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The centrosome is a unique organelle: the semi-conservative nature of
its duplication generates an inherent asymmetry between ‘mother’ and
‘daughter’ centrosomes, which differ in their age. This asymmetry has
captivated many cell biologists, but its meaning has remained enigmatic.
In the last two decades, many stem cell types have been shown to display
stereotypical inheritance of either the mother or daughter centrosome.
These observations have led to speculation that the mother and daughter
centrosomes bear distinct information, contributing to differential cell fates
during asymmetric cell divisions. This review summarizes recent progress
and discusses how centrosome asymmetry may promote asymmetric fates
during stem cell divisions.
1. Introduction
Since Boveri described and named it more than 100 years ago [1], the centro-
some (so named because it is in the centre of the cell) its has undergone its
fair share of ups and downs. Boveri had already made many interesting obser-
vations in the early days, including that the centrosome behaves as if it is central
to cell division (e.g. it organizes the cell division apparatus, it is abnormal in
cancer cells) [2,3], living up to its name. Then, there were twists in more
recent years: centrosomes were found to be dispensable for cell division [4,5],
and an entire animal (fly) was found to develop without functional centro-
somes [6,7]. Despite these twists, a large body of evidence supports that the
centrosome plays important roles, mostly through its ability to organize micro-
tubules and cilia [8,9]. Indeed, defects in centrosome number and function have
been linked to severe human diseases including ciliopathies and cancer [10].

An emerging area where the centrosome may play critical functions
is asymmetric cell division. Asymmetric cell divisions are achieved by the
polarization of cells with respect to fate determinants, coupled with spindle
orientation [11–13]. As a major microtubule-organizing centre (MTOC) in the
cell during interphase and mitosis, the centrosome can have major influences
on cell polarity and spindle orientation. Centrosomes within a cell are intrinsi-
cally asymmetric, with one centrosome always being older (the mother
centrosome) than the other (the daughter centrosome). The mother and daugh-
ter centrosome often differ in their MTOC activity (see below). Of note, many
stem cell types have been reported to exhibit stereotypical inheritance of the
mother or daughter centrosome, leading to a speculation that the centrosome
may control asymmetric cell divisions via cell polarization and potentially
as a carrier of critical information that can influence the cell fates. With this
‘centrosome-centric’ view, we summarize recent progress in understanding
centrosome asymmetries in the context of development, particularly in the
context of asymmetric stem cell divisions.
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Figure 1. The centrosome duplication cycle in animal cells. At the beginning of the G1 phase of the cell cycle, cells contain a single centrosome that is composed of
two centrioles that are orthogonally aligned with each other, surrounded by pericentriolar material (PCM). The mother centriole (orange) served as a template to
assemble the daughter centriole (blue) in the previous cell cycle, and can be distinguished from the daughter by its distal and subdistal appendages. Prior to the
G1-S transition, the tight juxtaposition of the mother and daughter centrioles is resolved (centriole disengagement) but they remain connected by a fibrous structure
called the tether. At the G1-S transition, each centriole initiates the nucleation of new daughter centrioles (green), and the daughter centriole becomes the mother
for the first time, but it is not yet mature enough to gain appendages. The new daughter centrioles elongate fully by late G2 phase, and two centrosomes (each
containing mother and daughter centrioles) separate from each other prior to mitotic entry. In mitosis, the mother and daughter centrosomes organize the mitotic
spindle and segregate into the two daughter cells.
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2. Centrosome duplication creates intrinsic
asymmetries

The centrosome is a MTOC in animal cells, and its number per
cell is tightly regulated through a precise duplication cycle.
Conceptually, its duplication during the cell cycle is similar
to that of DNA. A pair of centrioles exists at the core of the
centrosome, and these centrioles duplicate using preexisting
centrioles as a template (figure 1) [14]. The centriole is a cylind-
rical barrel-shaped structure that consists of MTs arranged in a
nine-fold radial symmetry, the structure remarkably conserved
from protists to humans [15,16]. The pair of centrioles are sur-
rounded by the pericentriolarmaterials (PCM) to help nucleate
MTs [17]. Similar to DNA, centrosomes duplicate once per cell
cycle in a semi-conservativemanner: the pair of centrioles split
from each other prior to the G1-S transition of the cell cycle,
each serving as a template for generating a new centriole
(figure 1) [18]. This process creates two centrosomes, each
containing one template centriole and one new centriole.

