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The SUSTech-SYSU dataset for 
automated exudate detection and 
diabetic retinopathy grading
Li Lin   1,3,5, Meng Li2,5, Yijin Huang1,5, Pujin Cheng1, Honghui Xia4, Kai Wang3, Jin Yuan2 ✉ & 
Xiaoying Tang1 ✉

Automated detection of exudates from fundus images plays an important role in diabetic retinopathy 
(DR) screening and evaluation, for which supervised or semi-supervised learning methods are typically 
preferred. However, a potential limitation of supervised and semi-supervised learning based detection 
algorithms is that they depend substantially on the sample size of training data and the quality of 
annotations, which is the fundamental motivation of this work. In this study, we construct a dataset 
containing 1219 fundus images (from DR patients and healthy controls) with annotations of exudate 
lesions. In addition to exudate annotations, we also provide four additional labels for each image: left-
versus-right eye label, DR grade (severity scale) from three different grading protocols, the bounding 
box of the optic disc (OD), and fovea location. This dataset provides a great opportunity to analyze 
the accuracy and reliability of different exudate detection, OD detection, fovea localization, and DR 
classification algorithms. Moreover, it will facilitate the development of such algorithms in the realm of 
supervised and semi-supervised learning.

Background & Summary
Diabetic retinopathy (DR) is one of the microvascular complications of diabetes mellitus and a leading cause of 
blindness among working-age adults in developed countries1. It is estimated that currently 463 million adults in 
the age range of 20–79 years have diabetes, and this number will reach 700.2 million by 20452,3.

DR lesions include microaneurysms, hard exudates, soft exudates, hemorrhages, intraretinal microvascular 
abnormalities, neovascularization and so on, the most common ones of which are shown in Fig. 1. Hard exudates 
and soft exudates4–6 typically manifest in an early stage of DR. Hard exudates are mainly composed of extracel-
lular lipid, and are usually located in the outer layer of the retina. They can be either individual dots, continuous 
flaky spots, or circumferential lesions surrounding retinal edema or microaneurysm. Soft exudates are localized 
edema or infarcts in the nerve fiber layer. In fundus images, they appear white or pale yellow, having a round or 
elliptic shape, with fuzzy edges. Research has demonstrated that the area and amount of hard exudates can serve 
as potential discriminant indicators of the severity of DR7. And an increase in the number of hard exudates has 
been suggested to be associated with an increased risk of vision loss8,9 as well as subretinal fibrosis in diabetic 
macular edema (DME)10.

In DR, an early detection and timely intervention is vital for protecting a patient’s visual function. Recent tech-
nological advancements in big data, computing power, and machine learning technologies have enabled fast and 
efficient computer-aided diagnoses of DR, wherein identification and quantization of exudates are essential com-
ponents. During the past decade, various methods, which can be roughly divided into four categories (thresh-
olding methods11, region growing methods12, morphology methods13, and machine learning methods14), have 
been developed for automatically detecting exudates. Machine learning methods, especially those with deep con-
volutional neural network architectures, have achieved overwhelming performance. Machine learning methods 
depend considerably on the sample size of training data and labels’ quality. Therefore, creating high-quality and 
large-scale training data has become a significant research direction in ophthalmic image analysis. For instance, 
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the ORIGA−light dataset was constructed for optic disc and optic cup segmentation15,16. DRIVE and STARE are 
two classic fundus datasets for retinal vessel segmentation, and STARE also provides diagnostic information for a 
larger set of fundus images17–20. In one of our previous works, we also developed a dataset containing 712 ocular 
staining images for corneal ulcer segmentation and classification21,22. However, to the best of our knowledge, 
existing large-scale and well-annotated fundus image datasets with lesion annotations are relatively limited.

Segmentation and detection are the two most popular approaches for lesion identification. There are sev-
eral differences between them: (1) Segmentation methods require pixel-level annotations, while the latter 
requires bounding boxes or contours; (2) Segmentation methods often require more computing resources and 
training-testing time; (3) The outputs of segmentation methods are often more precise. Although pixel-wise 
annotations have a higher labeling accuracy, the bounding or contouring approach for detection is more practi-
cally feasible and efficient. Clinically, both segmenting and detecting lesions are beneficial to quantify the severity 
of DR. Currently, there are several publicly-available datasets for exudate identification. The DIARETDB1_v2 
dataset contains 46 fundus images with rough polygonal boundary annotations for exudates23,24. HEI-MED25,26, 
consisted of 169 samples, is constructed for detecting exudates in DME. They share common problems: the anno-
tations are not precise enough for a segmentation purpose, and the sample sizes are relatively limited for training 
detection models (one fundus image is usually treated as one sample). The e-Ophtha EX and IDRiD datasets have 
more precise annotations on exudates at a pixel-level, but they are composed of only 47 and 81 fundus images27–30.

