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Background. Clear cell renal cell carcinoma (ccRCC) is a cancer with abnormal metabolism. *e purpose of this study was to
investigate the effect of metabolism-related genes on the prognosis of ccRCC patients.Methods. *e data of ccRCC patients were
downloaded from the TCGA and the GEO databases and clustered using the nonnegative matrix factorizationmethod.*e limma
software package was used to analyze differences in gene expression. A random forest model was used to screen for important
genes. A novel Riskscore model was established using multivariate regression. *e model was evaluated based on the metabolic
pathway, immune infiltration, immune checkpoint, and clinical characteristics. Results. According to metabolism-related genes,
kidney clear cell carcinoma (KIRC) datasets downloaded from TCGA were clustered into two groups and showed significant
differences in prognosis and immune infiltration.*ere were 667 differentially expressed genes between the two clusters, of which
408 were screened by univariate analysis. Finally, 12 differentially expressed genes (MDK, SLC1A1, SGCB, C4orf3, MALAT1,
PILRB, IGHG1, FZD1, IFITM1, MUC20, KRT80, and SALL1) were filtered out using the random forest model. *e model of
Riskscore was obtained by multiplying the expression levels of these 12 genes with the corresponding coefficients of the
multivariate regression. We found that the Riskscore correlated with the expression of these 12 genes; the high Riskscore matched
the low survival rate verified in the verification set. *e analysis found that the Riskscore model was associated with most of the
metabolic processes, immune infiltration of cells such as plasma cells, immune checkpoints such as PD-1, and clinical char-
acteristics such as M stage. Conclusion. We established a new Riskscore model for the prognosis of ccRCC based on metabolism.
*e genes in the model provided several novel targets for the study of ccRCC.

1. Introduction

Approximately four hundred thousand people are diagnosed
with renal cell carcinoma (RCC) worldwide every year.
Approximately 70% of these patients have clear cell RCC
(ccRCC) [1], one of the most common malignancies of the
urinary system [2]. Genetically, the continuous loss of
multiple tumor suppressor genes leads to ccRCC [3]. Sur-
gical resection is the main treatment for early-stage ccRCC,
but approximately three out of ten patients have metastasis
after resection [4]. ccRCC is not sensitive to radiotherapy
and chemotherapy [5]; therefore, more effective targeted
therapy is needed. Other studies have explored the possible
molecular markers or therapeutic targets of ccRCC from
different perspectives, such as autophagy associated long

noncoding RNAs (lncRNAs) [6], methylation modification
of m6A [7], DNAmethylation [8], and immune invasion [9].
We set out to find new potential targets from a metabolic
perspective.

Mutations in cancer cells can lead to metabolic
reprogramming causing abnormal metabolic patterns to
meet the different needs from normal cells for cancer
proliferation and growth [10]. Increased aerobic glycolysis
and impaired oxidative phosphorylation, known as the
Warburg effect [11], occur in cancer. *e research and
development of many anticancer drugs are aimed at the
changes in these metabolic pathways [12]. *e trans-
formation of renal epithelial cells into ccRCC leads to
a decrease in the level of fatty acid oxidation and damage to
the mitochondrial structure; the resulting accumulation of
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glycogen and lipids is the cause of ccRCC transparency [13].
*e upregulation of glycolysis pathway genes is a central
event in the pathogenesis of ccRCC [14]. *e research and
development of many anticancer drugs are aimed at the
changes in these metabolic pathways [12]. Further studies on
the changes in metabolism in ccRCC are needed.

*e random forest algorithm is a common machine-
learning algorithm often used in cancer and biological re-
search as a routine bioinformatics protocol; it was used to
reduce the dimensions to screen more important genes. *is
method has been widely used in many different prognostic
models of ccRCC such as chromatin-remodeling genes [15],
DNAmethylation patterns [16], andmicroRNA [17]. Cancer
is usually accompanied by abnormal changes in metabolic
patterns. Previous studies have also established prognostic
models for healthy people and ccRCC patients from the
perspective of metabolism [18]. Our study found some key
gene differences between high-risk and low-risk ccRCC
patients that were not previously noted by other researches,
providing a new research target for a follow-up study.