The semi-conservative nature of centriole duplication
creates intrinsic differences in two respects. First, within each
centrosome, one centriole (template centriole, called the
mother centriole) is older than the other (newly duplicated
centriole, called the daughter centriole), creating asymmetry
in their age (figure 1). Second, when a cell contains two centro-
somes (i.e. two pairs of centrioles) after the duplication, the
mother centrioles in each centrosome are not the same age,
because one was the template of the other in the previous
cell cycle. The different age of the two mother centrioles ren-
ders the two centrosomes different from each other: the
centrosome that contains the older mother centriole is called
the mother centrosome, whereas the one that contains the
younger mother centriole (i.e. first time mother) is called the
daughter centrosome.

The mother versus daughter centrioles can be distinguished
by ultrastructure, function andmolecular composition. Inmam-
malian cells, only the mother centriole harbours distal and
subdistal appendages (figure 1) and can function as the basal
body to assemble cilia, whereas the daughter centriole does
not [19]. Subdistal appendages are formed as the centriole
matures, and are the major site for MT anchoring. Because it
takesmore than one cell cycle for themother centriole todevelop
these appendages and mature, the mother centrosome, which
contains the older mother centriole, typically has a higher
MTOC activity than the daughter centrosome, which contains
a newly minted mother centriole. This generates functional
asymmetry between the mother and daughter centrosomes.
Several proteins such as Ninein (Nin), Cep164 and outer dense
fibre protein 2 (ODF2) are known to specifically localize to the
mother centriole, whereas Centrobin (Cnb) localizes only to
the daughter centriole [20–24], creating asymmetries in molecu-
lar composition between mother and daughter centrioles.
Although centrioles in other species such as Drosophila and
C. elegans do not harbour distal/subdistal appendages as in
mammalian cells, the mother centrosomes still exhibit higher
MTOC activities than the daughters, suggesting that there is a
maturation process that gradually increases the centriole’s
ability to nucleate/anchor microtubules.
3. Asymmetric centrosome inheritance
during stem cell divisions

These structural and molecular asymmetries between mother
versus daughter centrioles as well as those between mother
versus daughter centrosomes fascinated many researchers in
the field. Yet, the functional significance of these asymmetries
still remains enigmatic. In the last two decades, centrosome
asymmetry has been documented in the context of asym-
metric stem cell divisions, implying a potential functional
significance of centrosome asymmetry.

Asymmetric stem cell division, observed in many stem cell
systems, generates one self-renewing stem cell and one differ-
entiating cell, a key process for tissue homeostasis. This
process preserves stem cell number, while generating differen-
tiating cells that compensate for the constant loss of cells in the
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Figure 2. Centrosome inheritance during asymmetric stem cell division. (a) Drosophila male germline stem cells (GSCs) divide asymmetrically under the influence of
signals derived from the hub cells, which function as the stem cell niche. The mother centrosome is anchored at the adherens junctions formed between the GSCs
and the hub and orients the GSC mitotic spindle. Upon division, the mother centrosome is always inherited by the GSCs. (b) Drosophila neuroblasts (NBs) divide
asymmetrically by polarizing fate determinants (e.g. Numb, Prospero (Pros) and Miranda (Mira)) at the basal cortex, which are subsequently segregated to differ-
entiating cells (ganglion mother cells). Polarization of these fate determinants and spindle orientation is governed by the apical polarity complexes (e.g. Par3/Par-6/
aPKC complex, Pins and Insc). The daughter centrosome is always inherited by the NBs upon division.

