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AutoML‑ID: automated machine 
learning model for intrusion 
detection using wireless sensor 
network
Abhilash Singh1, J. Amutha2, Jaiprakash Nagar3, Sandeep Sharma4* & Cheng‑Chi Lee5,6*

Momentous increase in the popularity of explainable machine learning models coupled with the 
dramatic increase in the use of synthetic data facilitates us to develop a cost-efficient machine 
learning model for fast intrusion detection and prevention at frontier areas using Wireless Sensor 
Networks (WSNs). The performance of any explainable machine learning model is driven by its 
hyperparameters. Several approaches have been developed and implemented successfully for 
optimising or tuning these hyperparameters for skillful predictions. However, the major drawback 
of these techniques, including the manual selection of the optimal hyperparameters, is that they 
depend highly on the problem and demand application-specific expertise. In this paper, we introduced 
Automated Machine Learning (AutoML) model to automatically select the machine learning model 
(among support vector regression, Gaussian process regression, binary decision tree, bagging 
ensemble learning, boosting ensemble learning, kernel regression, and linear regression model) and 
to automate the hyperparameters optimisation for accurate prediction of numbers of k-barriers for 
fast intrusion detection and prevention using Bayesian optimisation. To do so, we extracted four 
synthetic predictors, namely, area of the region, sensing range of the sensor, transmission range of 
the sensor, and the number of sensors using Monte Carlo simulation. We used 80% of the datasets 
to train the models and the remaining 20% for testing the performance of the trained model. We 
found that the Gaussian process regression performs prodigiously and outperforms all the other 
considered explainable machine learning models with correlation coefficient (R = 1), root mean 
square error (RMSE = 0.007), and bias = − 0.006. Further, we also tested the AutoML performance on 
a publicly available intrusion dataset, and we observed a similar performance. This study will help 
the researchers accurately predict the required number of k-barriers for fast intrusion detection and 
prevention.

Intrusion detection at  border areas is of utmost importance and demands a high level of accuracy. Any failure in 
intrusion detection may result in havoc on the nation’s security1. Each country shares international boundaries 
with its neighboring countries, extending to thousands of kilometers. Continuous monitoring of such a colossal 
borderline through occasional patrolling is a crucial problem. To overcome this problem, WSNs are generally 
used and deployed along the borderline for surveillance and monitoring2,3. WSNs are a widely adopted technol-
ogy that consists of a group of sensors capable of sensing, processing, and transmitting processed information. 
It can be easily installed anywhere, even in hard-to-reach areas, because it does not require pre-installed infra-
structure. The capability of detecting any event or environmental condition makes it more prudent for intrusion 
detection applications4,5. Apart from intrusion detection, WSNs found applications in precision agriculture, 
health monitoring, environment monitoring, hazards monitoring, and many more6–9.
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Border surveillance, intrusion detection, and prevention problems are addressed with two different 
approaches. Researchers propose various algorithms and Internet of Things (IoT) solutions for intrusion detec-
tion and surveillance in border areas in the first approach. In the second approach, they develop analytical 
models to estimate the intrusion detection probability in terms of k-coverage, k-barrier coverage, number of 
k-barriers, and many other performance metrics. Yang et al.10 have proposed an energy-efficient intrusion detec-
tion method that is capable of identifying weak zones of the network deployment region that need to be repaired. 
After identifying the weak zones, they are repaired to achieve the desired quality of barrier coverage. Specifically, 
their proposed method focuses on one-directional coverage only for single and multiple intruder scenarios. 
The authors have claimed that their proposed method and algorithms could enhance the network lifetime. In 
another work presented in11, Raza et al. have analysed the impact of heterogeneous WSNs deployed following 
either uniform or Gaussian distribution scenario. They have studied the impact of sensor density and sensing 
range of sensor nodes on the intrusion detection probability. They found that the heterogeneous WSNs provide 
better intrusion detection performance than the homogeneous WSNs at a given sensing range and sensor node 
density. Similarly, Arfaoui et al.12 have rendered an analytical model that considers the notion of possible paths 
that an intruder can follow to cross a belt region in border areas. They have developed a model considering 
border area characteristics and the intrusion paths to estimate the time taken by an intruder to cross the border 
area. The authors conclude that their proposed model can detect the intrusion as soon as an intruder enters the 
restricted border area.