It was recognized in as early as the 1960s that there is
a relationship between immune infiltration and prognosis
in different diseases [19]. *e cells involved in immune
infiltration are immune cells that appear in tumors and are
divided into 22 types, such as T, B, NK, and plasma cells.
For example, NK cells play a role in tumor immunity;
receptor or coreceptor recognition of ligands on tumor
cells can activate NK cells, resulting in targets with in-
sufficient HLA I expression being killed [20]. *e meta-
bolism of NK cells is impaired in the tumor
microenvironment [21]. In cancer, neutrophils may pro-
mote tumor progression, in part by producing reactive
oxygen species (ROS) [22]. *e rewiring of other metabolic
pathways in neutrophils may affect their tumorigenesis/
metastasis promoting function [23]; such pathways are the
main components of nontumor constituents in the tumor
microenvironment, and different types of malignant tu-
mors often show different features of immune cell subsets
[24]. *e prognostic significance of Tcell tumor infiltration
has been widely accepted [25]. Immune checkpoints refer
to the set of inhibitory pathways possessed by immune cells
to regulate and control the durability of the immune re-
sponse while maintaining self-tolerance [26]. Many suc-
cessful immunotherapies targeting these checkpoints are
already available to treat ccRCC [27].

In this study, by clustering the cancer genome atlas
(TCGA) kidney clear cell carcinoma (KIRC) datasets
according to metabolic patterns and screening differentially
expressed genes of two clusters, we constructed and verified
a Riskscore model and analyzed the relationships between
Riskscore and metabolic pathway, immune infiltration,
immune checkpoint, and clinical features.

2. Methods

2.1.Datasets andPreprocessing. *eworkflow of this study is
presented in Supplementary Figure S1. *e phenotype
datasets and RNA sequencing datasets of TCGA Kidney
Clear Cell Carcinoma (KIRC) were downloaded from UCSC

Xena (https://xenabrowser.net/). *en, the number of
fragments per kilobase million fragments (FPKM) was
converted to transcript/value per million-word node (TPM).
*e microarray dataset GSE29609 (n� 30) was used as an
external validation set accessed from the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/).
Affymetrix was used to generate raw data of the microarray
dataset and quantile normalization and background cor-
rection of these data were performed using the rapid motor
adaptation algorithm in the affy package. *e clinicopath-
ologic features (gender, age, grade, stage, and status) of the
TCGA KIRC dataset were sorted and are shown in Sup-
plementary Table S1.

2.2. KIRC Metabolic Gene Clustered. *e 2752 metabolism-
related genes were obtained from a previous study [28]. A
total of 2585 genes were identified in TCGA data.*en, 1416
genes were screened by a univariate cox, and KIRC data were
classified by the nonnegative matrix factorization clustering
method to determine the metabolism-related patterns;
datasets of patients were clustered for further analysis.

2.3. Immune Infiltration andPathwayAnalysis. *e type and
number of immune cells in KIRC samples were quantified
using the cell-type identification by estimating relative
subsets of known RNA transcripts algorithm [29] to com-
pare the differences in immune infiltration in different
cluster categories or risk groups. Gene set variation analysis
was used to calculate the activity of the metabolic pathway
using 114 metabolic pathway sets [29].

2.4. Establishment of the Metabolic Riskscore Model. *e
limma package was used to identify the genes related to
metabolism (P< 0.05 and |logfc|> 1.5); univariate screening
was performed, and random survival forest was used for
further screening [30]. *e Riskscore was the sum of the
gene expression value ∗ regression coefficient (Riskscore �

(0.1186∗ MDK) + (−0.0505∗ SLC1A1) + (−0.094∗ SGCB) +
(−0.1992∗ C4orf3) + (0.1986∗ MALAT1) + (0.1051∗ PILRB)
+ (0.0142∗ IGHG1) + (−0.0541∗ FZD1) + (0.2203∗ IFIT
M1) + (−0.1682∗ MUC20) + (0.1104∗ KRT80) + (−0.2114∗

SALL1)). *e patients were divided into high-risk and low-
risk groups using the surv_cutpoint method of the surv-
miner package.