Table 1. A list of asymmetric centrosome segregation in asymmetric cell
divisions.

model
centrosome inheritance
pattern reference

Drosophila male GSCs stem cells inherit the

mother centrosome

[25]

Drosophila female

GSCs

stem cells inherit the

daughter centrosome

[41]

Drosophila NBs stem cells inherit the

daughter centrosome

[33,34]

mouse neural

progenitors

progenitors inherit the

mother centrosome

[32]

mouse ES cells stem cells inherit the

mother centrosome

[42]

budding yeast bud (daughter) cells

inherit the old SPB

[43]

human

neuroblastoma cells

NuMA+ cell inherits

daughter centrosome

[44]

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200314

3

tissue [11–13]. Several stem cell systems have been reported to
exhibit stereotypical centrosome inheritance during asym-
metric stem cell divisions, where the mother or daughter
centrosome is consistently inherited by stem cells. The first
example of asymmetric centrosome inheritance in stem cells
was reported in Drosophila male germline stem cells (GSCs)
(figure 2a) [25]. Male GSCs are attached to hub cells, which
are post-mitotic somatic cells that provide signalling ligands
to neighbouring GSCs to instruct their stem cell identity
[26–28]. The physical proximity (direct attachment) to the
hub cells determines the stem cell identity of GSCs by allowing
them to receive signalling molecules provided by the hub cells
[29,30]. Male GSCs divide asymmetrically by orienting their
mitotic spindle perpendicularly towards the hub cells such
that one daughter cell maintains the attachment to the hub
cells and retains the stem cell identity, whereas the other sib-
ling cell initiates differentiation by losing the attachment
with the hub cells [31]. This oriented division is achieved by
stereotypical centrosome positioning: in GSCs, the mother
centrosome stays near the hub cells throughout the cell cycle,
whereas the daughter centrosome migrates to the opposite
side. As a result, the stem cells always maintain the original
mother centrosome through repeated cell divisions. Similarly,
the mouse radial glial progenitor cells consistently inherit the
mother centrosome during their asymmetric cell division [32],
indicating that the stereotypical centrosome behaviour is
broadly conserved.

Interestingly, Drosophila neuroblasts (NBs) also exhibit a
stereotypical centrosome inheritance pattern, but in contrast
to Drosophila male GSCs and mouse radial glial progenitor
cells, they inherit the daughter centrosome (figure 2b) [33,34].
NBs are polarized by forming specific cortical domains: the
apical side concentrates polarity proteins that regulate spindle
orientation, whereas the basal cortical domain recruits factors
that specify differentiation [35–38]. The spindle orientation of
NBs depends on the Par-3 (Baz)/par-6/aPKC and Pins/Gαi/
Mud protein complexes, which form at the apical cortex. Fate-
determining factors including Pros, Numb and Mira sit at the
opposite side and will be segregated into the ganglion mother
cell (GMC), which produces differentiated neurons and glia
[35,36]. In this process, the daughter centrosome acquires
robust MTOC activity and stays near the apical cortex, whereas
the mother centrosome sheds PCM and diminishes the MTOC
activity during interphase [33,34,39,40]. Later in the cell cycle,
the mother moves to the basal side and regains the MTOC
activity right before mitosis. Apart from NBs, Drosophila
female GSCs also retain the daughter centrosome rather than
the mother during asymmetric cell division [41].

In addition to these examples, several other systems
exhibit stereotypical centrosome inheritance (table 1). Of
note, spindle pole bodies (SPBs), the yeast equivalent of cen-
trosomes, show stereotypical inheritance, where the mother
SPB always segregates into bud cells [43], suggesting broad
conservation of this phenomenon. Yet, the fact that some
stem cell types inherit the mother centrosomes, whereas
others inherit the daughter centrosomes, shows that the cen-
trosome age is not directly linked to stemness per se.
4. How could centrosome asymmetry
contribute to asymmetric cell fate?

