered as the 
root state. The threshold of the q value for multiple 
testing involved in the selection of DEGs was 0.01.

2.5 Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis

We utilized clusterProfiler [19] to find out the 
GO/KEGG pathways in which the given gene sets 
are enriched. The threshold of p value was 0.05. 
The Benjamini-Hochbergch procedure was used to 
adjust the p value. The cutoff value of q value 
was 0.2.

2.6 Integrated analysis

We intersected the genes obtained from differen
tial gene expression analysis, WGCNA, and pseu
dotime analysis. The intersection of upregulated 
DEGs, the gene module having the strongest posi
tive correlation with OA, and genes that changed 
as a function of pseudotime were defined as upre
gulated genes of interest. In addition, the intersec
tion of downregulated DEGs, the gene module 
having the strongest negative correlation with 
OA, and genes that changed as a function of pseu
dotime were defined as downregulated genes of 
interest. TFs were identified based on the Human 
Transcription Factor Database (HumanTFDB) 
v3.0 [20]. Key transcriptional regulators for genes 
of interest were found via Transcriptional 
Regulatory Relationships Unraveled by Sentence- 
based Text mining (TRRUST) v2 [21]. The thresh
old of the q value for key regulators was 0.05. 
LncRNAs were recognized by the lncRNA annota
tion of gene symbol in HGNC BioMart (HUGO 
Gene Nomenclature Committee, n.d.) database. 
LncTarD [22], a database for experimentally sup
ported functional lncRNA–target regulators in 
human diseases, was searched for potential 
lncRNA regulation within genes of interest. 
Cytoscape v 3.7.2 was used to visualize the regula
tory relationship.
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3. Results

3.1 Differential gene expression analysis.

Based on the PCA results, there was a certain degree of 
discrimination between normal and OA samples 
(Figure 1a). The samples roughly clustered according 
to the disease condition. We obtained 1375 upregu
lated DEGs and 1026 downregulated DEGs. Ordered 
by adjusted p value, the top five upregulated or down
regulated DEGs were CFI, SULF1, SPOCK1, FUT4, 
GRIA2, and DDIT3, MAFF, CISH, BCOR, ADM, 
respectively (Figure 1b). Several pathways were sug
gested by GO and KEGG pathway analysis of these 
DEGs (Supplementary Figure S1). Among the GO 
pathways, the most significant upregulated pathways 
in OA tissues were related to extracellular matrix, and 
the most significant downregulated GO pathways 
involved response to nutrition and hormones. The 
most significant upregulated KEGG pathways were 
focal adhesion, cell adhesion molecules (CAMs), pha
gosome, and complement and coagulation cascade. 
The most significant downregulated KEGG pathways 
include MAPK, FoxO, hypoxia-inducible factor 1 
(HIF-1) and tumor necrosis factor (TNF) signaling 
pathway, and circadian rhythm.

3.2 WGCNA

The samples clustered well according to their OA or 
normal phenotype (Figure 2a). When a gene was 

positively correlated with OA, it also had a strong 
positive correlation with age and a weak negative 
correlation with being male (Figure 2b). The modules 
having the strongest positive and negative correlation 
with OA (Figure 2c) contained 1240 and 731 genes, 
respectively. The hub genes of the modules having the 
strongest positive and negative correlation with OA 
were SLC35B4 and MAFF, respectively. The genes of 
module having the strongest positive correlation with 
OA were mainly enriched in the extracellular matrix- 
related pathways and the enrichment results of the 
module with the strongest negative correlation to the 
OA showed FoxO and HIF-1 signaling pathway again 
(Supplementary Figure S2).

3.3 Pseudotime analysis

We constructed a pseudotime model to reflect the 
dynamic gene expression change between chondro
cytes from different pathological stages of cartilage 
under microscope. There was a trend that the more 
severe the pathological stage of cartilage from which 
a chondrocyte came, the pseudotime allocated to the 
chondrocyte would be higher. We obtained 3139 
genes that changed as a function of pseudotime. As 
the heat map of cell sorting by pseudotime indicated 
(Figure 3), CCL3, CXCL8, and IL1B were mainly 
upregulated at the start of the pseudotime, COL1A1, 
COL1A2, and PRG4 were upregulated near the end, 
and FGF1, KRT17, and NGF were upregulated during 
the middle.