2.5. Cell Culture. A human ccRCC cell line (ZQ0339),
CAKI-1, was cultured in McCoy’s 5A medium (ZQ-1000).
*e cell line and the medium above were purchased from
Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. A
normal human kidney proximal tubular cell line (CL-0109),
HK-2, and its special medium (CM-0109) were purchased
from Procell Life Science & Technology Co., Ltd. *ese cells
were cultured at 5% CO2 and 37°C. *e medium contained
10% FBS (Gibco) and 1% Penicillin-Streptomycin Solution
(C0222, Beyotime).
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2.6. Quantitative Real-Time PCR (qRT-PCR). Relative RNA
expressions of SLC1A1, MALAT1, FZD1, and SALL1 in
HK-2 and CAKI-1 cell lines were detected by qRT-PCR.
*e total RNA of cells was isolated by TRIzol® (15596026,
*ermo) and reverse-transcribed to cDNA by HiFiScript
cDNA Synthesis Kit (CW2569, Cwbio). qPCR amplifica-
tion was performed using UltraSYBR Mixture (CW2601,
Cwbio) with QuantStudio™ 1 Real-Time PCR System
(*ermo), and the cycling conditions were followed by the
operating instructions. *e sequences of the primers used
in this study are shown in Table 1.*e expression of β-actin
was selected as an internal reference, and the relative RNA
expression of genes was calculated by the 2−ΔΔ CTmethod
(the expression fold of genes in HK-2 was regarded as 1,
respectively)

2.7. Statistical Analyses. Before the unpaired Student’s t-test
was used to compare the differences between the two groups,
the Shapiro–Wilk test was used to detect whether the var-
iables were normally distributed. If they did not conform to
the normal distribution, the Wilcoxon test was used to
compare the differences between the groups. Correlation
coefficients were calculated using the Pearson correlation
analysis and distance correlation analysis. *e datasets of
patients were divided into high-risk and low-risk groups
based on dichotomy. *e data were visualized using ggplot2
(a package for R). Survival curves of subgroups were gen-
erated by the Kaplan–Meier method. *e statistical signif-
icance of differences in each dataset was identified using the
log-rank test. Survival curves were generated by survminer
(a package for R); heat maps were generated using pheat-
map. All statistical analyses above were performed in the
environment of R 3.6.1. All statistical tests were two-sided
and considered statistically significant when the P value was
<0.05. Column charts of relative RNA expressions were
drawn by GraphPad Prism 8.0.2.

3. Results

3.1. Two Groups of Patients Clustered by Metabolic Patterns
HadaDifferentPrognosis. According to themetabolic genes,
ccRCC patients were clustered into two groups (Figure 1(a)).
It is suitable to divide the samples into 2 clusters rather than
more clusters (Supplementary Figure S2). *ere were sig-
nificant differences in the results of survival analysis between
the two groups (Figure 1(b)). *e distribution of immune
cells in the two groups is shown in Figure 1(c). *e results
showed a significant difference between the two groups in
NK cells activated, T cells follicular helper, B cells memory,
neutrophils, dendritic cells activated, T cells CD4 memory
activated, eosinophils, macrophages M1, B cells naive, and
plasma cells. *ere was a significant difference in certainty
between the two groups.

3.2. �e Riskscore Model Was Established according to the
Differentially ExpressedGenes: theHigher the Score, theWorse
the Prognosis. To study the prognosis of ccRCC based on
metabolism, we established a Riskscore model according