Further, Singh and Singh13 have presented a smart border surveillance system that uses a WSN which is able 
to identify and detect the intrusion and then alerts the control center about the presence of an intruder. The 
proposed system is capable in differentiating between animals and persons. Further, the system uses Raspberry 
Pi boards integrated with infra-red, ultrasonic and camera sensors and is found to be very effective and accurate 
to identify any possible intruder. Again, Sharma and Kumar14 have proposed a ML-based smart surveillance 
and intrusion detection system for border regions. The proposed system is capable in detection intruders during 
day time and at night along with the kind of weapon carried by the intruder. The proposed system is made of a 
high-resolution camera with IR capabilities for day and night vision, a GPS module interfaced with Raspberry Pi 
to extract the accurate location of the intruder, and a bluetooth scanner to detect the bluetooth signature of the 
intruder device. The entire module is put into a climate protected box that can be mounted on a high platform. 
Further, Mishra et al. in15 have provided a detailed literature review on various ML techniques for intrusion detec-
tion. They have also provided a comprehensive discussion on various types of attacks along with their respec-
tive features and security threats. With the help of a specific feature, ML techniques can identify and detect the 
intrusion quickly and accurately. Sun et al.16 have proposed a three-level intrusion detection model to minimise 
the memory consumption, computational time, and cost. The proposed model is claimed to decrease memory 
consumption, time, and cost up to a great extend. Further, in17, Ghosh et al. have proposed two routing schemes, 
namely KPS and Loop-Free (LP)-KPS, to enhance the lifetime of a WSN deployed for intrusion detection in 
border areas or surveillance of some crucial military establishments. On comparing the proposed algorithms 
with LEACH and TEEN routing algorithms, they found that the proposed algorithms provide enhanced network 
lifetime. In18, Benahmed and Benahmed have proposed an optimal approach to achieve a fault-tolerant network 
for the surveillance of critical areas using WSNs. The proposed approach identifies the faulty sensors and replaces 
them with active sensors to fill the coverage gap. The proposed approach can provide a sufficient minimum 
number of sensors to cover the area under surveillance. Another work presented by Arfaoui and Boudriga in19 
provided an efficient surveillance system that can rapidly detect any intruder crossing border areas. In this work, 
the authors have incorporated the impact of obstacles present in the environment and the terrain of the border 
areas to derive the expression for intrusion detection probability.

Further, Sharma and Nagar20 have obtained an analytical expression of k-barrier coverage probability for 
intrusion detection in a rectangular belt region. They have considered all the possible paths an intruder may 
follow to cross the region. Further, they have also analysed the impact of various parameters such as the number 
of sensors, sensing range, sensor to intruder velocity ratio, and the intrusion path angle.

The analytical approaches discussed above effectively solve the intrusion detection problem. However, these 
approaches need validation through the simulation approach, which is time-consuming. For example, a single 
iteration requires approximately 15 hours for a particular set of network parameters, increasing significantly 
as the network complexity increases. Various machine learning methods have been proposed to overcome the 
time-complexity issue associated with the simulations. Recently, Singh et al.21 proposed three machine learning 
methods based on GPR to map the k-barrier coverage probability for accurate and fast intrusion detection using 
WSNs. These methods are based on scaling the predictors; scale-GPR (S-GPR), center-mean-GPR (C-GPR), and 
GPR. They have used synthetic predictors derived from Monte Carlo simulations. They selected many sensors, 
sensing range of the sensor, sensor to intruder velocity ratio, mobile to static node ratio, angle of the intrusion 
path, and the required k-barriers as potential predictors. They found that the non-standardise methods accurately 
map the k-barrier coverage probability using the synthetic variables with R = 0.85 and RMSE = 0.095. More 
recently, Singh et al.22 proposed a logarithmic predictor transformation and scaling-based algorithm coupled 
with SVR (i.e., LT-FS-ID) to map the number of required k-barriers for fast intrusion detection and prevention 
over a rectangular Region of Interest (RoI) considering uniform sensor distribution. The dimension of the dataset 
LT-FS-ID is 182 × 5. They used four predictors to accurately predict the required k-barriers. They reported that 
the proposed approach accurately predicts the k-barriers with R = 0.98 and RMSE = 6.47. The feasibility of deep 
learning algorithms for the intrusion detection has been investigated by Otoum et al. in23. They have presented 
a restricted Boltzmann machine-based clustered IDS (RBC-IDS) for monitoring critical infrastructures using 
WSNs. Further, they have compared the performance of RBC-IDS with the adaptively supervised and clustered 
hybrid IDS (ASCH-IDS) and found that both provides same detection and accuracy rates, but, detection time 
of RBC-IDS is approximately twice that of ASCH-IDS.
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The machine learning methods discussed above involve manual selection of the best performing algorithm, 
which may lead to bias results if the results are not compared with the benchmark algorithm. In addition, the 
optimisation of the hyperparameter associated with each algorithm is treated differently. To solve this problem, 
in this paper, we introduced an automated machine learning (AutoML) model to automate the model selection 
and hyperparameter optimisation task. In doing so, we synthetically extracted potential predictors (i.e., area of 
the region, sensing range of the sensor, transmission range of the sensor, and the number of sensors) through 
Monte Carlo simulation. We then evaluated the predictor importance and predictor sensitivity through the 
regression tree ensemble approach. Subsequently, we applied AutoML on the training datasets to get the best 
optimised model. We evaluated the performance of the best performing algorithm over the testing data using 
R, RMSE, and bias as performance metrics.

