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Single-cell analyses to tailor treatments
Alex K. Shalek1,2,3* and Mikael Benson4*

Single-cell RNA-seq could play a key role in personalized medicine by facilitating characterization of cells, pathways, 
and genes associated with human diseases such as cancer.

We discuss the potential of single-cell RNA 
sequencing (scRNA-seq) to empower clinical 
implementation of personalized medicine. On 
the basis of work to date, we emphasize appli-
cations in cancer. Nevertheless, the underly-
ing problems and solutions should be generally 
applicable to other complex diseases (1, 2).

One of health care’s largest outstanding 
issues is that many patients do not respond 
to treatment. By recent estimates, about 90% 
of drugs are effective for less than 50% of 
patients (3). This causes enormous physical, 
social, and economic suffering. The annual 
cost of ineffective treatment is estimated at 
$350 billion/year in the United States alone. 
Moreover, variable treatment response con-
tributes to the rising cost of drug development, 
currently around $2.6 billion per drug. A fun
damental driver of these inefficiencies is the 
cellular heterogeneity that exists within and 
between patients in cancer and other complex 
diseases, which can involve altered behaviors 
across multiple cell types and hundreds of 
genes (1, 2). To date, such changes have often 
been profiled at the population level. This can 
mask intercellular variations that can be func-
tionally and clinically relevant (4). For instance, 
in cancer, treatment failure may result if a 
tumor contains many malignant subsets, of 
which only some respond to treatment (Fig. 1, 
A and B) (1, 4).

THE NEED TO PROFILE SINGLE  
DISEASE-ASSOCIATED CELLS
Ideally, personalized medicine would be guided 
by complete information about all disease-
associated factors that might affect a patient’s 
treatment, from dysregulated genes and cells to 
lifestyle, diet, and environment. Initial steps 
toward the former have already begun: For ex-
ample, genome-wide analyses of DNA have been 
used to pinpoint mutations that can be targeted 

by specific treatments in malignant disorders (1, 3). 
However, cancer and other complex diseases 
commonly involve large numbers of genetic or 
epigenetic changes across several cell types, each 
of variable virulence and therapeutic value.

Identifying how these alterations collective-
ly drive cellular dysfunction often requires a 
change of focus from individual DNA alter-
ations to cellular pathways. Here, analysis of 
mRNA expression can complement DNA find
ings by highlighting aberrantly active gene 
modules. In addition, some mutations and copy 
number variations can be inferred directly 
from mRNA. There are already several diag-
nostic mRNA kits available for malignancies 
(1). However, because these analyze cells in bulk, 
their outputs mask differences between indi-
vidual disease-associated cells. This can have 
disastrous consequences in cancer, where in-
dividual cells can drive drug resistance and me-
tastasis. scRNA-seq could play a major role 
in overcoming this hurdle by providing a 
previously inaccessible degree of resolution to 
the characterization of cellular clinical isolates 
(Fig. 1, C to E).

INTRODUCING SCRNA-SEQ  
FOR TRANSLATION
An intuitive way to think of scRNA-seq is to 
liken it to demographics. Whereas average pop
ulation statistics (representing bulk genome-
wide RNA-seq mRNA expression values) may 
tell us that an American (average cell) is around 
37.8 years old, has about 1.14 children, and 
makes about $30,000/year, scRNA-seq com-
prehensively collects these same data points 
for each individual. By applying computa-
tional methods, we can identify distinct struc-
tures in our individual-resolved demographics 
(gene modules coexpressed across cells) that 
may reveal valuable groupings, for example, 
professions (cell types). Further, we can un-

cover additional attributes associated with these 
sets, such as professional training (pathways 
and genes), make predictions about their com
mon connections (upstream drivers), and find 
unique identifiers for them (biomarkers). Thus, 
for a tumor, rather than seeing the average 
mRNA expression of some unknown mixture 
of cells, we can resolve each individual malig-
nant, stromal, parenchymal, and immune cell, 
as well as the genes and pathways it expresses, 
with scRNA-seq. With this information, we 
can then find biomarkers and potentially de-
vise interventions that specifically target each 
malignant subset (Fig. 1, B to E) (4–6).