In such a context, we develop a large-scale DR dataset, containing fundus images and the corresponding 
exudate detection annotations, left-versus-right eye labels, DR grades, the bounding boxes of OD, and fovea 
locations. This dataset will provide an excellent opportunity for developing and validating automated exudate 
detection algorithms, as well as DR classification algorithms. Furthermore, it can also be used for designing and 
testing OD identification and fovea localization pipelines. Overall, the dataset we construct in this paper provides 
a powerful resource for anatomical landmark detection, lesion detection, and DR classification based on fundus 
images.

Methods
Data collection.  A total of 603 fundus images from DR patients and 631 fundus images from healthy people 
were collected from the Department of Ophthalmology, Gaoyao People’s Hospital and Zhongshan Ophthalmic 
Center, Sun Yat-sen University. All participants provided written informed consent complying with the approval 
requirements of the Medical Ethics Committee at Gaoyao People’s Hospital and Zhongshan Ophthalmic Center. 
This study followed the tenets of the Helsinki Declaration and was approved by the Medical Ethics Committee, 
Gaoyao People’s Hospital and Zhongshan Ophthalmic Center (2017KYPJ104).

DR patients with both type 1 diabetes and type 2 diabetes were included in this study. Diagnoses with dia-
betes were established according to the World Health Organization diagnostic criteria. Regular fundus photo-
graphs were taken from healthy people during their annual physical examinations. Exclusion criteria included: 
the refractive media were too cloudy to take a clear photograph; the diopter was greater than 6D; patients with 
systemic diseases other than diabetes that could also lead to ocular complications; patients with familial or hered-
itary ocular diseases; a history of ocular trauma; a history of medications that may cause ocular side effects (e.g., 
chloroquine, hydroxychloroquine, chlorpromazine, and rifampicin).

Before fundus photographing, participants would undertake slit-lamp and non-contact tonometer exami-
nations. Tropicamide phenylephrine eye drops were applied for pupil dilation. When the pupil was dilated to be 
large enough (usually 8 × 8 mm2), a color fundus photograph would be taken for the participant using a fundus 
camera (Topcon, TRC-50DX, Japan). Images were saved in the JPG format (24-bit RGB), with a resolution of 
2880 × 2136 pixels. Single-field central posterior 50° images, covering OD and macula, were analyzed in this 
study.

Hemorrhages

Microaneurysms

Hard Exudates

Soft Exudates

Fig. 1  A representative fundus image with the four most common types of DR lesions: Hemorrhages, 
Microaneurysms, Hard Exudates, and Soft Exudates.
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During the image quality control stage, we excluded 15 fundus images that are too blurry or of extremely 
large-area lesions (from the original selection). After image quality control, our dataset consists of 588 fundus 
images from DR patients and 631 fundus images from healthy people.

Image categorization.  The grading of DR refers to the International Clinical DR Severity Scale31. The only 
difference was that we considered healthy fundus photographs without diabetes as stage 0 instead of “diabetes 
patients with no apparent retinopathy”. And considering that some patients may have been treated with retinal 
photocoagulation and that laser spots or scars may affect staging and detection, we grouped fundus photographs 
with laser spots or scars into a separate category. Typically, the presence of laser spots or scars on a fundus image 
indicates that the patient is of severe non-proliferative DR or proliferative DR (stage 3 or stage 4). Some lesions 
may disappear after receiving retinal photocoagulation, and thus the grade determined from the fundus image 
may be inconsistent with the patient’s actual DR severity grade, such as samples shown in Fig. 2. Three experi-
enced ophthalmologists at Zhongshan Ophthalmic Centre of Sun Yat-sen University performed screening and 
grading of the fundus photographs. Specifically, every fundus photograph was read by two ophthalmologists 
independently, then a third ophthalmologist would re-annotate the ones with inconsistent annotations from the 
previous two ophthalmologists. The entire dataset was distributed as follows: 631 photographs were confirmed as 
normal healthy fundus; 24, 365, 73 and 58 photographs were respectively classified to be mild non-proliferative 
DR, moderate non-proliferative DR, severe non-proliferative DR, and proliferative DR; and 68 photographs were 
classified to be DR with laser spots or scars (Table 1). Representative examples in each categorization are shown 
in Fig. 3. Additionally, we also provided DR grading labels for each fundus image according to the protocol from 
the American Academy of Ophthalmology and the Scottish DR grading protocol to facilitate comparisons of our 
dataset with other existing datasets32–35. Also, we provided DR grading labels for images in category 5 (fundus 
images with laser spots or scars) assessed by the three aforementioned protocols.