to the following steps. First, by analyzing the differential
expression of metabolism-related genes between the
above two categories, 667 candidate genes (Supplemen-
tary Table S2) were initially obtained; 408 genes (Sup-
plementary Table S3) were left after univariate screening.
Finally, 12 genes were obtained using the random forest
algorithm (Figure 2(a)): MDK, SLC1A1, SGCB, C4orf3,
MALAT1, PILRB, IGHG1, FZD1, IFITM1, MUC20,
KRT80, and SALL1. *e Riskscore model for these 12
genes was established using the multivariate Cox method.
*e Riskscore of each sample was calculated by the sum of
multiplying the gene expression in the sample with their
coefficient (the weight calculated by the Cox regression
model). *en, we analyzed the correlation between
Riskscores and the above 12 genes and ranked the
samples according to the model score to create a heat
map. Figure 2(b) shows that these 12 genes have statis-
tically significant Riskscores. *e expression trends of six
upregulated genes, MDK, MALAT1, PILRB, IGHG1,
IFITM1, KRT80, and six downregulated genes, SLC1A1,
SGCB, C4orf3, FZD1, MUC20, and SALL1, were consis-
tent with the positive and negative coefficients in the
model. We chose 4 genes, SLC1A1, MALAT1, FZD1, and
SALL1, performed survival analysis, and compared the
different expressions between HK-2 cells and CAKI-1
cells, to verify their importance. Patients with low
SLC1A1, FZD1, or SALL1 expression or high MALAT1
expression have a poor prognosis (Figure 2(c) and Fig-
ure S3). Compared with HK-2 cells, SLC1A1, FZD1, and
SALL1 were low-expressed, while MALAT1 was high-
expressed in CAKI-1 cells (Figure 2(d)). *e survival
analysis of the Riskscore model in the TCGA dataset
(Figure 2(e)) and independent validation set (Figure 2(f ))
showed that the higher the Riskscore, the worse the
prognosis of patients; the P values of <0.05 document
statistical significance. *is Riskscore model could be
used to predict the prognosis of ccRCC.

3.3.Riskscore andDifferentMetabolic Patterns between ccRCC
Samples. *e results of the correlation analysis between
Riskscore and the activities of 114 metabolic pathways are
shown in Figure 3. *e Riskscore was negatively correlated
with carbohydrate metabolism pathways such as glycolysis,
gluconeogenesis, pyruvate metabolism, citric acid cycle,
oxidative phosphorylation, pentose and glucuronate in-
terconversions, and pentose phosphate and was negatively
correlated with amino acid metabolism pathways such as
glycine, serine and threonine metabolism, alanine, aspartate
and glutamate metabolism, homocysteine biosynthesis,
methionine cycle, cysteine and methionine metabolism, and
kynurenine metabolism. *e Riskscore was also negatively
correlated with lipid metabolism pathways such as fatty acid
degradation, glycerolipid metabolism, glycerophospholipid
metabolism, steroid hormone metabolism, and steroid
hormone biosynthesis, and negatively correlated with purine
metabolism, pyrimidine metabolism, and purine bio-
synthesis. Riskscore was also negatively correlated with
remethylation, vitamin K, retinol metabolism, and other
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Table 1: Primers used in this study.

Primers Sequences Product length
SLC1A1-F 5′- TGAAGCCTCCCAGCGATCCAG -3′ 142 bpSLC1A1-R 5′- ATCAAGCCCAGGACGTTTATGCC -3′
MALAT1-F 5′- ACTGTTCTGATCCCGCTGCT -3′ 136 bpMALAT1-R 5′- CCTCAACACTCAGCCTTTATCACT -3′
FZD1-F 5′- ACCAACAGCAAACAAGGGGA -3′ 163 bpFZD1-R 5′- GGAGCCTGCGAAAGAGAGTT -3′
SALL1-F 5′- AAACGGACGGGGAAAGTGTC -3′ 180 bpSALL1-R 5′- CAAAGAACTCGGCACAGCAC -3′
β-Actin-F 5′- ACCCTGAAGTACCCCATCGAG -3′ 224 bpβ-Actin-R 5′- AGCACAGCCTGGATAGCAAC -3′
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Figure 1: Clustering by metabolic genes. (a) Samples grouped into two categories. (b) Survival analysis of these two categories. (c) Distribution of
samples and immune cells.
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Figure 2: Continued.
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pathways. But there were few pathways positively correlated
with Riskscore, such as transsulfuration, thromboxane
biosynthesis, linoleic acid metabolism, alpha-linoleic acid
metabolism, cyclooxygenase arachidonic acid metabolism,
and retinoic acid metabolism, etc. It can be seen that our
Riskscore is related to most metabolic processes and is
mainly negatively correlated, involving almost every cate-
gory of metabolism.