Material and methods
Predictor generation.  The quality of the prediction of a machine learning model depends on the quality of 
predictors and the model hyperparameters24. These predictors can be categorised into real and synthetic-based 
upon the dataset acquiring process. The real data can be obtained through direct measurements through instru-
ments or sensors. However, the generation of real data involves intensive cost and labor. In contrast to real data, 
synthetic data can be obtained through mathematical rules, statistical models, and simulations25. In comparison 
to real data, acquiring synthetic data is efficient and cost-effective. Due to this, the use of synthetic datasets to 
train machine learning models is increased in the past lustrum21,26–29.

We adopted the synthetic method to extract the predictor datasets using Monte Carlo simulations. In doing 
so, we have used network simulator NS-2.35 to generate the entire dataset. A finite number of homogeneous (i.e., 
sensing, transmission, and computational capabilities are identical for each sensor) sensor nodes are deployed 
according to Gaussian distribution, also known as a normal distribution in a rectangular RoI to achieve this. 
Gaussian distribution is considered in this study since it can improve intrusion detection capability and is pre-
ferred for realistic applications. In a Gaussian distributed network, the probability that a sensor node is located 
at a point (x, y) in reference to the deployed location (x0 , y0)30,31 is given by:

where σx and σy are the standard deviations of x and y location coordinates, respectively.
To evaluate the performance of WSNs, we have considered the Binary Sensing Model (BSM)32, which is the 

most extensively used sensing range model. Each sensor (S i  ) is assumed with the sensing range (R s ) and is 
deployed at an arbitrary point (P(x i  , y i )). As per BSM, the target can be detected by any random sensor with 
100% probability if the target lies with in the sensing range of the sensor. Otherwise, the target detection prob-
ability will be equal to zero and is represented mathematically as:

where d(Si , P) =
√

(xi − x)2 + (yi − y)2 , the Euclidean distance between S i  and target point P. In addition, we 
have considered that any two sensors can communicate if they satisfy the criteria, R tx ≥ 2Rs , where Rtx and Rs 
represents the transmission range and sensing range, respectively. A barrier is constructed by joining a cluster 
of sensor nodes across the RoI to detect the presence of intruders. Furthermore, to assure barrier coverage, it 
is required to identify a Barrier Path (BP) in the RoI. The sensor nodes detect each intruder in the path in this 
scenario. Thus, to ensure guaranteed k-barrier coverage in the rectangular RoI, the number of required nodes is 
computed as : k = ⌈ L

2Rs
⌉ and maximum number of BPs can be computed as BP max=⌊Nk ⌋

33, where L is the length 
of the rectangular RoI,  Rs is the sensing range of nodes, and N is the number of sensor nodes. Table 1 lists the 
various network parameters and their values that have been used to obtain the simulation results.

Relative predictor importance.  In machine learning, the choice of input predictors has a substantial con-
trol on its performance28. Predictor importance analysis is not restricted to any particular representations, tech-

(1)f (x, y) =
1

2πσxσy
e
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(x−x0)
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2σ2x
+

(y−y0)
2

2σ2y

)

(2)P(Si) =

{
1, if d(Si , P) ≤ Rs
0, otherwise

Table 1.   Simulation parameters.

Parameters Values

Network simulator NS-2.35

Network region Rectangular RoI

Network area ( m2) 100 × 50–250 × 200

Sensor nodes (N) 100–400

Sensing range (Rs) 15–40 m

Transmission range (Rtx) 30–80 m

Node distribution Gaussian distribution

Sensing model Binary sensing model (BSM)
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niques, or measures and can be used in any situation where predictive models are required. It is used to express 
how significant the predictor was for the model’s predictive performance, irrespective of the structure (linear 
or nonlinear) or the direction of the predictor effect. We calculated the relevancy of the selected predictors in 
estimating the k-barriers by estimating each predictor’s relative predictor importance score. To do so, we have 
used the regression tree ensemble technique21,34. It is an inbuilt class with a tree-based classifier that assigns a 
relative score for every predictor or attribute of the data. The higher the score, the more important the predictor.

