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Abstract

Background: Various methods exist for statistical inference about a prevalence that consider misclassifications due
to an imperfect diagnostic test. However, traditional methods are known to suffer from truncation of the prevalence
estimate and the confidence intervals constructed around the point estimate, as well as from under-performance of
the confidence intervals’ coverage.

Methods: In this study, we used simulated data sets to validate a Bayesian prevalence estimation method and
compare its performance to frequentist methods, i.e. the Rogan-Gladen estimate for prevalence, RGE, in combination
with several methods of confidence interval construction. Our performance measures are (i) error distribution of the
point estimate against the simulated true prevalence and (i) coverage and length of the confidence interval, or
credible interval in the case of the Bayesian method.

Results: Across all data sets, the Bayesian point estimate and the RGE produced similar error distributions with slight
advantages of the former over the latter. In addition, the Bayesian estimate did not suffer from the RGE's truncation
problem at zero or unity. With respect to coverage performance of the confidence and credible intervals, all of the
traditional frequentist methods exhibited strong under-coverage, whereas the Bayesian credible interval as well as a
newly developed frequentist method by Lang and Reiczigel performed as desired, with the Bayesian method having a
very slight advantage in terms of interval length.

Conclusion: The Bayesian prevalence estimation method should be prefered over traditional frequentist methods.
An acceptable alternative is to combine the Rogan-Gladen point estimate with the Lang-Reiczigel confidence interval.

Keywords: Prevalence estimation, Imperfect diagnostic test, Misclassification, Bayesian prevalence estimate,
Rogan-Gladen estimate, Diagnostic sensitivity, Diagnostic specificity

Background

Prevalence estimation is fundamental to a lot of epidemio-
logical studies. However, to obtain an accurate estimation
of prevalence, misclassification and measurement errors
should be considered as part of bias analysis in epidemi-
ological research [1]. Frequentist and Bayesian methods
for bias adjustment of epidemiological risk estimates have
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been reviewed in Keogh et al. [2] and Shaw et al. [3]. Esti-
mation of prevalence is always based on the application
of a diagnostic test to classify samples with respect to the
binary trait under investigation. Major sources of uncer-
tainty of prevalence estimates are related to the study
design and sampling issues and are usually described
using the concepts of bias and precision (statistical param-
eter uncertainty of the estimate). A typical source of
(information) bias is diagnostic misclassification due to
imperfect sensitivity and specificity. Rogan and Gladen
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have derived an estimator for prevalence with adjust-
ment for diagnostic misclassification [4]. This approach
requires that unbiased estimates of the diagnostic accu-
racy be available for the given application (reviewed in
[5]). Here, we present a comparison of Bayesian and fre-
quentist methods for prevalence estimation taking into
account all relevant uncertainties associated with the
study- and meta-data, e.g. the diagnostic test perfor-
mance.

In the following, D/~ denotes the individual disease
status and 77/~ the result of a diagnostic test applied
to an individual. The test sensitivity is then defined as
the probability that a DT individual tests positive, Se =
Pr(T*|D"), and its specificity is defined as the probabil-
ity of a D™ individual testing negative, g}a = Pr(T~|D7).
The disease prevalence, 7, is the proportion of diseased
individuals in a population but can also be thought of as
the probability that a randomly sampled individual is dis-
eased. The probability that a test applied to a random
individual from such a population yields a positive result
is called the apparent prevalence,

AP = Pr(T")
= Pr(T"|D") Pr(D") + Pr(T"|D™) Pr(D")
=Se 7+ (1—Sp)(1 — 7). (1)

By replacing the true population quantities (denoted by
the tilde) in Eq. (1) with estimates of these quantities
(denoted by a circumflex accent or “hat”) that are sub-
ject to sampling variability and subsequently solving for
the prevalence, the Rogan-Gladen point estimate [4] is
derived:

-(1-%)
TEaS)
In practice, the Rogan-Gladen estimate is truncated to

the interval [0, 1] in order to guarantee a proper propor-
tion [6],

[RGE]} = min (max (RGE, 0), 1). (3)