As described above, asymmetric centrosome segregation is
obviously conserved through evolution. However, whether
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Figure 3. Function of centrosome asymmetry in asymmetric cell division. (a) During early embryonic development of the mollusc IIyanassa, fate-determining mRNAs
associate with the centrosome and segregate asymmetrically to one of two daughter cells. Lower panel: An example of asymmetric segregation of mRNAs. Image
adapted from [49]. (b) During mouse brain development, centrosome asymmetry leads to a biased reception of signals between two daughter cells in asymme-
trically dividing apical progenitors (APs). The mother centrosome is associated with the ciliary membrane remnant, allowing the cell to reassemble the cilia quickly
upon mitotic exit and to retain the stem cell character. The sibling cell that inherited the daughter centrosome, which lacks the remnant ciliary membrane, takes
longer to build the cilium and enters the differentiation programme. (c) The aggresome is associated with one centrosome and segregates asymmetrically during
mitosis in multiple mammalian cell types including human embryonic stem cells (ESCs). Lower panel: An example of asymmetric segregation of the aggresome.
Image adapted from [50].
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and how asymmetric centrosome inheritance may contribute
to asymmetric stem cell division remains elusive. Clearly,
asymmetric MTOC activities can ensure correct spindle orien-
tation: for example, in Drosophila male GSCs, the mother
centrosome has higher MTOC activity and is stably anchored
to the adherens junctions formed between the hub and GSCs
(figure 2a), ensuring that a spindle pole is tethered at the hub,
which in turn leads to perpendicular spindle orientation in
mitosis [25]. In this scenario, maintaining the mother centro-
some in stem cells may be nothing more than ‘convenience’
and just a byproduct of anchoring the spindle pole.

However, much more elaborate cellular mechanisms
of asymmetric centrosome inheritance in Drosophila NBs
suggest that the story might not be that simple. As mentioned
above, NBs inherit the daughter centrosome [33,34] because
the newer, daughter centrosome acquires a strong MTOC
activity, whereas the mother sheds PCM to become inactive.
Multiple mechanisms contribute to creating the asymmetry
between the mother and daughter centrosomes in Drosophila
neuroblasts. The daughter centrosome’s MTOC activity is
upregulated by recruitment of Cnb and Polo, which occurs
during mitosis in preparation for centrosome asymmetry in
the next interphase [45,46]. In parallel, themother centrosome’s
MTOC activity is downregulated, releasing it from the apical
cortex, leading to its eventual inheritance by the differentiating
cell. The downregulation of the mother centrosome’s MTOC
activity requires Bld10/Cep135 and Plp, and mutations in
these genes result in two active centrosomes, leading to ran-
domized inheritance of the centrosomes [47,48]. It is difficult
to explain this phenomenon, the elaborate switching MTOC
activities between two centrosomes, solely on the basis of need-
ing to anchor one centrosome. Based on these observations, it is
natural to speculate that the centrosome asymmetriesmay have
additional roles that lead to asymmetric cell divisions.

How could asymmetric cell fates arise from asymme-
tries between mother and daughter centrosomes? Several
possibilities have emerged to explain how asymmetric
mother–daughter centrosomes can drive asymmetric cell
division, as summarized below.