Figure 1. Sample clustering and differentially expressed genes (DEGs) between osteoarthritic (OA) and normal samples. (a) principal 
component analysis (PCA) plot of samples after removing batch effect. PC1: the first principal component; PC2: the second principal 
component. (b) heat map for DEGs. The top 20 upregulated or downregulated DEGs ranked by adjusted p values are displayed.
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3.4 Integrated analysis

There were 183 upregulated genes of interest at the 
intersection of upregulated DEGs, genes within the 

gene module having the strongest positive correla
tion with OA and genes changing as a function of 
pseudotime. And there were and 88 

Figure 2. Cluster dendrograms and correlation heat maps. (a) cluster dendrogram of samples and trait heat map. White denotes low 
and red denotes high. In terms of the sex trait, 0 indicates female, and 1 indicates male. For the OA trait, 0 denotes normal and 1 
denotes OA. (b) Cluster dendrogram of genes and gene-trait correlation heat map. The different colors on the left side of the heat 
map represent different gene co-expression module. Blue denotes low and red denotes high for the correlation heat map. (c) 
Module-trait correlation heat map. The numbers outside the parentheses represent the correlation coefficient, and the numbers in 
parentheses represent the p-value. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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downregulated genes of interest at the intersection 
of downregulated DEGs, genes within the gene 
module having the strongest negative correlation 
with OA and genes changing as a function of 
pseudotime (Figure 4a, Supplementary Table S1). 
Many of the upregulated genes were upregulated 
near the end of the pseudotime, and many of the 
downregulated genes were upregulated near the 
start of pseudotime (Supplementary Figure S3). 
The upregulated genes were enriched in the extra
cellular matrix-related pathways and the downre
gulated genes were enriched in the HIF-1 and 
FoxO signaling pathways (Figure 4b-E).

Among these genes, we also identified 4 upre
gulated TFs – MAFB, HMGB3, GLI3, and SOX11 

and 10 downregulated TFs – NR1D1, HMGB2, 
ZNF331, ZNF395, CEBPD, KLF11, ELF3, DDIT3, 
KLF10, and CEBPB. Compared to the previous 
studies (Fisch et al., 2018; Karlsson et al., 2010; 
Soul et al., 2018), 13 of these 14 TFs were over
lapped and were in concordance with the direction 
of change (Supplementary Table S3). We also 
identified five upregulated lncRNAs – FZD10- 
AS1, PART1, ISM1-AS1, SILC1, and CYTOR and 
three downregulated lncRNAs – ILF3-DT, HG1, 
and S6-AS1. Compared to previous studies 
(Ajekigbe et al., 2019; Chen and Chen, 2020), 
four of these eight lncRNAs were overlapped and 
were in concordance with the direction of change 
(Supplementary Table S4). We obtained 38 

Figure 3. Gene expression along pseudotime and enriched pathways. (a) cell trajectories colored by pseudotime. (b) modules of 
genes covarying across pseudotime.
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significant key transcriptional regulators 
(Supplementary Table S2) for the 271 genes, of 
which TWIST2, MYBL2, RELA, JUN, KLF4, and 
PTTG1 were DEGs. In the network formed by the 
six key TFs and their targets, RELA regulated the 
most genes, and TWIST2 was the most significant 
(Figure 5a). We simultaneously found CYTOR and 
NRP1 within these genes. It was found in the 
LncTarD database that CYTOR functioned as 
a competing endogenous RNA (ceRNA) to posi
tively regulate NRP1 expression by sponging with 

miRNA-206, which could positively affect epithe
lial to mesenchymal transition, cancer progression, 
and cell growth (Figure 5b).

4. Discussion

Knee OA is a disease characterized by degenerative 
changes in cartilage. Due to the imbalance between 
the breakdown and repair of cartilage, knee repla
cement surgery will be eventually required if there 
is an excess of cartilage erosion. Therefore, it is 

Figure 4. Intersection of genes obtained from different methods and enriched pathways. (a) intersection of differentially expressed 
genes (DEGs), gene modules having the strongest correlation with OA, and genes changing as a function of pseudotime. Positively 
correlated gene module: the gene module exhibiting the strongest positive correlation with OA. Negatively correlated gene module: 
the gene module exhibiting the strongest negative correlation with OA. Pseudotime DEGs: genes changing as a function of 
pseudotime. (b) top 10 upregulated gene ontology (GO) pathways ranked by q value. BP: biological process; CC: cellular component; 
MF: molecular function. (c) significant upregulated kyoto encyclopedia of genes and genomes (KEGG) pathways. (d)significant 
downregulated GO pathways. (e) significant downregulated KEGG pathways.
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necessary to understand the molecular mechanism 
of pathological changes in knee cartilage in OA. 
The bulk RNA-seq dataset we investigated here 
provided upregulated or downregulated genes in 
the osteoarthritic cartilage compared to normal 
cartilage and gene modules most positively or 
negatively relevant to OA trait. The pseudotime 
analysis of scRNA-seq suggested genes changing 
expression with pathological stages of osteoar
thritic cartilage. To identify genes that might 
have an important role in the pathology of OA, 
we intersected the genes suggested by the analysis 
of the bulk RNA-seq dataset with the genes sug
gested by the pseudotime analysis of scRNA-seq 
dataset. We found 271 shared genes, 183 of which 
were upregulated in osteoarthritic cartilage com
pared to normal cartilage and 88 of which were 
downregulated, according to the results of the bulk 
RNA-seq and scRNA-seq analysis. Of the 271 
shared genes, we identified 14 TFs and 8 
lncRNAs, their expression pattern was in high 
accordance with previous studies [6,10,11,23,24]. 
We also obtained 6 key transcriptional regulators 

for the 271 genes. Potential network formed by 
these six key transcriptional regulators was 
shown. Potential lncRNA regulation between 
lncRNA CYTOR and gene NRP1 was also 
suggested.