RGE=7 )

The potential need for truncation stems from the fact that
for a prevalence estimate to be a valid proportion, 0 <
RGE < 1, three conditions must be satisfied [4, 6] which
may not always be the case in practice:

1—-Sp<Se (4a)
1—Sp<AP (4b)
AP < Se (4¢)

Condition (4a), 1 — §1\9 < Se , should hold for any diag-
nostic test to meet the basic requirement that a disease be
detected better than by chance alone [4]. Failing to satisfy
the second condition (4b), 1 — Sp < AP, results in a neg-
ative estimate for the true prevalence, RGE < 0, whereas
violating the third requirement (4c), AP < Se , yields an
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estimate larger than unity, RGE > 1 [6]. Note that it
is possible for degenerate cases to occur where the first
condition is violated but the estimate still yields a value
between zero and unity.

In order to quantify the precision of an estimate, it is
good practice to accompany the point estimate with a
95% confidence interval (CI). In this study, we included CI
construction methods by Clopper and Pearson [7], Sterne
[8], Blaker [9], Rogan and Gladen [4], and by Lang and
Reiczigel [10].

In a Bayesian framework, credible parameter values are
described by probability distributions. In order to provide
comparability with the frequentist approach, the mean of
a distribution may then be used as a point estimate, and
the Bayesian analogue to the CI is the credible interval
(Crl) that marks a range of values that combine a specified
percentage of the distribution’s probability mass. More
specifically, we consider the 95% highest density interval
(HDI) which is the shortest of all possible 95% CrIs.

The aim of this study is to validate a Bayesian model
for prevalence estimation with an imperfect diagnostic
test and to compare its performance with traditionally
used methods. We use simulated data sets based on sim-
ulated true parameter values. Our performance measures
are (i) estimation error of point estimates and (ii) confi-
dence interval coverage and length. Of special interest is
the performance of the Bayesian point estimates in situa-
tions when the Rogan-Gladen estimate must be truncated
because it otherwise yields a negative value or a value
larger than unity.

Methods
The present validation study consists of four steps: (1)
Simulation of parameter sets, including true prevalence
values, (2) simulation of data sets, (3) estimation of preva-
lence for each of the generated data sets, and finally the
actual (4) validation of the estimates against the simulated
true values. Figure 1 gives an overview of these steps, and
we describe each step in detail in the following sections.
All computations were performed on a work station
running Ubuntu Linux 18.04.3 LTS, using the statistical
software R version 3.6.2 [11] and the MCMC software
JAGS version 4.3.0 [12]. The R code used as well es all data
sets generated and analysed during this study are available
via a Zenodo snapshot, https://doi.org/10.5281/zenodo.
3631123.

Parameter set simulation

We distinguish between statistical parameters and design
parameters. The statistical parameters are the true preva-
lence in a population under study, and the true charac-
teristics of the test that is used to diagnose individuals in
a sample drawn from such a population, i.e. true sensi-
tivity and true specificity. The statistical parameters may
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Fig. 1 The four steps of the validation study. (1) Simulation of parameter sets to generate true values, (2) simulation of data sets, (3) estimation of
prevalence and calculation of confidence intervals, and (4) validation of the estimates against simulated true values

be estimated by a statistical model. Design parameters
describe the circumstances under which data is generated,
and are typically chosen by scientists conducting a study
or by users applying a diagnostic test. In our case there
are three design parameters, all of them sample sizes:
The size of the sample that a diagnostic test is applied
to, the sample size of a study that has been conducted
to validate the sensitivity of the diagnostic test, and like-
wise the sample size of a validation study of the test’s
specificity.