Distinguishing whether a fundus image comes from a left eye or a right eye is one of the first steps in ophthal-
mic examinations. Generally, for most fundus images in the categories of stage 0 to stage 3, the left eye and right 
eye can be easily distinguished according to OD’s position and the direction of the retinal vessels, although there 
may be lesions existing. As shown in Fig. 4, in some cases of proliferative DR, the fundus images become blurry 

(a) fresh laser spots                                              (b ) stale laser spots

Fig. 2  Fundus images of patients who were treated with retinal photocoagulation. After retinal 
photocoagulation, the lesions in the two images are relatively mild and can be classified as moderate non-
proliferative DR (stage 2) even though the two patients should belong to stage 3 or stage 4 originally.

Classification/DR Grading Findings Observable in Photographs Number

0. normal healthy fundus Without any lesions 631

1. mild non-proliferative DR Microaneurysms only 24

2. moderate non-proliferative DR More symptoms than just microaneurysms but less than severe non-proliferative DR 365

3. severe non-proliferative DR

One or more of the following: 
More than 20 intraretinal hemorrhages in each of 4 quadrants;

73- Definite venous beading in more than 2 q-uadrants;

- Prominent intraretinal microvascular abn-ormalities in more than 1 quadrant and 
no signs of proliferative DR

4. proliferative DR

One or more of the following:

58- Neovascularization;

- Vitreous/preretinal hemorrhage

5. DR with laser spots/scars DR accompany with whitish laser spots or grey laser scars 68

Table 1.  Criteria of DR grading and the number of fundus photographs belonging to each category.
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due to large-scale hemorrhages and exudates, and ODs become less prominent. In those cases, the left and right 
eyes can still be distinguished based on the residual blood vessel traces. Table 2 tabulates the numbers of left eye 
and right eye fundus images in each of the 5 stage categories as well as category 5 (DR with laser spots or scars). 
Overall, in terms of left-versus-right eye classification, our dataset is relatively balanced.

 b

d  

a

f

Fig. 3  Color fundus images at different DR stages. (a) normal healthy fundus; (b) DR stage 1, mild non-
proliferative DR, microaneurysms can be seen in the center; (c) DR stage 2, moderate non-proliferative DR, 
there are hard exudates in the center, several microaneurysms and patchy hemorrhage; (d) DR stage 3, severe 
non-proliferative DR, microaneurysms, hard exudates, cotton wool spots and patchy hemorrhages can be seen; 
(e) DR stage 4, proliferative DR, neovascularization can be seen in the inferotemporal quadrant; (f) this patient 
was treated with retinal photocoagulation, and fresh whitish laser spots can be seen on the superior retina.

left

right

a  b  c

d  e  f

Fig. 4  Representative fundus images from left eyes and right eyes. Examples include normal fundus 
photographs (a,d), clear fundus photographs with DR (b,e), and blurry fundus photographs due to proliferative 
DR (c,f).