Initially, we trained a regression tree ensemble model by boosting hundred regression trees (i.e., t  = 100) with 
a learning rate of one (i.e., δ = 1) each using the Least Squares gradient Boosting (LSBoost) ensemble aggregation 
method. Boosting an ensemble of regression algorithms seems to have several advantages, like, handling missing 
data, representing nonlinear patterns, and yielding better generalisation if weak learners were combined into a 
single meta learner. In addition, the LSBoost ensemble minimises the mean square error by combining individual 
regression trees, often known as weak learners. The LSBoost technique successfully trains weak learners on the 
testing data set, fitting residual errors, and detecting its weak points. Based on such weak points, it generates 
a new weak learner ( li ) during every iteration. It evaluates its weight ( ωi ) in order to enhance the difference 
between the response value and the aggregated predicted value, hence increasing prediction accuracy. Finally, 
the algorithm updates the current model ( Mi ) by emphasising on the prior weak learner’s ( Mi-1) weak point 
according to Eq. (3). It then integrates the weak learner into the existing model after training and iteratively 
generates a single strong learner ( Mn , i.e., ensemble of weak learners).

To explore further the predictor importance, we estimated the coefficients indicating the relative importance 
of each predictor within the trained model by computing the total variations in the node risk ( �R) due to split 
among each predictor, and then normalising it by the total number of branch nodes ( RBN ) and is mathemati-
cally represented as:

where RP indicates the node risk of the parent and RCH1 & RCH2 indicates the node risk of two children. The node 
risk at individual node (Ri ) is mathematically represented as in Eq. (5);

where Pi denotes the probability of node i and Ei denotes the node i mean square error.

Predictor sensitivity.  We have performed the sensitivity analysis of the predictors using Partial Depend-
ence Plot (PDP)21,35. PDP depicts whether a model’s predicted response (outcome) changes as a single explana-
tory variable varies. These plots have the advantage of exhibiting the form of relationship that exists between the 
variable and the response36. Moreover, it depicts the marginal effect of one or more variables on the predicted 
response of the model37. In this study, we have considered the combined impact of two predictors simultane-
ously from the input predictor set (i.e., υ ) on the predictand by marginalising the impact of the remaining pre-
dictors. To accomplish this, a subset υs and a complimentary set ( υc ) of υs is extracted from the predictor set 
( υ = {z1, z2, . . . , zn} ) where n represents the total number of predictors. Any prediction on υ is determined by 
Eq. (6) and the partial dependence of the predictor in υs is inferred by computing the expectation (Ec ) of Eq. (6):

where ρc(υc ) indicates the marginal probability of υc , which is represented in Eq. (8).

Then, the partial dependency of the predictor in υs can be determined by :

where U represents the total number of observations.

Automated machine learning model.  AutoML is used to automate the machine learning process 
such as data pre-processing, predictor or feature engineering, best algorithm selection, and hyperparameter 
optimisation38–40. For past few years, it has been widely used in industry and academia to solve real and near real-
time problems41–43. In this study, firstly, we have performed the predictor standardisation using Z-score scaling44. 
Afterward, we divided the complete dataset randomly using Mersenne Twister (MT) random generator in an 
80:20 ratio for training and testing the AutoML model. The dimension of the complete dataset is 182 × 5, where 

(3)Mi = Mi−1 + δ · ωi · li (i = 1, 2, 3, . . . , n)

(4)�R =
RP − (RCH1 + RCH2)

RBN

(5)Ri = Pi · Ei

(6)f (υ) = f (υs , υc)

(7)
f s(υs) = Ec[f (υ

s , υc)]

=

∫
f (υs , υc) · ρc(υ

c) · dυc

(8)ρc(υ
c) ≈

∫
p(υs , υc) · dυs

(9)f s(υs) ≈
1

U

U∑

i=1

f (υs , υc
i )
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182 is the number of observations and 5 is the number of predictors (i.e., area of the region, sensing range of the 
sensor, transmission range of the sensor, and the number of sensors) and the response variable (i.e., k-barrier). 
The dimension of the training dataset is 145 × 5, and the dimension of the testing dataset is 37 × 5. After data 
division, we have automated the algorithms selection and hyperparameter optimisation step and investigated 
its performance. Various explainable machine learning models participate in the algorithm selection process, 
which is discussed next in the upcoming subsections.

Support vector regression model.  The Support Vector Regression (SVR) model was introduced by Vapnik 
et al.45, and it was developed primarily using the Support Vector Machine (SVM) classifiers. The SVR model has 
the benefit of being able to optimise the nominal margin using regression task analysis and is a popular choice 
for prediction and curve-fitting both for linear and nonlinear regression types46. The relationship among input 
and output variables for nonlinear mapping47 is determined by:

where p= (p1, p2, . . . , pn) indicates the input, y i  ∈ Rl indicates the output, w ∈ R n indicates the weight vector, q 
∈ R indicates the constant, n indicates the number of training datasets and φ(p) indicates an irregular function 
that is used to assign the input to the predictor. To determine w and q, Eq. (11) is used, where χi ,χ∗

i  indicates 
the slack variable.