4.1. Association with fate determinants
Asymmetric centrosome inheritance may be linked to the
segregation of fate determinants (figure 3a). An elegant
study has illustrated that fate-determining mRNAs are associ-
ated with one centrosome during cell divisions of the mollusc
embryo, governing binary fate decision [51]. During early
cleavage cycles of embryonic development, distinct mRNAs
(IoDpp, IoEve and IoTld) are associated with one of the two cen-
trosomes, and segregated to only one daughter cell. The
centrosome-localized mRNAs accumulate in specific cells via
asymmetric segregation, giving rise to embryonic patterning
duringmollusc development. However, in this case, it remains
unclear whether the association with fate determinants is
linked to centrosome age (mother versus daughter). More
recently, a regulator of Notch ligand activity, Mindbomb1
(Mib1), was found to localize asymmetrically to the daughter
centrioles in chick neural progenitors, leading to its segre-
gation to prospective neurons during mitosis [52]. Disruption
of such biased Mib1 localization leads to symmetric divisions,
and eventually a reduction in neurogenesis, showing that
asymmetric segregation of fate determinants (e.g. Mib1) is
achieved by their association with the centrosomes.

4.2. Differential signal reception through primary cilia
assembly

Another intriguing possibility by which centrosome asymme-
try may contribute to asymmetric cell fates is through a
differential ability of the mother versus daughter centrosome
to assemble primary cilia. Upon completion of mitosis in
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cultured mouse NIH 3T3 fibroblast cells, the cell that inherits
the mother centrosome grows the primary cilium earlier than
its sibling and is, as a consequence, briefly more sensitive to
Sonic hedgehog (Shh) signalling [53]. In mouse radial glial
progenitor cells, the mother centrosome does not completely
disassemble the primary cilium when cells enter mitosis,
and the remnant of the ciliary membrane is attached to the
mother centrosome throughout mitosis, serving as a seed to
reassemble primary cilia upon mitotic exit (figure 3b) [54].
This observation may explain why the mother centrosome-
containing cells assemble primary cilia faster than their
siblings [53]. As a result, the cells that inherit the mother
centrosome accumulate more Smoothened (Smo) and experi-
ence higher hedgehog (Hh) signalling, which promote stem
cell identity. On the other hand, their siblings that inherit
the daughter centrosome do not self-renew due to lower
Hh signalling and commit to differentiation [54].

These studies revealed an elegant mechanism by which a
subtle difference between two sibling cells, such as centroso-
mal age, may be amplified to instruct their distinct cell fates.
Even if cell division is originally ‘symmetric’ (i.e. without
asymmetric fate determinants), the differential timing of
cilia formation can act as a symmetry-breaking event,
making two daughter cells distinct from each other, despite
their similarity at birth.

4.3. Asymmetry in cells’ age
Other intriguing examples of asymmetric cell division are a
broadly observed biased segregation of ‘aging factors’, includ-
ing aggresomes and non-chromosomal DNA, such that certain
cells (e.g. stem cells) can avoid/delay aging.

The aggresome, a large aggregate of damaged/misfolded
proteins, was found to be associated with one centrosome
during division, leading to its asymmetric inheritance: cells
typically form a large, single aggresome per cell, and conse-
quently, its centrosome association during mitosis leads to
one daughter cell with the aggresome and the other without
(figure 3c) [50,55,56]. During human ES cell divisions, aggre-
somes were found to be preferentially inherited by the non-
stem daughter [55]. However, it was not clear from these
studies whether the aggresome was consistently associated
with the mother or daughter centrosome. It has been specu-
lated that this asymmetric segregation of the aggresome to
differentiating daughter cells may help to extend the lifetime
of stem cells.