3.4. Relationship between Immune Infiltration and Immune
Regulatory Factors in ccRCC Riskscore. To explore the re-
lationship between Riskscore and immune infiltration, we
divided the samples into two groups: high-Riskscore and
low-Riskscore (Figure 4(a)).*ere were significant Riskscore
differences in immune cells, including macrophages M0,
macrophages M2, mast cells activated, mast cells resting,
monocytes, NK cells resting, plasma cells, T cells CD4
memory activated, Tcells CD4 memory resting, Tcells CD8,
T cells follicular helper, and T cells regulatory (Tregs). To
explore the relationship between Riskscore and immune
regulatory factors, we analyzed the correlation between
Riskscore and immune inhibitors and immune stimulators
and created a heat map (Figure 4(b)). *e results show that
our Riskscore model was related to immune inhibitors such
as ADORA2A, BTLA, CD96, CTLA4, HAVCR2, IDO1,
IL10RB, KDR, KIR2DL1, KIR2DL3, LAG3, PDCD1, TGFB1,
TGFBR1, and TIGIT, and related to immune stimulators
such as CD27, CD80, ENTPD1, HHLA2, ICOS, ICOSLG,
IL2RA, IL6, IL6R, KLRC1, KLRK1, LTA, MICB, NT5E,
RAET1E, TMIGD2, TNFRSF13B, TNFRSF13C, TNFRSF14,
TNFRSF17, TNFRSF18, TNFRSF25, TNFRSF8, TNFRSF9,
TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TNFSF18,
TNFSF4, and ULBP1. *e Riskscore model we constructed
was related to the immune infiltration and immune
checkpoints.

3.5. Relationship between Riskscore and Clinical Features of
ccRCC. To analyze the relationship between different clin-
ical characteristics and Riskscore model, we first classified
the data according to clinical characteristics. *e results of
the data analysis showed no significant difference in Risk-
score among patients of different ages or genders, but there
was a significant difference in Riskscore among samples with
different M stage, N stage, T stage, grade, stage, and status
(Figure 5). Univariate and multivariate analyses of clinical
features and Riskscores are shown in Table 2. Univariate
analysis showed that the Riskscore was significantly corre-
lated with all clinical features except gender, while multi-
variate analysis showed that the Riskscore was significantly
correlated with age and M stage. *e results above indicated
that Riskscores based on these 12 metabolism-related genes
were a feasible prognostic factor in different populations.

4. Discussion

Metabolic reprogramming usually occurs in tumors.
Compared with other cancers, studies tend to regard ccRCC
as a metabolic disease [31, 32]. Metabonomics experiments
have confirmed that there are significant changes in meta-
bolic patterns in ccRCC, such as the rapid destruction of
metabolic pathways of energy, amino acids, creatinine, and
uric acid [33]. Many studies have evaluated the prognosis
and diagnosis of ccRCC from the perspective of metabolic
patterns [2] and treatment of ccRCC by reversing the ab-
normal metabolic pattern [34]. Our study has established
a metabolic model to assess the prognosis of ccRCC and
identified several genes related to the disease that were not
considered previously.

Among the genes we selected to construct the Riskscore
model, SLC1A1 [35], FZD1 [36], and SALL1 [37] were
downregulated in ccRCC, while MALAT1 [38] was
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Figure 2: Establishment and verification of the prognosis score (Riskscore). (a) Error rate for the random trees and importance values for
the 12 metabolism-related genes. (b) Riskscore modeling score, clinical characteristics, and specific expression of 12 genes. (c) Survival
analysis of FZD1, SALL1, SLC1A1, andMALAT1. (d) Relative mRNA expressions of FZD1, SALL1, SLC1A1, andMALAT1 in HK-2 (normal
cells) and CAKI-1 (cell models of ccRCC). (e) Survival analysis of Riskscore in the TCGA datasets (KIRC). (f ) Survival analysis of Riskscore
in the independent verification set (GSE29609). ∗Compared with the HK-2 group, P< 0.05.
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upregulated; there are specific clinical trials to verify their
relationship with ccRCC. For example, MALAT1 is
a lncRNA that acts as a marker in various cancers [39], and
miR-182-5p can reduce the proliferation of ccRCC by
binding withMALAT1 [38]. C4orf3 [40] andMDK [41] were
also used as markers to evaluate ccRCC. Research on the
remaining genes in ccRCC is rare, although these genes play
important roles in other cancers.