For the purposes of this study we generated 1,000
parameter set realisations consisting of the three statisti-
cal and the three design parameters. Simulated true values
(indicated by a tilde, 7, in this article) for the statistical
parameters, prevalence, sensitivity, and specificity, were
randomly drawn from the ranges specified in Table 1. True
prevalence (7) can take on _any value between 0% and
100%, and true sensitivity (Se) and specificity (Sp) val-
ues are assumed to be at least 60% up to a maximum
of 100%.
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Table 1 Parameter set simulation. For each parameter set
realisation, true values for the statistical parameters were
simulated by drawing from continuous uniform distributions,

U (min, max). Values for the design parameters were simulated
by randomly drawing from fixed sets of values (in the case of
sample sizes for simulated validation studies of a diagnostic test)
or from a discrete uniform distribution (in the case of the sample
size for an application of the test)

Parameter Description Values sampled from

Statistical
Se  True sensitivity U©06 1
Sp True specificity U6, 1)
T True prevalence Uuao1m
Design

nse  Sample size for a sen-
sitivity validation

{50,100, 200, 500, 1000, 2000, 5000}

study
ns,  Sample size for a  {50,100,200,500, 1000, 2000, 5000}
specificity  validation
study
n Sample size for a test U (50, 2000)
application

The three design parameters are denoted by nse, nsp,
and n. These enable us to simulate the situations where
(i) studies are performed to validate the sensitivity and
the specificity of a diagnostic test (with sample sizes ng,
and gy, respectively), and situations where (ii) the actual
application of a test takes place (namely, the number of
individuals that are tested, n). The three sample sizes
were randomly drawn as specified in Table 1, and exem-
plary parameter set realisations are shown in Table 2. No
correlations were assumed among these parameters.

Data set simulation

For each simulated set of parameters we generated 1,000
replications of data sets (replications in the sense that
the underlying true values for prevalence, sensitivity, and
specificity, are the same for such a set of 1,000 data).
Data from diagnostic validation studies were simulated
by randomly drawing numbers of true positives, xs,, and
numbers of true negatives, xs,, from the binomial dis-
tributions! given in Eq. (5). The number of positive test
results, x, when applying the test in a population with true
prevalence 7, was simulated analogously:

xse ~ B (nse, 55)
xsp ~ B (nsp, Sp) (5)
x~ B(n, 12173) ,

LThe binomial distribution B(#, p) is the discrete probability distribution of
the number of successes in a series of independent trials where parameters n
and p are the number of trials and the success probability for each trial,
respectively.
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where AP = Se % + (1 — S};) (1 — 7) may be called the
‘true apparent prevalence’

Thus for each data set, the maximum likelihood esti-
mators for sensitivity, specificity, and apparent prevalence
would be

ge\ = XSe/Nse
Sp = xsp/nsp (6)
AP = x/n

In our parameter sets, the true values, Se s S;a, and ﬂ’,
would (by definition) always meet all of the three con-
ditions (4). However, due to the random sampling pro-
cedure described above for simulating (and mimicking
random processes occurring in the real world) valida-
tion studies and application of a_diagnostic test, the
maximum likelihood estimators, Se, Sp, and AP, will
sometimes lead to violation of one or more of the condi-
tions. From the total of 1, 000 (parameter set realisations)-
1,000 (data set replications) = 1,000,000 data sets, we
excluded 21 because they failed to meet the first condi-
tion, 1 — 3}9 < Se, arguing that a test that has been
validated in this manner would not be applied in prac-
tice. The data simulation process thus generated a total of
999,979 data sets. Table 3 shows exemplary data sets from
the generation process described in this section.

Estimation of prevalence

In the next step, we estimated prevalence adjusted for
misclassification for each of the simulated data sets using
frequentist and Bayesian methods.