Similarly, non-chromosomal DNA, such as extra
chromosomal circles (ERC) generated by intrachromatid
recombination of repetitive DNA (e.g. rDNA repeats), is
segregated asymmetrically to mother cells during yeast cell
divisions [57]. Accumulation of ERCs has been linked to
replicative senescence [58,59], and therefore asymmetric parti-
tioning of ERCs to the mother cells serves to preserve the
lifespan of the daughter cells. The age of SPBs is indeed a
critical determinant of asymmetric ERC partitioning [60],
revealing the importance of centrosome/SPB and their
mother/daughter asymmetry in governing asymmetric segre-
gation of aging factors. A recent study showed that foreign
DNA (due to plasmid transfection) is segregated asym-
metrically by preferentially associating with the daughter
centrosomes [61], suggesting that the asymmetric segregation
of non-chromosomal DNA may be a broadly employed
mechanism to protect cells.
Although its functional significance remains unknown,
midbody inheritance has been connected to centrosome age.
The midbody is the structure that is left behind upon com-
pletion of cytokinesis, which is composed of the remnant of
the contractile ring and central spindle MTs [62]. Since the
midbody cannot be split in half, it is inherited by one of the
two daughter cells. Although the midbody is not physically
associated with centrosomes, a strong correlation between
midbody inheritance and centrosome age has been documen-
ted. In HeLa cells, it was shown that the midbody goes to the
cell that inherits the mother centrosome [63]. In addition, an
interesting correlation was observed betweenmidbody inheri-
tance and cell fate: stem cells and cancer cells were observed to
inherit and accumulate midbodies, whereas cells release mid-
bodies upon the induction to differentiate [64,65]. In dividing
Drosophilamale and female GSCs, the midbody was inherited
by the daughter centrosome-containing cells (i.e. stem cells in
the female germline and differentiating cells in the male germ-
line) [41]. Recently, lysosomes were reported to concentrate
near one centrosome of keratinocytes and were preferentially
inherited by a daughter cell that yields colonies expressing
the stem cell marker KRT15 [66].

Although the functional significance of asymmetric segre-
gation of these cellular organelles/components is not always
clear, the centrosomes often regulate their segregation pat-
terns, therefore, centrosomes appear to be in an ideal,
‘central’ position to govern and orchestrate the segregation
of multiple organelles and other cellular components. Just
like amaster transcription factor that regulates cell fate by con-
trolling many downstream targets, the centrosome may
regulate cell fate by governing many downstream events.
5. Do centrosome proteins reveal how
centrosomes could contribute to
asymmetric fates?

Despite mounting examples of asymmetric behaviours for
mother and daughter centrosomes during stem cell divisions,
direct evidence that such asymmetries contribute to asym-
metric cell fate is still lacking. This is primarily because it
has been difficult/impossible to perturb centrosome asymme-
try without perturbing other aspects of centrosome functions.
Specifically targeting centrosome asymmetry probably
requires genes/factors that only regulate centrosome asymme-
try. Once such factors are identified, it may be possible to
perturb centrosome asymmetries in stem cells to examine the
consequences. In recent years, several centrosomal proteins
that exhibit enrichment in the stem cell centrosomes have
been identified. Although none of them gave the direct
answer on the ‘functional relevance of centrosome asymme-
try’, these studies have added confidence to the notion that
centrosome asymmetrymust be a critical aspect of asymmetric
stem cell division. Future studies that investigate the function
of these proteins may provide deeper insights into the role of
centrosome asymmetry in asymmetric stem cell divisions.

5.1. Klp10A
Klp10A is a microtubule-depolymerizing kinesin of the
kinesin-13 family [67], and was identified as the first stem
cell-specific centrosomal protein [68]. It localizes to the stem
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cell centrosomes, but not the centrosomes of differentiating
germ cells in the Drosophila male germline (figure 4a) [68].
Depletion of Klp10A resulted in an abnormally elongated
mother centrosome, without affecting other centrosomes
(GSC daughter centrosome and any centrosomes of differen-
tiating cells), revealing a unique regulation imposed on the
GSC mother centrosome (figure 4b). The long mother centro-
some and normal daughter centrosome in GSCs results in
aberrant asymmetries during GSC division, i.e. a mitotic
spindle with a large and a small half spindles, leading to
asymmetric daughter cell sizes (a bigger GSC and a smaller
differentiating gonialblast (GB). The small GBs frequently
die, possibly due to insufficient cellular contents for viability.
Although these results do not uncover the meaning of centro-
some asymmetry, they imply that centrosome asymmetry
may arise from an intricate balance between the forces
that generate centrosome asymmetry and the forces that
counteract it. The elongation of the mother centrosome
upon klp10A depletion suggests the presence of a mechanism
that continuously elongates the mother centrosome, hence a
unique mechanism imposed on the mother centrosome,
unless counterbalanced by klp10A. It remains elusive what
is being counteracted by Klp10A.