It seems that cancers prefer glycolysis that does not
require oxygen consumption and does not involve pyruvate
metabolism [42], and this phenomenon was confirmed by
isotope experiments in ccRCC [43]. Oxidative phosphory-
lation is not high in ccRCC [4], and the TCA cycle in ccRCC
is also reduced, differing from the metabolic pattern of the
human brain and lung tumors [43]. *e inhibition of

gluconeogenesis and increased glycolysis are common in
ccRCC [44]. In more than 600 cases of ccRCC, the level of
fructose 1,6-bisphosphatase 1 (FBP1), a gluconeogenic en-
zyme, was reduced and was related to the poor prognosis of
this disease [45]. In addition to the glycolysis pathway, the
negative trends of our Riskscore model were consistent with
those reported above for carbohydrate metabolism. Serine
and threonine that often appear at protein kinase phos-
phorylation sites have hydroxyl groups in their structures.
Although serine and glycine are nonessential amino acids,
many cells still rely on exogenous serine to achieve optimal
growth. Some studies have attempted to reduce the intake of
amino acids in the diet to alleviate cancer [46]. *e tryp-
tophan level in ccRCCwas decreased and its metabolism was
strikingly linked to the kynurenine pathway [32].
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Figure 3: Relationship between Riskscore and metabolic patterns. *e correlation analyses between Riskscore and the activity of 114
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Figure 4: Relationship between Riskscore, immune infiltration, and immune checkpoints. (a) *e high- and low-Riskscores of immune
infiltrations. (b) Correlation between Riskscore and expression of immune regulatory factors.
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Kynurenine metastasis of tumor cells can upregulate pro-
grammed cell death-1 (PD-1) in T cells [47]. *e significant
increase in glutathione (GSH), a reactive oxygen species
(ROS) scavenger, has been identified as a marker of RCC.
Demand for cysteine also increases in ccRCC. Cysteine is
synthesized via transsulfuration. *e flux of the pentose
phosphate pathway in ccRCC increases [45]. In addition to
the pentose phosphate pathway and kynurenine pathway,
the negative trends of our Riskscore model were consistent
with the above reports on amino acid metabolism, and the
positive trends of our Riskscore model and transsulfuration
were also consistent with these reports. Lipid accumulation
in ccRCC causes hypertrophy caused by impaired lipid
metabolism [42, 48], mainly due to inhibition of β-oxidation
[13, 48] and impairment of fatty acid degradation [48]. *e
negative trends of our Riskscore model were consistent with
these reports on lipid metabolism. *e expression of NT5E
and ENTPD1, factors related to purine and pyrimidine
metabolism, increases in ccRCC [49]. *e negative trends of
our Riskscore model were opposite to the above-reported
nucleotide metabolism.

*e effects of NK cells and neutrophils were related to
the two studies clusters, but there were no significant

differences between high and low Riskscores. M1 macro-
phages can inhibit tumors, whereas polarized M2 macro-
phages can promote tumors [50]. Tumor cells and
macrophages produce complement C1q to promote tumor
growth [51]. Consistent with the Riskscores trends, M0
macrophages and T follicle helper cells in high-risk patients
were higher than those in low-risk patients [52]. However, in
our study, cells with a low-Riskscore had more M2 mac-
rophages in ccRCC. CD138+ plasma cells may secrete an-
tibodies or act as Breg cells and promote tumor growth [53].
Consistent with this trend, our study found that the higher
the Riskscore, the higher the number of plasma cells present.
Activated CD4+ memory T lymphocytes can target antigenic
tumor cells, inhibit tumor growth, and play an active reg-
ulatory role in anti-tumor immunity [54]. However, in our
study, the higher the Riskscore, the more of these two cell
types were involved. *ere may be cooperation between
immune cells that increases the complexity, and even the
immune cells may be further divided into more subtypes, so
the observation may not be simply related to the number of
cells of a given type. *e overall survival and progression-
free survival of patients with ccRCC and Hodgkin’s lym-
phoma with severe CD8+ Tcell infiltration were significantly
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Figure 5: Difference in Riskscore model analyses for different clinical characteristics. (a) Different distributions of Riskscore in M0 and
M1 stages. (b) Riskscore distribution among N0 and N1 stages. (c) Different distributions of Riskscore in T1 + T2 stage and T3 + T4
stages. (d) Riskscore distribution in G1 +G2 grade and G3 +G4 grade. (e) Riskscore distribution in stage I + stage II and stage III + stage
IV. (f ) Different distributions of Riskscore in alive and dead. (g) Different Riskscore distributions by age. (h) Different Riskscore by
gender.