Category Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Category 5 Total

Left eyes 323 10 193 37 12 32 607

Right eyes 308 14 189 41 31 29 612

Table 2.  he numbers of left eye and right eye fundus images within each of the 6 categories (stage 0 to stage 4 
and category 5).
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Creation of annotations for exudate detection.  As mentioned in the above subsection, fundus pho-
tographs of stage 0 are normal healthy fundus with no lesions and stage 1 fundus images contain only microan-
eurysms. Therefore, we only prepared the ground truth detection bounding boxes for exudates (including hard 
exudates and cotton wool spots) in fundus images of stage 2, stage 3, stage 4, as well as those with laser spots or 
scars, ending up with a total of 564 fundus images. In this work, we labeled the exudates according to the most 
common format in computer vision detection tasks, namely bounding boxes. As shown in Fig. 5, the entire anno-
tation procedure went through the following four steps: (1) An experienced ophthalmologist from Zhongshan 
Ophthalmic Centre screened fundus images with exudates and identified them in the form of a coarse bounding 
circle, and then another ophthalmologist inspected the bounding circle and corrected if necessary, such as miss-
ing labels and incorrect labels; (2) Images identified to have exudates labels went through contrast limited adap-
tive histogram equalization (CLAHE) and adaptive gamma correction with weighting distribution (AGCWD) 
as preprocessing for the purpose of contrast enhancing and illumination correction36,37; (3) A bounding box 
refining network (BBR-net) model (trained from the IDRiD dataset28) was employed to refine coarse bounding 
boxes (generated from coarse bounding circles in step (1) into more precise bounding boxes (the four sides of the 
refined boxes were much closer to the boundary of each lesion area than the coarse ones); (4) A third ophthalmol-
ogist re-checked the output of the aforementioned model and made manual corrections again. Detailed informa-
tion of step 2 and step 3 can be found in our previous work38. Representative examples of exudate detection labels 
are shown in Fig. 6. All clinicians involved in exudate labeling followed the following criteria:

•	 For relatively independent but still connected lesions, regardless of size and shape, in step (1), the boundary 
circle should include the entire area of the lesion. In step (4), the bounding box should be as close as possible 
to the edge of each exudate.

•	 For a large and coarsely-connected lesion, there may be multiple smaller lesions inside. However, if the 
smaller sub-lesions are very close to each other and it is challenging to identify every single sub-lesion, they 
can be grouped and considered as one single lesion, as shown in exudates a and b in Fig. 7.

•	 If the lesion label obtained from the above criterion 2 is very large such that there are a lot of background pix-
els included, the ophthalmologists separate it to be two exudate labels according to an appropriate boundary 
separation rule, as exudates b and c in Fig. 7 show.

•	 Overlap between two exudate labels is allowed, such as exudates c and d in Fig. 7 show. The ophthalmologists 
only need to make sure that the boundary circle completely contains the exudate, and the bounding box con-
tours the boundary of each exudate as close as possible.

•	 In terms of other special cases, the ophthalmologists communicate with each other to reach consistent labe-
ling criteria.

Creation of OD bounding box and fovea location annotations.  Along with the annotations pre-
sented above, this dataset also provided center pixel locations of fovea (Fx,Fy) as well as bounding boxes of ODs 
(Ox1, Oy1, Ox2, Oy2) for all images. The procedure of creating those two labels consisted of the following two steps: 
automatic generation and manual correction. OD and fovea are two of the most important anatomical landmarks 
of fundus images. In one of our previous works39, we trained a region proposal network and a cascaded network 
for automated OD detection in the form of a bounding box and fovea localization in the form of a pixel location 

Fig. 5  The flowchart of generating the ground truth bounding boxes of exudates.
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identification. After that, an ophthalmologist visually examined the accuracy of the automatic results and per-
formed manual corrections if necessary. The OD bounding box should be the smallest rectangle that bounds the 
OD and the fovea is defined to be the center of the macula. Figure 8 shows representative instances of the OD and 
fovea annotations.

Data Records
This dataset is publicly available at https://www.aiforeye.cn/ and https://doi.org/10.6084/m9.figshare.12570770.v140,  
which is stored as a zip file. In the unzipped folder, all the raw fundus images, the exudate annotations, the DR 
grading labels, and the OD and fovea location annotations are stored in three subfolders, namely “originalIm-
ages”, “exudateLabels”, and “odFoveaLabels”. In the “originalImages” folder, files are saved in the JPG format and 
named as “n.jpg”, with n ranging between 0001 and 1219 indicating the nth sample. In that folder, we also provide 
a comma-separated-values (CSV) file named “drLabels.csv”, wherein the first column indicates the file name, 
the second column indicates the left-versus-right eye categories with 0 representing left eyes and 1 right eyes, 
the third column indicates the DR category assessed via the International Clinical DR Severity Scale (0 to 5, 
with 0 representing normal healthy, and 1 to 5 respectively representing mild non-proliferative DR, moderate 