Most scRNA-seq methods rely on a com-
bination of reverse transcription and amplifi-
cation, given the minute quantity of mRNA in 
a single cell (7). Amplification can be achieved 
by polymerase chain reaction (as in SMART-
Seq2, Drop-Seq, Seq-Well, and 10x Genomics) 
or in vitro transcription (as in inDrop and 
CEL-Seq2). Several bespoke and commercial 
technologies have recently emerged, provid-
ing increased scale and decreased cost (7). 
For example, we recently described Seq-Well, 
a simple, portable, low-cost scRNA-seq plat-
form aimed at translational research (8). Spa-
tially resolved variants have also begun to 
appear and should help facilitate examination 
of the links between cellular phenotype and 
tissue location. We envision that spatial ap-
proaches, which are currently more experi-
mentally taxing but also more akin to common 
clinical staining protocols and potentially ap-
plicable to archival tissues, will soon comple-
ment and enhance scRNA-seq findings from 
dissociated samples.

The initial applications of scRNA-seq to 
characterize diseased clinical materials have 
mainly focused on cancer. For example, one 
study used scRNA-seq to demonstrate con-
siderable heterogeneity among malignant 
cells in a primary kidney cancer and its lung 
metastasis (9). Analyses of single-cell subsets 
identified a combination therapy that tar-
geted two mutually exclusive pathways and was 
more effective than monotherapy in a patient-
derived xenograft model. In oligodendroglioma, 
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another scRNA-seq study supported a devel-
opmental tumor cell hierarchy wherein un-
differentiated, stem cell–like cells could drive 
tumor growth and give rise to differentiated 
progeny (6). The authors speculated that tar-
geting genes specific to the stem cell–like cells 
may have therapeutic potential. An additional 
important clinical application of scRNA-seq 
could be identifying rare cells, such as malig-
nant cells that remain after treat-
ment (minimal residual disease) 
(Fig. 1E). In parallel, other recent 
studies have shown the functional 
and clinical importance of multiple 
different nonmalignant tumor-
associated cells (4, 5), including 
stromal, parenchymal, and immune 
cells, as well as subsets thereof. 
These cells similarly vary greatly 
between patients, with diagnos-
tic, therapeutic, and prognostic 
implications.

FROM THE BENCH TO  
THE BEDSIDE
Accurately translating findings 
from scRNA-seq studies to clin-
ical implementations of person-
alized medicine is complicated by 
measurement noise—both tech-
nical and biological—which affects 
how much information can be ob
tained using the method. One of 
the most important challenges is 
standardizing the handling of sen
sitive samples in clinical settings. 
Although protocols for process-
ing biopsy materials have been 
developed (4–6, 9), it is important 
to consider dissociation-induced 
artifacts and the degree to which 
any particular sample is repre-
sentative of the overall diseased 
tissue. Spatially resolved methods, 
run in parallel or subsequent to 
dissociated scRNA-seq, may help 
address these concerns. Additional 
technical confounders include in
efficiencies in mRNA capture and 
reverse transcription, as well as 
biases in amplification; biological 
ones include random and struc-
tured variability in the generation 
and degradation of mRNAs, and 
discrepancies between mRNA and 
protein expression. Some of these 
limitations can be addressed by 
experimental and computational 

means (5, 7, 8), such as the use of unique mo-
lecular identifiers to counteract amplification-
induced artifacts. Still, before full clinical 
translation, studies will be needed to test the 
diagnostic, prognostic, and therapeutic pre-
dictions from scRNA-seq in large patient 
cohorts.

After such proofs of principle, several prac-
tical problems must still be solved to trans-

late scRNA-seq to the clinic. Major points 
here include properly implementing a scRNA-
seq workflow (optimizing sampling to preserve 
cellular states and ensure representativeness, 
establishing standardized library generation 
and sequencing procedures, training hospi-
tal staff, collecting proper consent, etc.) and 
handling the data (defining quality control 
metrics, removing technical artifacts, appro-

priately analyzing the data, etc.). 
Another challenge is ensuring in
teroperability between the data 
collected on different platforms 
because the rapid development of 
new scRNA-seq technologies will 
likely render existing approaches 
obsolete.