Table 2: Univariate and multivariate analyses of Riskscore and clinicopathological features with overall survival in TCGA KIRC cohort.

Characteristics Univariate analysis HR (95% CI) P value Multivariate analysis HR (95% CI) P value
Riskscore 1.317 (1.249–1.389) <0.001 1.216 (1.118–1.323) <0.001
Age 1.030 (1.017–1.043) <0.001 1.031 (1.012–1.052) 0.002
Gender 0.949 (0.696–1.294) 0.742 1.314 (0.839–2.059) 0.233
Grade 2.578 (1.835–3.624) <0.001 1.401 (0.843–2.328) 0.193
Stage 3.804 (2.772–5.221) <0.001 1.266 (0.491–3.266) 0.625
T stage 3.119 (2.303–4.225) <0.001 1.184 (0.515–2.722) 0.691
N stage 3.394 (1.754–6.567) <0.001 1.582 (0.762–3.285) 0.218
M stage 4.283 (3.131–5.860) <0.001 3.109 (1.823–5.303) <0.001
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shorter. However, in some ccRCC patients with a “normal”
immune environment, oligoclonal CD8 T cells express
perforin. A high density of CD8+ T cells is associated with
a good prognosis in this subgroup [55]. *e trends of our
Riskscore model were consistent with those reported above.

*e growth and progression of cancer are associated
with immunosuppression [56]. Studies have found that
immune inhibitors such as LAG3 [27, 52], BTLA [27], PD-1
(PDCD1) [52], and CTLA-4 [52], or immunostimulators like
TNFSF13B [57] play important roles in ccRCC. Our Risk-
score was related to the immune checkpoints, which pro-
vides a new way to explore the mechanism of ccRCC.

*e pattern of metabolism in ccRCC cells influences
immune cells. For example, sulfatide, a product of ether lipid
metabolism, accumulates in ccRCC, which could combine
with platelets and evade cytotoxicity mediated by natural
killer cells and immune surveillance [58]. In our study, we
found that the effect of CD8 T cells was significantly higher
in the high-Riskscore group (Figure 4(a)). Effector T cells
require a high rate of glucose metabolism, while cancer cells
inhibit T cells through using up nutrition and producing
harmful components such as lactic acid. Although many
CD8+ Tcells are involved in ccRCC, they cannot take glucose
or glycolysis effectively [59]. Glutamine addiction is
a characteristic of ccRCC; running out of glutamine in the
tumor microenvironment leads to the secretion of IL-23 by
macrophages, activating Treg responses, and thereby sup-
pressing the anti-tumor toxicity of T cells [60].

Different types of cells are distributed in different parts of
many tumors, including ccRCC. *e heterogeneity of cell
type may directly lead to the heterogeneity of metabolism in
different parts of the same tumor; for example, the clear cells
in ccRCC should respond to angiogenesis and glycolysis
inhibitors, while eosinophilic components in ccRCC may
benefit from mTOR or glutaminase inhibition [61]. Al-
though the Riskscore model was based on the expression
differences of metabolic genes, and the relationship between
the Riskscore model and the prognosis was roughly in line
with our prediction after verification, the relationship be-
tween our model and metabolic pathways was not the same
as the actual changes in ccRCC metabolic patterns, in-
dicating the metabolic complexity of different stages of
ccRCC. Our study suggests that these genes might be im-
portant, but further studies are needed to clarify and validate
the detailed mechanism behind their indicated significance.

5. Conclusion

In this study, we constructed a Riskscore model with 12
metabolism-related genes. *e higher the score, the worse
the prognosis.*e Riskscore is closely related to metabolism,
immune infiltration, and immune checkpoints, which can be
used as one of the potential prognostic criteria of ccRCC.
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