Fig. 6  Representative examples of exudate detection labels.
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d

Fig. 7  Several examples to help illustrate the labeling criteria for exudates.
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non-proliferative DR, severe non-proliferative DR, proliferative DR, and DR with laser spots or scars), the fourth 
column indicates the DR grade assessed via the American Academy of Ophthalmology protocol, and the fifth 
column indicates the DR grade assessed via the Scottish DR grading protocol. Another CSV file named “c5_DR_
reclassified.csv” provides the DR labels for images belonging to category 5 assessed via the three aforementioned 
protocols. The exudate detection labels, OD bounding box’s coordinates, as well as fovea location’s coordinates 
are saved in the XML format stored at the corresponding folders (namely “exudateLabels” and “odFoveaLabels”), 
following the same specifications as the Pascal Voc dataset41. Hard and soft exudates are labeled separately in this 
dataset. In the XML files, “ex” stands for hard exudates and “se” for soft exudates.

Technical Validation
It is worth mentioning that although some degree of automation was involved in generating all four types of 
labels provided in this work, expert verification was always performed as the last step to ensure the quality and 
correctness of the annotations.

For the OD bounding box and fovea location labels, they are relatively simple and had been labeled in a 
semi-automated manner. Specifically, automated OD bounding boxes and fovea locations were obtained from 
a deep learning model39, the performance of which had been verified on a large set of fundus images. After 
that, one ophthalmologist checked the results and corrected if necessary. For the left-versus-right eye label, the 
definition is very straightforward, according to OD’s position and direction of the retinal vessels. Every fundus 
photograph was independently read by two ophthalmologists, and then a third one would re-annotate the ones 
with inconsistent judgments. For this label, the value of intra-class correlation coefficient (ICC)42 between the 
initial two ophthalmologists is 1 and thus the third ophthalmologist was not involved at all. For the DR grade 
label, the ICC between the initial two annotators is 0.91. The main difficulty lies in distinguishing between mild 
non-proliferative DR, moderate non-proliferative DR, and severe non-proliferative DR. For the exudate annota-
tion, we calculate the Dice coefficient43 between two exudate labels (boundary circle labels are transformed into 
binary masks, where the pixel value inside the circle is 1 and the pixel value outside the circle is 0) to assess the 
inter-rater agreement, and the mean Dice value between the initial two annotators is 0.89. In conclusion, for the 
four kinds of labels provided in our dataset, different annotators had high consistency/inter-rater agreement, 
ensuring the high quality of the annotations of our proposed SUSTech-SYSU dataset.

When constructing the exudate annotations, we also trained a BBR-Net model based on the exudate labels 
provided in the IDRiD dataset (combining soft exudates and hard exudates together). Evaluated on the IDRiD 
dataset, our BBR-Net can effectively refine coarse exudate annotations, with the average intersection-over-union 
(IoU)44 being 0.8653 when compared with well-annotated bounding boxes (generated from the pixel-wise labels 
provided in IDRiD). Then, we applied the trained and validated BBR-Net to the automatic correction step in exu-
date label creation in this work. Additionally, experienced ophthalmologists have visually examined the quality of 
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Fig. 8  Representative instances of the OD and fovea annotations.
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all 1219 fundus images used in this study to ensure adequate image quality. Our aiforeye platform also embedded 
a function of automated quality assessment for fundus images.

In order to quantify the relationship between lesion area and DR grade in the provided dataset, we calculate 
the total number, average number, total area, and average area of exudates contained in images belonging to each 
category of the provided dataset, which are demonstrated in Tables 3 and 4. Our entire dataset contains 15,652 
exudates, and the total number of pixels inside all exudate bounding boxes are 212201128, accounting for 6.11% 
of the total area (3469547520). All these metrics were computed from the 564 fundus images with exudate anno-
tations. It can be easily seen that the data in those two tables are in line with clinical knowledge. Many fundus 
images in the category of stage 4 had severe fibrous proliferation or severe vitreous hemorrhage, which obscured 
exudates. Therefore, the average area of exudates is the largest for images in the category of stage 3. The average 
area of either stage 2 or stage 4 is less than that of stage 3. After receiving retinal photocoagulation treatment, the 
number of exudates decreased and the average area is smaller than both stage 3 and stage 4.