Frequentist estimation

For each data set, we calculated the Rogan-Gladen point
estimate for prevalence according to Eq. (3), using the
maximum likelihood estimates for the sensitivity and
specificity values as well as the apparent prevalence. In
order to construct a confidence interval (CI) for the
Rogan-Gladen estimate, several different methods are
used in the literature. Here, we consider the methods pro-
posed by Clopper and Pearson [7], Sterne [8], Blaker [9],
and Rogan and Gladen [4]. All of these methods except
for the one by Rogan and Gladen assume that sensitivity
and specificity are known, and the MLE values were used
in this case. Rogan and Gladen [4] do allow for sensitiv-
ity and specificity to be estimated from validation studies
(thus taking into account uncertainty around the diagnos-
tic test properties) but due to the normal approximation
that they suggest, their CI is known to perform poorly [5].
For a more comprehensive description of how these inter-
vals are constructed we refer to the study by Reiczigel et
al. [13]. Indeed, the code we used to calculate these CI’s is
based on the code provided in Reiczigel et al. [13] and in
Lang and Reiczigel [10].
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Table 2 Exemplary parameter sets. The first ten out of the total of 1,000 parameter sets

Statistical Design
Parameter set Se 573 T Nse Nsp n
1 0.7479478 0.9332674 04459405 100 200 323
2 0.7768875 0.6758782 0.3946503 50 500 1285
3 0.9816547 0.6470824 0.4837289 500 100 1820
4 0.9410975 0.8721922 0.9188760 1000 100 1524
5 0.8979315 0.6941977 0.8438814 500 200 933
6 0.6628014 0.9243710 0.5173496 5000 1000 427
7 0.9812932 0.9842258 04371250 5000 2000 1624
8 0.7668501 0.9065918 0.3431982 1000 2000 642
9 0.8352567 0.6215114 0.0155170 5000 50 1667
10 0.9489196 0.7611306 0.1179912 500 2000 557

Bayesian estimation

In the Bayesian prevalence estimation model, prior knowl-
edge or belief about the true prevalence as well as the sen-
sitivity and specificity of the diagnostic test is expressed
in terms of probability distributions. Prior knowledge in
the present context derives from validation studies of the
diagnostic test properties but in other situations may also
stem from expert opinion. Through data from the applica-
tion of the test to diagnose samples from a population the
model updates the probability distributions which after-
wards describe the posterior knowledge about the true
prevalence as well as about the sensitivity and specificity
of the test.

Posterior probability distributions must often be numer-
ically approximated by random sampling algorithms
referred to as Markov Chain Monte Carlo (MCMC) meth-
ods. To ensure that values are sampled from a stationary
distribution, so-called convergence diagnostics are used.

Our prevalence estimation model was implemented
using the JAGS software [12], a Gibbs sampler for MCMC

simulations that uses a dialect of the BUGS modeling lan-
guage [14]. The model, expressed in the BUGS language,
is basically a description of the process that provides
parameters for data generation:
model
pi ~ dbeta(l, 1)
se ~ dbeta(x se + 1, n se - x se + 1)

# prevalence

# sensitivity

sp ~ dbeta(x sp + 1, n sp - x sp + 1)
# specificity
(1 - pi) » (1 - sp)
# apparent prevalence

ap <- pi * se +

x ~ dbin(ap, n)
}

By definition, the variables prevalence, sensitivity, and
specificity are all proportions and thus appropriately mod-
eled as Beta probability density distributions (dbeta
in the BUGS language; the tilde symbol, ~, denotes
drawing a random variable from a distribution whereas
the left arrow, <-, implies a deterministic relationship).

# number of positive tests

Table 3 Exemplary data sets. The first ten of the replicate data sets for the first parameter set. Statistical and design parameters sampled
according to Table 1, data generated according to Eq. (5), and maximum likelihood estimators (MLE) calculated according to Eq. (6)