5.2. Alms1a
Recently, Alms1a, a Drosophila homologue of the causative
gene for human ciliopathy Alstrom syndrome [71,72], was
identified as a GSC-specific Klp10A-interactor [69]. Alms1a
was found to be a pan-mother centriole protein, but exhibits
additional localization to the daughter centriole specifically
in the mother centrosome of Drosophila male GSCs (figure 4a)
[69]. Strikingly, upon knockdown of alms1a, GSCs failed to
duplicate their centrioles, leading to centrosome loss in all
of their progeny, while the original mother centriole within
GSCs continued to elongate (figure 4b). Another striking fea-
ture of alms1a function is that it is required for centriole
duplication only in asymmetrically dividing GSCs, but not
in symmetrically dividing GSCs nor differentiating cells.
Alms1a promotes centriole duplication probably via its inter-
action with Sak, the Drosophila homologue of Plk4 kinase, a
master regulator of centriole duplication [73,74]. These data
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again demonstrate a unique characteristic of the GSC mother
centrosome. However, it remains unanswered why the
stem cell centrosomes are asymmetric and different from
centrosomes in non-stem cells.

5.3. Ninein
Ninein is a protein enriched on the mother centriole [23].
Mutations in Ninein cause human Seckel syndrome [75]. In
mouse radial glial progenitor cells, Ninein was found to be
enriched on the mother centrosome and inherited by the
radial glial progenitor cells upon their asymmetric division.
Moreover, Ninein is required for the stereotypical inheritance
of themother centrosome by these progenitor cells [32]. InDro-
sophila, Ninein was also found to be enriched on the mother
centrosomes in NBs and male GSCs (figure 4a) [70]. Despite
such an intriguing localization, depletion of Ninein does not
detectably impact stem cell divisions or fates in Drosophila
stem cells, therefore, the relevance of its localization
remains unknown.

Whereas Ninein is consistently associated with the mother
centrosome in these cell types, it does not appear to correlate
with cell fate or MTOC activity. The Ninein-enriched mother
centrosome is inherited by the stem cells in mouse radial
glial progenitors and Drosophila male GSCs, whereas it is
inherited by the differentiating daughters upon Drosophila
NB division. Likewise, whereas the Ninein-enriched mother
centrosomes have robust MTOC activity in mouse radial
glial progenitors and Drosophila male GSCs, they have down-
regulated MTOC activity in Drosophila NB. Thus, it remains
unclear how Ninein may contribute to asymmetric stem
cell divisions.

Altogether, these studies have finally began to identify
stem cell-enriched centrosomal proteins, and their phenotypes
reveal the necessity of regulating stem cell centrosomes. How-
ever, we are still left wonderingwhether asymmetries between
the mother and daughter centrosomes have functions beyond
their ability to organize MTs and orient stem cell divisions.
6. Conclusion and outlook
Asymmetric stem cell division is fundamental to tissue
homeostasis, and it is a robust and complicated process that
requires multiple layers of control. The asymmetric beha-
viours of the mother and daughter centrosomes can be used
to control asymmetric cell division and assist the specific
needs of various stem cells during development and differen-
tiation. Here, we summarized the current knowledge in this
area, highlighting the evidence that centrosome asymmetry
does contribute to asymmetric fate determination.

Although there are individual examples of fate-determin-
ing factors associating with the centrosomes, we still lack a
comprehensive understanding of how centrosomes can gen-
erally contribute to asymmetric cell division. Ultimately, to
determine the centrosome’s role in asymmetric cell division,
we must experimentally abolish centrosome asymmetries
and explore the functional outcome.
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