Even though the exudate detection labels were generated under the unanimous determination of three oph-
thalmologists, for exudates the edges of which are often not distinct or cover a large area, it is sometimes difficult 
to determine and justify which pixels should be included in a single bounding box. Therefore, there is still a cer-
tain degree of subjectivity in our exudate annotations. Finding a proper balance between pixel-level segmentation 
labeling and bounding box detection labeling is one of our future research directions.

Although our provided dataset is quality controlled, individual fundus images are relatively variable in 
terms of quality. Some are blurrier than others. With that being said, providing a large dataset containing both 
high-quality and relatively low-quality samples ensures more realistic model training so as to accommodate real 
clinical scenarios. In addition, this dataset may be also useful for advancing automated quality-enhancement 
techniques45,46 for fundus images, especially in the context of DR screening.

Compared with the 81 samples in the IDRiD dataset and the 47 samples in the e-Ophtha EX dataset, the data-
set we introduced in this paper has a relatively large sample size (564 samples in total) in terms of exudate detec-
tion tasks. However, in terms of DR classification and grading, this dataset is unbalanced to a certain extent, and 
the sample sizes of specific categories are relatively limited (mild non-proliferative DR, severe non-proliferative 
DR, and proliferative DR). In this case, training with machine learning, especially deep learning methodologies, 
may cause over-fitting problems. As such, in terms of the development of automated DR classification algorithms, 
this dataset may be more suitable for applying “Few-shot Learning” methods, the research topic of which has 
gradually received extensive attention and developments in the past few years47. One of our future research efforts 
is to address this limitation.

Usage Notes
This dataset can be downloaded through the link mentioned above. Users of this dataset are expected to cite this 
paper in any research output generated from using this dataset as well as appropriately acknowledge the contri-
butions of this dataset.

After copying all images from the “originalImages” folder to the “exudateLabels” and “odFoveaLabels” folders, 
users can directly open the provided fundus images and the corresponding exudate detection labels, OD bound-
ing box’s coordinates, as well as fovea location’s coordinates using Labelimg48 (a graphical image annotation tool, 
which can be accessed at https://github.com/tzutalin/labelImg). This tool provides functions of visualizations and 
modifications of annotations (according to research needs). Please note in order to display directly in Labelimg, 
the fovea location’s coordinates are transformed into a small box (Fx, Fy, Fx+1, Fy+1).

Code availability
In the process of constructing the dataset provided in this work, we used several automatic algorithms developed 
in our previous works38,39. The source code for the bounding box refining network (BBR-net) can be accessed 
at https://github.com/YijinHuang/BBR-Net (or https://doi.org/10.5281/zenodo.4041331)49 and code for OD 
detection and fovea localization are available upon request. Also, we have embedded all involved algorithms 
into a cloud platform that we developed. Users of this dataset can access the two automatic algorithms by visiting 
our website at https://www.aiforeye.cn/ and uploading fundus images for analysis. The functions provided by 

Category Stage 2 Stage 3 Stage 4 Category 5 Total

Total 9,156 2,847 1,532 2,117 15,652

Average 25.08 39.00 26.41 31.13 27.75

Table 3.  The total number of exudates contained in fundus images belonging to each category of this dataset.

Category Stage 2 Stage 3 Stage 4 Category 5 Total

Total 123,470,897 40,280,698 22,968,498 25,481,035 212,201,128

Average/lesion 13,485.24 14,148.47 14,992.49 12,036.39 13,557.44

Average/image 338,276.43 551,790.38 396,008.59 374,721.10 376,243.13

Table 4.  The area (pixel numbers) of exudates contained in fundus images belonging to each category of this 
dataset.

https://doi.org/10.1038/s41597-020-00755-0
https://github.com/tzutalin/labelImg
https://github.com/YijinHuang/BBR-Net
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our platform include classification of left and right eyes, DR grading, lesion detection, identification of OD and 
fovea, as well as some additional functions such as retinal vessel segmentation and statistical analyses of vessel 
morphometrics and lesion abnormalities. Please note that our algorithms for segmenting and classifying corneal 
ulcers from ocular staining images (the dataset we published before)21 can also be accessed on this platform.
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