Statistical Design Data MLE

Data set Se 573 T Nse Nsp n Xse Xsp X Se 527 AP

1 0.7479478 0.9332674 04459405 100 200 323 74 193 129 0.74 0.965 0.3993808
2 0.7479478 0.9332674 04459405 100 200 323 70 189 125 0.70 0.945 03869969
3 0.7479478 0.9332674 0.4459405 100 200 323 78 189 124 0.78 0.945 0.3839009
4 0.7479478 0.9332674 0.4459405 100 200 323 73 191 109 0.73 0.955 0.3374613
5 0.7479478 0.9332674 0.4459405 100 200 323 76 184 117 0.76 0.920 0.3622291
6 0.7479478 0.9332674 0.4459405 100 200 323 66 188 132 0.66 0.940 0.4086687
7 0.7479478 09332674 0.4459405 100 200 323 76 179 121 0.76 0.895 0.3746130
8 0.7479478 0.9332674 0.4459405 100 200 323 75 188 118 0.75 0.940 03653251
9 0.7479478 0.9332674 04459405 100 200 323 74 187 127 0.74 0.935 03931889
10 0.7479478 0.9332674 04459405 100 200 323 75 191 127 0.75 0.955 03931889
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Importantly, this guarantees that all probability mass for
each of these variables is restricted to the domain [0, 1]
thus eliminating the problem of prevalence estimates that
are negative or larger than unity, and the same conve-
niently holds for limits of credible intervals.

For the prevalence we use the uniform Beta (1, 1) as
a non-informative prior distribution?. In contrast, prior
information on the sensitivity and specificity of the diag-
nostic test is available from their respective validation
studies. E.g., if the sensitivity of the test has been validated
against a gold standard in a study of size ng,, and xg, of the
truly positive samples yielded a positive test result, then
our knowledge about the true sensitivity can be expressed
as Beta (xse + 1, nse — xs¢ + 1).

As with all MCMC simulation techniques, using the
JAGS software requires that convergence of the Markov
chains to a stationary distribution be checked. In order
to realize the validation study presented here, i.e. apply-
ing our model to approximately 1,000,000 data sets, we
made use of the R package runjags [15] which pro-
vides an interface to JAGS with capabilities for auto-
mated calculation of convergence diagnostics [16] and of
appropriate sample length [17] via an autorun func-
tion. All chains were initialized explicitly to ensure that
convergence can be evaluated appropriately. For all sim-
ulations, we used three chains, 1,000 adaptive iterations,
a burn-in length of 4,000, and a minimal sample length
of 20,000. This yielded an effective sample size of approx-
imately 10,000 on which the prevalence estimates are
based. When the Bayesian estimation model was applied
to each of the data sets, the Gelman and Rubin’s statistic
as used by the autorun function indicated convergence
in all cases.

The mean of the posterior distribution —approximated
by the three combined chains— is a minimum mean square
error estimator and provides a Bayesian point estimate for
the true prevalence. The broader the probability distribu-
tion, the less certain our knowledge about the true preva-
lence is. A 95% credible interval (Crl) denotes a range of
prevalence estimates that together account for 95% of the
probability mass of the distribution. The 95% highest den-
sity interval (HDI) is the shortest 95% CrI, such that any
value outside the HDI is considered less plausible than
the values inside of it. Therefore, the 95% HDI constitutes
a natural measure of uncertainty for the estimate. Note
that the Bayesian model also provides updated knowledge
on the sensitivity and the specificity of the test, but in
this study we focus on the performance of the prevalence
estimates.

2More accurately, the Beta (1, 1) prior is weakly informative, as it implicitly
considers all possible values to be equally likely. However, for the sake of
simplicity we will use the term non-informative throughout this article.
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Validation

In the final validation step of our study, we calculated two
performance metrics and their distributions in order to
compare the various estimation methods: (i) the estima-
tion error of the point estimates and (ii) the coverage of
the confidence or credible intervals.

For each data set, the estimation error of the two point
estimates (Rogan-Gladen estimate, Bayesian mean) was
calculated as the difference to the simulated true value,
estimation error = 7T — 7. Note that a consistent esti-
mator should exhibit a symmetric distribution (across
all data sets) of estimation errors that is centered at
zero. To investigate which estimator performs better, we
carried out a regression of the estimation errors of all
Bayesian estimates on the corresponding Rogan-Gladen
estimate’s estimation errors. Because obviously there are
errors in both estimators, we used a Deming regression
and assumed equal error variances for the two distribu-
tions. This means that the regression minimizes the sum
of squared orthogonal distances to the regression line.