The pseudotime model we constructed approxi
mately arranged the chondrocytes by the pathologi
cal stage of cartilage lesion. The chondrocytes from 
normal-looking cartilage were designed to be placed 
at the start of pseudotime and the chondrocytes 
from the most severely damaged cartilage were 
designed to be placed at the end of pseudotime. 
Many of the upregulated or downregulated genes 
of bulk-seq were upregulated at the end or start of 
pseudotime. The start of pseudotime could repre
sent the normal or early-stage OA conditions, and 
the end of pseudotime could represent the end-stage 
of OA. The genes upregulated at the end of pseudo
time might be biomarkers that reflect OA progres
sion. As fibronectin 1 (FN1) was upregulated at the 
end of pseudotime, this might indicate that the 
secreted protein FN 1 could be a candidate biomar
ker for representing OA progression. Peffers et al. 

Figure 5. Analysis of transcription factor (TF) and long non-coding RNA (lncRNA) regulation for intersected genes. (a) network 
formed by six key transcription factors and their target genes. (b) possible long non-coding RNA (lncRNA) regulation in OA. CYTOR 
acts as competing endogenous RNA (ceRNA) to positively affect NRP1 expression by sponging with miR-206.
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[25] also identified increased FN staining in OA 
cartilage compared to old cartilage.

The pathways enriched by the genes in the inter
section seemed to be a subset of the pathways 
enriched by the DEGs or the genes in gene modules 
most relevant to OA, and indicated some promising 
pathways for the treatment of OA. HIF-1 signaling 
pathways were enriched by the downregulated genes 
at the intersection. HIF-1α is thought to protect 
articular cartilage by supporting metabolic adaptation 
to hypoxic environments and its expression was ver
ified to increase with severity of OA [26]. Recent study 
has shown that the mitophagy mediated by HIF-1α 
could alleviate OA (Hu et al., 2020), which indicated 
HIF-1α a promising target for OA treatment.

In the transcriptional regulatory network formed 
by the genes at the intersection, we found that 
transcriptional PTTG1 and its downstream target 
gene S100A4, LGALS1 were both upregulated in 
osteoarthritic cartilage. There is a chance that the 
activated expression of S100A4 and LGALS1 is 
caused by the activated expression of PTTG1. 
S100A4 and LGALS1 both could promote inflam
mation and elicit catabolic signaling pathways 
[27,28]. Inhibiting the expression of PTTG1 might 
be beneficial to protect the knee cartilage in OA.

In our study, we found that NRP1 co-expressed 
with CYTOR as upregulated genes in osteoarthritic 
cartilage. It was reported that CYTOR positively 
regulated NRP1 expression by sponging with 
miRNA-206 in colorectal cancer [29], and miRNA- 
206 was significantly increased in human OA chon
drocytes [30]. There is a possibility that the same 
lncRNA regulation exists in OA as well. As a co- 
receptor for both vascular endothelial growth factor 
(VEGF) and semaphoring, NRP1 can induce vascu
logenesis and angiogenesis [31], which contribute to 
structural damage of cartilage and pain in OA. If so, 
blockade of this regulation might relieve pain and 
ameliorate the disease progression of OA.

There were some intrinsic drawbacks to our 
study. When analyzing the phenotypic characteris
tics of the bulk RNA-seq dataset, it was found that 
the age difference between the normal group and the 
OA group was large. The average age of the normal 
group was 36.6, while the average age of the OA 
group was 66.2. Whereas aging is a major risk factor 
for OA, therapeutic targets for age-related changes 
in chondrocytes might benefit the treatment of OA. 

The FOXO signaling pathway enriched by down
regulated genes in the intersection was an age- 
related pathway. With the joint aging, the expression 
of FOXO1 and FOXO3 was reduced in the super
ficial zone of cartilage and the FOXO protein was 
deactivated in abnormal chondrocytes of OA carti
lage [32]. It has been reported that the overexpres
sion of FOXO1 protected the chondrocytes from 
OA damage [33]. Although there is no significant 
difference in the sex ratio between the normal group 
and the OA group, there is still a certain difference. 
Women accounted for 27.78% of the total in the 
normal group, while women accounted for 60% of 
total in the OA group. This research is only 
a bioinformatics study, and a large number of 
experimental studies are still needed to validate the 
proposed regulations and pathways here.

5. Conclusion

In summary, we obtained a series of key genes and 
revealed their possible expression patterns during 
OA progression by combining the analysis results 
of bulk RNA-seq and scRNA-seq. The TFs and 
lncRNAs were identified and key transcriptional 
regulators were explored. We also discovered poten
tial regulation by lncRNA between CYTOR and 
NRP1, which could be linked to vascularization of 
the cartilage and involved with arthritic knee pain in 
OA. Further studies on the gene expression pattern 
and molecular regulation in OA chondrocytes are 
required to validate our findings.
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