In the SVR model, the three basic hyperparameters used are the insensitive loss function ( ǫ ) that speci-
fies the tolerance margin; the capacity parameter or penalty coefficient or box constraint (C) that specifies the 
error weight; and the Gaussian width parameter or kernel scale ( γ)48,49. A high value of C lets SVR reminisce 
the training data. The smaller ǫ value implies noiseless data. However, the γ value is equally responsible for the 
under-adjustment or over-adjustment of prediction. Mathematically, it is represented as:

where K represents the kernel function, γ represents the kernel scale that manages the influence of predictors 
variation on kernel variation.

Gaussian process regression model.  Gaussian Process Regression (GPR), also known as kriging50 is based on 
Bayesian theory51 and is used to solve complex regression problems (high dimension, nonlinearity), facilitates 
the hyper-parameter adaptive acquisition, easy to implement, and is used with no loss of performance. The 
fundamental and extensively used GPR is mainly comprised of a simple zero mean and squared exponential 
covariance function52 as represented in Eq. (13).

where

where k(x, x′) represents the covariance function or kernels that provide the expected correlation among several 
observations. In the GPR model, there are two hyperparameters used, such as the model noise ( ̟ f  ) and the 
length scale (g) that regulates the vertical scale and the horizontal scale of the function change, respectively.

Binary decision tree regression.  A Binary Decision Tree (BDT) regression is formed by performing consecutive 
recursive binary splits on variables, that is of the form y i  ≤ v, y i  ≥ v, where v ∈ R are observed values in a binary 
regression tree53, which is represented as:

where T(y) indicates the regression tree, M indicates the number of tree’s terminal nodes, and Bm (y) indicates 
the base function which is determined by:

(10)yi = wφ(p)+ q

(11)

Minimise :
1

2
||w2|| + C

n∑

i=1

(χi − χ∗
i )

Subject to :

{
yi − (wφ(pi)+ qi) ≤ ǫ + χi
(wφ(pi)+ qi)− yi ≤ ǫ + χ∗

i
χi ,χ

∗
i ≥ 0

(12)K(pi , p) = e(−γ ||pi−p||2)

(13)K(x, x′) = ̟ 2
f exp

[
−r

2

]
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(16)Bm(y) =
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[yi(m)− vim]
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where Lm indicates the total splits, y i  indicates the involved variable, and vim indicates the splitting value. Moreo-
ver, the decision tree establishes the rule till the samples in a leaf fall under a specified size, i.e., the minimum 
leaf (min-leaf) size54. Since the min-leaf size defines when splitting must be terminated, it is considered a vital 
parameter that must be fine-tuned.

Ensemble regression model.  Perrone and Cooper55 proposed a general conceptual framework for obtaining 
considerably better regression estimates using ensemble methods. Ensemble Learning (EL) enhances perfor-
mance by building and combining several base learners with specific approaches. It is mainly used when there is 
a limited amount of training data. It is challenging to choose a suitable classifier with this limited available data. 
Ensemble algorithms minimise the risk of selecting a poor classifier by averaging the votes of individual classi-
fiers. This study has applied bagging and boosting EL methods due to their widespread usage and effectiveness 
for building ensemble learning algorithms.

Bagging (Breiman56,57), also known as bootstrap aggregation or Random Forest (RF), is one of the most promi-
nent approach for building ensembles, that uses a bootstrap sampling technique to generate multiple different 
training sets. Subsequently, the base learners are trained on every training set, and then combining those base 
learners to create the final model. Hence, bagging works for a regression problem as follows: Consider a training 
set, S that comprises of data {(Xi ,Yi), i = 1, 2, . . . ,m} , where X i  and Y i  represents the realisation of a multi-
dimensional estimator and a real valued variable respectively. A predictor P(Y|X = x) = f(x)58 is represented as:

At first, create a bootstrapped sample Eq. (18) based on the empirical distribution of the pairs S i  = (X i  , Y i  ), 
next, using the plug-in concept, estimate the bootstrapped predictor as shown in Eq. (19). Finally, the bagged 
estimator is represented by Eq. (20).

Moreover, the three hyperparameters used in bagging are the MinLeafSize (minimum number of observations 
per leaf), NumVariablesToSample (number of predictors to sample at every node), and the NumLearningCycles 
(number of trees). The first two parameters determine the tree’s structure, while tuning the final parameter helps 
balance efficiency and accuracy.

Boosting (Freund59) is another ensemble method that aims to boost the efficiency of a given learning algo-
rithm. The Least-Squares Boosting (LSBoost) ensemble method is used in this study because it is suited for 
regression and forecasting problems. LSBoost aims to reduce the Mean Squared Error (MSE) between the target 
variable (Y) and the weak learners’ aggregated prediction (Yp ). At first, median of (Y), represented as (Ỹ  ) is com-
puted. Next, to enhance the model accuracy, several regression trees (r1 , r 2,. . . , r m ) are integrated in a weighted 
manner. Individual regression trees are determined by the following predictor variables (X)60:

where (wm ) represents the weight for the m model, d represents the weak learners, and η with 0 < η ≤ 1 repre-
sents the learning rate.