Together, these challenges im-
ply that instituting experimental 
and computational pipelines at 
every clinic may be impractical. A 
potential experimental strategy to 
rapidly leverage the translational 
potential of scRNA-seq might be to 
have expert laboratories or centers 
rigorously perform assays on sub-
sets of patients to discover diagnos-
tic markers for different diseases that 
could then be more easily measured 
at most clinics using established 
assays. Because of the involvement 
of multiple cells and pathways—
and, for single-cell readouts, the 
limited value of any single measure
ment given technical and biological 
noise—it is likely that combinations 
of these markers will be necessary. 
This may have an important ad-
vantage: Relative changes in the 
amounts of many markers can be 
more informative than absolute 
changes in individual ones (4, 6–10); 
moreover, for single-cell measure-
ments such as immunohistochem-
istry, changing patterns of marker 
coexpression may reveal more nu-
anced yet vital treatment-induced 
shifts (4, 5). In some instances, 
scRNA-seq findings may also en-
hance the utility of population-
level clinical assays by revealing the 
fundamental cell states and path-
ways needed to accurately decon-
volve which cells comprise those 
population-level samples (4).

Another important hurdle is the 
preprocessing, analysis, and storage 
of the data. Therapeutic decisions 
will require user-friendly software, 
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Fig. 1. scRNA-seq applications in cancer medicine. (A) Bulk analysis of a tumor 
identifies the predominant malignant clone and suggests a drug to target it but 
not other clones. (B) scRNA-seq resolves each clone within a tumor, as well as the 
corresponding biomarkers and cognate drugs, enabling successful therapy. (C) Lon-
gitudinal profiling of patient samples with scRNA-seq (or biomarkers discovered 
with it) can be used to monitor disease state and select the appropriate time to 
treat, given the benefits and costs of intervention. (D) Analysis of samples before 
and after treatment may reveal subsets refractory to a given therapy, as well as 
their biomarkers and mechanisms of resistance. (E) Because of its sensitivity, 
scRNA-seq might also be used in a clinical setting for detection of rare disease-
associated cells (such as minimal residual disease), which would have been missed 
by bulk analyses.C
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which allows understanding and visualization 
in physician-accessible formats. Although this 
may appear to be far from current clinical 
decision support systems, the bioinformatics 
principles for such software have already 
been developed and validated by functional 
and clinical studies (2). A feasible option may 
be to have centralized analytics (coupled with 
or distinct from select sample processing sites), 
which would enable each sample’s analysis 
to incorporate existing data and be reinter-
preted as new data sets and clinical informa-
tion become available. One illustrative model 
integrated genomic and clinical data from 
leukemia patients and showed evidence of both 
clinical relevance and reduction of costs (10).

There are also financial considerations. 
Although scRNA-seq may appear expensive, 
the severity and costs of some malignant dis-
eases are strong motivators for considering 
powerful methods that can improve thera-
peutic efficacy. For example, treatment with 
new cancer drugs may exceed $10,000/month 
per patient. This sum does not include addi-
tional expenses associated with health care 
and productivity loss. In comparison, the prices 
for genomic analyses are rapidly decreasing. 
Although sequencing one human genome cost 
around $100 million in 2001, it is less than 
$1000 today. Recent experimental advances 
have similarly dropped the price of scRNA-
seq over 100-fold during the past decade, to 
cents per cell. Given these economics, get-
ting buy-in from health care insurers will be 
an important but potentially feasible step.

A final challenge, as well as opportunity, 
is that an increasing number of patients may 
want information that will allow them to 
participate in therapeutic decisions (“partici-
patory medicine”). This is likely to contribute 
to successful treatment outcomes but will re-
quire solutions to present and discuss increas-
ingly complex medical data.

CONCLUSION
Given the clinical needs and the economic 
challenges facing health care and drug devel-
opment, we believe that there are strong in-
centives to clinically implement scRNA-seq 
for personalized medicine within the next 
decade. These efforts will likely focus first on 
cancer and then on other serious and preva-
lent maladies that require expensive treat-
ments. Experiences from those and related 
applications and decreasing costs may pave 
the way to implementations for many com-
mon diseases. Although this will involve major 
challenges, it also presents excellent oppor-
tunities for treating and diagnosing cancer 
and other complex multifactorial diseases that 
cannot be missed.
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