For each parameter set, coverage of the various frequen-
tist 95% CI’s [4, 7-10] and of the Bayesian 95% HDI was
computed as the percentage of the 1,000 replication data
sets for which the true prevalence value was contained
in the respective interval. Note that this implies assessing
the frequentist behaviour of the Bayesian HDI. A well-
behaved 95% confidence (or credible) interval is expected
to have a symmetric distribution (across all parameter
sets) of coverage values that is centered at its nominal
value of 95%. Additionally, we calculated the lengths of the
CT’s for all data sets. If one compares two well-behaved CI
methods then the one producing shorter intervals is the
better one.

Results
In general, the Rogan-Gladen point estimate as well as
the Bayesian estimator (i.e. the MCMC mean) yield a
consistent point estimate for the prevalence. More specif-
ically, estimation error distributions of the two methods
look very similar when compared across the entirety of
all simulated data sets (Fig. 2a, top left). This property
of being consistent also holds true for data subsets in
which the Rogan-Gladen estimate yields a value between
zero and unity (Fig. 2a, top right). However, for subsets
of the data in which the non-truncated Rogan-Gladen
estimate is negative (Fig. 2a, bottom left) or larger than
unity (Fig. 2a, bottom right), the Bayesian estimator is
more consistent and exhibits a distribution approximately
symmetrical to an estimation error of zero. Its asym-
metrical error distribution indicates a deficiency of the
Rogan-Gladen estimator.

In order to compare the two estimators in more detail,
we plotted their estimation error values against one
another for all of the 999,979 data sets (see Fig. 2b). To deal
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Fig. 2 Estimation errors. (a) Estimation error distributions of the Rogan-Gladen point estimate and the Bayesian estimate (MCMC mean) across all
data sets (top left), and across data sets as classified according to the non-truncated Rogan-Gladen estimate (case 1, top right). The Bayesian
estimator shows adequate error distributions for the data sets with a truncated RGE (cases 2 and 3, bottom row). (b) Comparison of the estimation
errors of the Bayesian mean and the Rogan-Gladen estimate for all data sets. Hexagonal binning is used to deal with overplotting, and the hex gray
scale codes for the number of data sets that fall within it. The dashed black line shows a Deming regression of the Bayesian estimation error on the

Rogan-Gladen estimation error. Its slope is 0.939 with a confidence interval of (0.938, 0.941)

with overplotting, we used hexagonal binning; the darker
the shade of a hexbin the more data sets were registered
within that bin. In general, the hexbins are distributed
along the diagonal showing that the estimation errors of
the two estimators behave similarly. The correlation coef-
ficient for the two estimation errors is r = 0.921, and the
orthogonal regression has a slope of 0.939. The confidence
interval for the slope estimate, (0.938, 0.941), does not
include the diagnonal (slope 1) thus revealing that over-
all the Bayesian estimator performs slightly better than
the Rogan-Gladen estimate. A linear regression analysis
for both estimators suggests that the residual estimation
error after adjusting prevalence estimates for diagnostic
sensitivity and specificity does depend on the applica-
tion scenario as represented by our design variables for
sample sizes, true prevalence, true sensitivity and true
specificity, but that the effects are only very minor for the
whole model, the individual parameters, as well as their
first-order interactions (see Additional file 1).

The coverage of the Bayesian HDI credible intervals
and of the Lang-Reiczigel CI is in good accordance with
their nominal value of 95%, as can be seen in Fig. 3.
This is in stark contrast to traditional confidence inter-
vals which exhibit coverage much lower than 95%. In fact,
the nominal 95% are not even included in the interquar-
tile ranges of coverage values for these traditional
methods.