Kernel regression model.  Kernel regression (Nadaraya61) is the most used non-parametric method on account 
of the virtue of kernel and is undoubtedly known as univariate kernel smoother. In order to achieve a kernel 
regression, a collection of kernels are locally placed at every observational point. The kernel is set a weight to 
every location depending on its distance from the observational point. A multivariate kernel regression62 deter-
mines how the response parameter, y i  is dependent on the explanatory parameter, x i  , as in Eqs. (22) and (23).

and

where E[ψi] = Cov[m(xi),ψi] = 0 , m(.) represents a non-linear function, and ψi is random with mean zero 
and variance σ 2 . It describes the way that y i  varies around its mean, m(x i  ). The mean can be represented as the 
probability density function f:

(17)ζm(x) = hm(S1, S2, . . . Sm)(x)

(18)S∗i =(Y∗
i ,X

∗
i )

(19)ζ ∗m(x) =hm(S
∗
1 , S

∗
2 , . . . S

∗
m)(x)

(20)ζm;B(x) =P|S∗m(x)|

(21)Yp(X) = Ỹ(X)+ η

d∑

m=1

wm × rm(X)

(22)E(yi|xi) = m(xi)+ ψi

(23)yi = m(xi)+ ψi

(24)m(xi) = E[Yi|xi = x] =

∫
y.f (x, y)dy∫
f (x, y)dy

=

∫
y.f (x, y)dy∫

f (x)
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Linear regression model.  A linear regression model63 examines the relationship among different influential pre-
dictors and an outcome variable. The basic linear regression model, which represents the universal set of two-
variable and multiple regression as complementary subsets, can be expressed as:

where Y represents the dependent variable, X1,X2, . . . ,Xn represents the n independent variables, a and b rep-
resents the regression coefficients and u represents the stochastic disturbance-term that could be caused by an 
undefined independent variable.

Bayesian optimisation.  Bayesian Optimisation (BO)64,65 is an efficient approach for addressing optimisation 
problems characterised by expensive experiments. It keeps track of the previous observations and forms a proba-
bilistic mapping (or model) between the hyperparameter and a probabilistic score on the objective function that 
is to be optimised. The probabilistic model is known as a surrogate of the objective function. The surrogate func-
tion is much easy to optimise, and with the help of the acquisition function, the next set of hyperparameters is 
selected for evaluation on the actual objective function based on its best performance on the surrogate function. 
Hence, it comprises a surrogate function for determining the objective function and an acquisition function for 
sampling the next observation. In BO, the objective function (f) is obtained from the Gaussian Process (GP) as 
described in Eq. (26).

where µ and ϑ are calculated from the observations of x66.
We select the best performing algorithm among the above-discussed models with the optimised hyperparam-

eter. Lastly, we evaluated the performance of the best-performing algorithm using the test dataset. A flowchart 
of the detailed methodology is illustrated in Fig. 1.

Results
Predictor importance and sensitivity.  We plotted the relative predictor importance score of each pre-
dictor along with their respective box plot for a better visual representation of the datasets (Fig. 2). We found 
that the relative predictor importance score ranges approximately from 9 to 152. The higher the value of the rela-
tive estimate, the more relevant is the predictor in estimating the response variable (i.e., k-barriers). We found 
that out of these four predictors, the transmission range of the sensor emerges as the most relevant predictor in 
predicting the required number of k-barriers for fast intrusion detection and prevention considering Gaussian 
node distribution over a rectangular region. The number of sensors also shows good relevancy in predicting the 
response variable and ranked second. The area of the region of interest and the sensing range of the sensor shows 
fair relevancy and ranked third and fourth, respectively.

We also evaluated the impact of each predictor on the response variable. We plotted the partial depend-
ence plot for each possible pair of predictors (Fig. 3a–f). For a better visual inspection, we also plotted the 

(25)Y = a+

n∑

i=1

biXi + u

(26)f (x) ∼ GP(µ(x),ϑ(xi , xj))

Figure 1.   Flowchart of the proposed methodology.
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three-dimensional plot and its two-dimensional illustration. We observed that the area of the RoI has a slightly 
negative impact on the target variable i.e., the response variable decreases with an increase in the area of the 
RoI. However, an inverse relationship is observed with all other predictors. The sensing range of the sensor, the 
transmission range of the sensor, and the number of the sensors have a positive impact on the response variable 
i.e., the response variable increases with an increase in these predictors.

Model performance.  We iteratively selected the best machine learning model with optimised hyperpa-
rameters value using the Bayesian optimisation67–69 on the 80% of the datasets (Fig. 4). We used Eq. (27) as the 
objective function (Obj) to select the best machine learning model with optimised hyperparameters.

where valLoss is the cross-validation mean square error (CV-MSE). At each iteration, the value of the objective 
function is computed for any one of the participating models. The model (with optimised hyperparameters), 
which returns the minimum observed loss (i.e., the smallest value of the objective function so far), is considered 
as the best model. After iterating for 120 iterations, the AutoML algorithm returned the GPR model as the best 
model along with the optimal hyperparameters (i.e., for the GPR model; sigma = 0.98 ). Before returning the 
model, the AutoML algorithm retrains the GPR model on the entire training dataset.

Once we get the trained GPR model, we evaluate its performance on the training datasets to estimate the 
training accuracy. We found that the model performed well on the training datasets with a correlation coefficient 
(R = 1), root mean square error (RMSE = 0.003), and bias = 0. However, for an unbiased evaluation, we evaluated 
the performance of the trained model on the test datasets (i.e., 20% of the total datasets). In doing so, we fed the 
testing predictors into the trained GPR model and obtained the predicted response. We then compared the GPR 
predicted k-barriers with the observed values (Fig. 5a). We found that the GRP model performs prodigiously 
with a R = 1, RMSE = 0.007, and bias = − 0.006. All the data points are aligned along the regression line and lie 
well inside the 95% Confidence Interval (C.I).

Further, to assess the appropriateness of the plotted linear regression plot, we performed residual analysis. 
We plotted the time series of the observed and the predicted values along with the corresponding residual val-
ues (Fig. 5b). We found that the residuals are significantly low and do not follow any pattern, which indicates a 
good linear fit.

To understand the distribution of the error (i.e., difference of predicted and observed values), we performed 
error analysis using error histogram (Fig. 6). To do so, we plotted the error histogram using ten bins. The error 
ranges from −0.00997 from the left to 0.00356 on the right of the histogram plot. We found that the error follows 
a right-skewed Gaussian distribution. The peak of the distribution lies in the underestimated region. Lastly, we 
presented the results of the remaining algorithms of the AutoML (i.e., SVR, BDT, Bagging ensemble learning, 
Boosting ensemble learning, kernel, and linear regression) in Table 2. We found that the best performing AutoML 
algorithm (i.e., GPR) outperforms all the other algorithms.

(27)Obj = log(1+ valLoss)

Figure 2.   Graph showing the relative predictor importance score for all four predictors. The estimates for the 
area of the RoI, sensing range of the sensor, transmission range of the sensor, and the number of sensors are 
46.0, 9.3, 152.0, and 128.9, respectively.
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Figure 3.   Two-dimensional and three-dimensional partial dependency plots show the predictor sensitivity 
of all possible predictor pairs. The histogram along the x and y-axis of the two-dimensional plot shows the 
distribution of the predictor and the response variable, respectively.

Figure 4.   Curve illustrating the Bayesian optimisation process for the selection of the best machine learning 
model with optimal hyperparameters.
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Figure 5.   The left panel shows the linear regression plot between the predicted and observed responses. The 
top plot on the right panel shows the time series plot of the predicted and observed. The bottom panel shows the 
corresponding residuals. The dashed line in the residual plot shows the RMSE value.

Figure 6.   Error analysis using error histogram of 10 bins. The line in red shows the zero error line. The area to 
the left of the zero error line shows the underestimated region, and the area right to the zero error line shows the 
overestimated region.

Table 2.   Performance of the other AutoML algorithms.

Performance metrics

Algorithms

SVR BDT
Bagging EL (random 
forest) Boosting EL (LSBoost) Kernel regression Linear regression

R 0.93 0.81 0.93 0.73 0.91 0.94

RMSE 63.61 73.07 81.84 118.03 32.29 33.68

Bias 53.59 56.99 67.31 89.81 31.28 31.81

t (s) 95.3 111.3 103.4 107.7 43.01 36.7
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Discussion
We observed that the AutoML approach successfully selects the best machine learning model among a group 
of explainable machine learning algorithms (i.e., among SVR, GPR, BDT, bagging ensemble learning, boosting 
ensemble learning, kernel regression, and linear regression model) and optimised its hyperparameters. How-
ever, we have compared the AutoML derived results with the benchmark algorithms for an unbiased and fair 
evaluation of the proposed approach. We selected Feed-Forward Neural Network (FFNN)70, Recurrent Neural 
Network (RNN)71, Radial Basis Neural Networks (RBN)72, Exact RBN73, and Generalised Regression Neural 
Network (GRNN)74 as the benchmark algorithms. We selected these algorithms because they are frequently 
used in diverse applications such as remote sensing, blockchain, cancer diagnosis, precision medicine, decease 
prediction, self-driving cars, streamflow forecasting, and speech recognition; hence have high generalisation 
capabilities37,75–77. In doing so, we trained these algorithms over the same datasets. We found that the AutoML 
outperforms all the deep learning benchmark algorithms (Table 3). Among the benchmark algorithms GRNN 
performs the best (with R = 0.97, RMSE = 64.61, Bias = 60.18, and computational time complexity, t = 2.23 s). 
Surprisingly, all the benchmark algorithms have a high positive bias value. It indicates that these models highly 
overestimate the number of required k-barriers. We have also compared the performance of the AutoML with 
previous studies21,22 for the prediction of k-barriers and k-barrier coverage probability (Table 4).