Coverage is one performance metric for a confidence
(or credible) interval, length of the interval is the other.
Figure 4a shows that traditional CI's (Clopper-Pearson,
Blaker, Sterne, Wald-Rogan-Gladen) are much shorter
than the Lang-Reiczigel CI and the Bayesian HDI, the two
of which have very similar lengths. This pattern is even

more pronounced for the data subsets in which the Rogan-
Gladen estimate has to be truncated at zero (case 2; Fig. 4a
bottom left) or at unity (case 3; Fig. 4a bottom right).

Figure 4b shows how the lengths of the Bayesian
HDI and of the best performing (in terms of cover-
age) conventional confidence interval, the Lang-Reiczigel
CI, relate to one another. The correlation coefficient is
0.975. The dashed black line shows an orthogo-
nal Deming regression, again under the assumption that
both interval lengths have equal variance. The slope of
the regression is 0.955 (0.954, 0.957) showing that the
Bayesian HDI tends to be slightly narrower than the
Lang-Reiczigel CI.

r =

Discussion

In this simulation study we evaluated the validity of a
Bayesian method to estimate true prevalence based on the
results of imperfect diagnostic tests. The Bayesian point
estimate of the true prevalence performed slightly bet-
ter than the conventional Rogan-Gladen estimate. Our
study demonstrated that the traditional confidence inter-
vals, Clopper-Pearson, Blaker, Sterne, and Wald-Rogan-
Gladen exhibit considerable under-coverage and should
be considered unfit for prevalence estimation under mis-
classification. In contrast, both the Lang-Reiczigel CI and
the Bayesian HDI can be considered fit for use as they pro-
vide coverage close to the level of 95%. The fact that the
traditional methods generally provide much narrower CI’s
than the Lang-Reiczigel CI or the Bayesian HDI does obvi-
ously not ameliorate this shortcoming but rather gives an
impression of certainty that is unwarranted. It could be
said that the Lang-Reiczigel CI even errs slightly to the safe
side (see inset in Fig. 3).
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Fig. 3 Confidence interval coverage. Coverage by parameter set for several methods of 95% confidence interval (Cl) construction. The nominal
coverage of 95% is marked by a solid gray line, and the dahed lines mark coverage values of 90% and 100%. The traditional CI's (Clopper-Pearson,
Blaker, Sterne, and Wald-Rogan-Gladen) all exhibit significant under coverage. The bottom left inset shows the Lang-Reiczigel Cl's and the Bayesian
HDI's coverage distributions in more detail. It reveals the Lang-Reiczigel Cl tends to have some over coverage and the Bayesian HDI's coverage
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A basic assumption underlying the present study is that
the sensitivity and specificity of the diagnostic test have
been validated in a manner appropriate for the given
application of the test. This refers to the concept of “oper-
ational parameters” and requires that the panel selection
(of truly positives and truly negatives) for the validation
of sensitivity and specificity of the test is representative
for its application in the field. This assumption, how-
ever, needs to be made independent of whether one uses
the conventional Rogan-Gladen estimate or a Bayesian
method.

Violations of the conditions (4b) or (4c) can indicate that
the prior information about test accuracy is inconsistent
with the application data. In this case it may be a bet-
ter option to refrain from adjustment for misclassification
until reliability and relevance of the diagnostic’s parame-
ters are clarified.

Our simulations resulted in calculated Rogan-Gladen
estimates outside the possible range of [0, 1] in 4% of
the cases. This percentage results from our choices of
simulation scenarios and cannot be extrapolated to real
applications. However, bias adjustment has led to “impos-
sible” results which does occurs in practice. E.g., Moujaber
et al. [18] compared prevalences of Heliobacter pylori
infection in Australia among different age groups but only
reported apparent prevalences. Had they corrected for
sensitivity and specificity of the ELISA test used, preva-
lence estimates for two age groups would have been nega-
tive. This becomes obvious also in other statistical models,
for example when bias adjustment results in negative
count data. Lash et al. [1] noted that encountering impos-
sible adjusted data is often of substantive importance, as
it may represent a fundamental disconnect between the
priors and the data or data model, and may signal poor