Further, we also tested the performance of the AutoML approach over the publicly available intrusion detec-
tion dataset22. In a recent study, Singh et al.22 have proposed a log-transformed feature scaling based algorithm 
(i.e., LT-FS-ID) for intrusion detection considering uniform node distribution scenario. We downloaded the 
datasets and applied the proposed AutoML approach to them. In doing so, we iterated the AutoML for 120 
iterations using the Bayesian optimisation to obtain the best optimised machine learning model. We found that 
AutoML approach perform well over the dataset (with R = 0.92, RMSE = 30.59, and Bias = 18.13). Interestingly, 
the same GPR algorithms emerges as the best learner algorithms with a optimised sigma = 0.33. It highlights 
the potential of the GPR algorithm for intrusion detection, which becomes more apparent from the recently 
published literature’s21,78.

The proposed AutoML approach for estimating the k-barriers for fast intrusion detection and prevention 
is highly user-friendly and provides a fast solution. It reduces the confusion of selecting the best-performing 
algorithm by automating the process. Further, it also overcomes the limitation of the LT-FS-ID algorithm22. 
LT-FS-ID algorithm only works if the input predictors are a positive real number. It will not work if any input 
predictors contain zero (or negative values). Although the AutoML approach gives the best result, its perfor-
mance will hamper with the sensor aging. In other words, with the aging effect in the sensors, the quality of the 
data recorded by the sensor may change drastically (i.e., datasets become dynamic), resulting in performance 
degradation. In such a situation, retraining the proposed model will solve the problem.

Conclusion
In this study, we proposed a robust AutoML approach to estimate the accurate number of k-barriers required for 
fast intrusion detection and prevention using WSNs over a rectangular RoI considering the Gaussian distribu-
tion of the node deployment. We found that the synthetic predictors (i.e., the area of the RoI, sensing range of 
the sensor node, transmission range of the sensor node, and the number of sensors) extracted through Monte 
Carlo simulations successfully mapped with the k-barriers. Among these predictors, the transmission range 
of the sensor emerges as the most relevant predictor, and the sensing range of the sensor emerges as the least 
relevant predictor. In addition to this, we observed that only the area of the RoI has a slightly negative impact 
on the response variable. We then iteratively run the AutoML algorithms to obtain the best machine learning 
model among the explainable machine learning model using Bayesian optimisation techniques. We found that 

Table 3.   Comparing the performance of the AutoML with the deep learning models.

Performance metrics FFNN RNN Exact RBN RBN GRNN

R 0.47 0.95 0.30 0.41 0.97

RMSE 36.96 14.92 107.95 161.11 64.61

Bias 21.47 71.06 86.21 139.23 60.18

t (s) 2.5 13.51 2.90 3.98 2.23

Table 4.   Comparing the results of AutoML with previous studies.

Performance metrics

k-barriers
k-barrier coverage 
probability21

AutoML (This study) LT-FS-ID22 GPR S-GPR C-GPR

R 1 0.98 0.85 0.64 0.79

RMSE 0.007 6.47 0.095 0.137 0.108

t (s) 0.73 0.65 8.16 7.79 9.51
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the AutoML algorithm selects the GPR algorithm as the best machine learning model to map the required 
k-barriers accurately. We evaluated the potential of the GPR algorithm over unseen test datasets. We found that 
the AutoML elected algorithm performs exceptionally well on the test datasets.

We further compared the AutoML results with the benchmark algorithms for a more reliable and robust 
conclusion. We found that AutoML outperforms all the benchmark algorithms in terms of accuracy. For more 
generalisation of this approach, we tested the efficacy of the AutoML over the publicly available datasets on 
intrusion detection using WSNs, and we found a similar performance. This study is a step towards a cost-efficient 
approach for fast intrusion detection and prevention using explainable machine learning models.

Data availability
The datasets generated during and/or analysed during the current study can be made available from the cor-
responding author on a reasonable request.

Code availability
The computer algorithms originated during the current study can be made available from the corresponding 
author on a reasonable request.
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