a All Data Sets (n = 999979) Case 1 (n = 956334): 0< RGE <1 b Log of count within hexbin o [ + [l 2 [l - Il +
Clopper—Pearson  pF————1——— —_— 1.00 ,
Blaker p——Cor—— P Regression line slope: ,,¥
Sterme  ——C——— ——— _ 0.955 (0.954, 0.957) Laap )
Wald-Rogan-Gladen ~+———O———+| —_— a |
i f N I s
Lang-Reiczigel F———¥T —3F%—————f , T 1 c zal
Bayesian—-HDI | m— —— | t T { -2
Y
Case 2 (n = 23177): RGE<0 Case 3 (n = 20468): RGE>1 3
Clopper—Pearson  Fr———+H [= == ks}
Blaker FI——+ [ e — %
Sterne  EI—=———r| = §
Wald-Rogan-Gladen H——¥T——3%——— g e |
Lang-Reiczigel b—m—mF —7 >3 —-————+ e S — LM 4
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Length of CI Length of Lang—Reiczigel CI
Fig. 4 Confidence interval length. (a) Confidence (credible) interval length for several methods across all data sets (top left), and across data sets as
classified according to the non-truncated Rogan-Gladen estimate. Traditional ClI's are generally shorter than the Lang-Reiczigel Cl and the Bayesian
HDI. (b) Comparison of the lengths of the Bayesian HDI and the Lang-Reiczigel Cl for all data sets. Hexagonal binning is used to deal with
overplotting, and the hex gray scale codes for the number of data sets that fall within it. A Deming regression is shown as a dashed black line, its
slope is 0.955 with a confidence interval of (0.954, 0.957)
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prior information, poor data modelling or unrecognized
data problems. We believe that this reflects well the situa-
tion of truncated Rogan-Gladen estimates. As pointed out
elsewhere [5], an adjustment for sensitivity and specificity
can be very misleading if those accuracy parameters are
not valid for the given prevalence study.

For the construction of their confidence interval, Lang
and Reiczigel —as we did in our study— use non-
informative Beta (1, 1) priors for sensitivity and speci-
ficity and update the probability distributions according
to the results of the validation studies and thus gain
increased performance by adopting Bayesian concepts.
An advantage of our model may be seen in the opportu-
nity to easily incorporate expert judgment on sensitivity
and specificity instead of validation studies. This might
be particularly useful in situations where a lot of practical
experience is available but the existence of a reliable gold
standard is questionable.

Latent class models for estimating sensitivity and
specificity without gold standard [19] are related to
our approach since in this context, prevalence estima-
tion adjusted for sensitivity and specificity occurs as a
“by-product” of estimating accuracy parameters. Only
four out of 64 empirical studies on human populations
reported prevalence estimation as primary goal of latent
class modelling [20].

There is a recent tendency in health risk assessment
studies to replace the traditional Monte Carlo methods by
Bayesian network analysis [21]. The Bayesian method for
the estimation of true prevalence validated in our study
can easily be incorporated into a Bayesian network anal-
ysis by using the BUGS laguage (e.g. by using JAGS) and
thus provides a single software solution for the complex
task of risk assessment in scenarios with a high level of
uncertainty.

Even small improvements in the precision of prevalence
estimations are likely to contribute considerably to ame-
liorate the quality of risk analysis studies because in these
studies information about prevalence is incorporated into
larger systems of dependencies such that biases display
a tendency to be enlarged in the process of end point
estimation.

Conclusions

Prevalence estimations can easily be adjusted for diag-
nostic misclassification if the diagnostic performance of
the test or instrument has been characterized in terms of
sensitivity and specificity in a validation study. Further-
more, the use of a Bayesian model is a flexible approach
for quantifying the combined uncertainties of all model
parameters as it can be informed by empirical data as well
as by expert opinion. In a validation study on simulated
data sets, Bayesian estimates of the true prevalence and
the inherent uncertainty proved superior to traditional
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frequentist methods, exhibiting less bias than the Rogan-
Gladen estimate and better coverage than conventional
methods.
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