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A B S T R A C T   

Osteosarcoma is a malignant bone cancer that originates from the bone with the strongest 
invasiveness. Tumor formation strongly correlates with immune cell infiltration into the tumor 
immune microenvironment (TIME). Therefore, we aimed to identify TIME-related biomarkers as 
potential prognostic markers of osteosarcoma. The mRNA and long noncoding RNA (lncRNA) 
transcriptome data of 88 patients with osteosarcoma and the expression profile of GSE99671 were 
downloaded from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Immune 
infiltration scores and types were evaluated using ESTIMATE and CIBERSORT. A linear model 
was established to identify the differentially expressed genes (DEGs) and lncRNAs (DElncRNAs). 
Functional enrichment analysis of DEGs was conducted by Gene Ontology, Kyoto Encyclopedia of 
Genes and Genomes, gene set enrichment analysis, and gene set variation analysis. DElncRNAs 
were analyzed using a weighted gene co-expression network. Least absolute shrinkage and se-
lection operator regression was applied to screen for prognostic markers. Patient survival was 
predicted by the risk score and analyzed by receiver operating characteristic curve. Clinical 
features affecting patient survival were assessed. Immune infiltration positively correlated with 
osteosarcoma patient survival. Different immune cell infiltrates in patients with osteosarcma may 
serve as prognostic indicators and targets for immunotherapy. In total, 1125 DEGs, 80 DElncR-
NAs, and 11 pairs of co-expressed lncRNA-mRNAs were identified. DEGs in the three modules 
were associated with immune infiltration into the TIME. Four DElncRNAs, namely AC015819.1, 
AC015911.3, AL365361.1, and USP30-AS1, showed good prognostic ability for osteosarcoma and 
were positively correlated with the immune score. Tumor metastasis and risk scores alone were 
good prognostic indicators, and a combination of the two variables can better predict the prog-
nosis of osteosarcoma. We identified four lncRNAs, AC015819.1, AC015911.3, AL365361.1, and 
USP30-AS1, as potential biomarkers for osteosarcoma prognosis.   
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1. Introduction 

Osteosarcoma is one of the most prevalent malignant bone cancers affecting children and adolescents [1]. Osteosarcoma incidence 
in different age groups shows bimodal changes, with the first peak occurring in children and adolescents, and the second peak 
occurring after 60 years of age [2]. Osteosarcoma is usually caused by the inability of osteoblasts to differentiate into mature oste-
oblasts, and its typical pathological manifestations include spindle cells and osteoid formation [3,4]. Further, osteosarcomas exhibit a 
high degree of local invasion and early metastasis [5]. Patients with osteosarcoma are at higher risk of developing a second malignancy 
[6]. Osteosarcoma treatment typically involves a combination of chemotherapy and surgical resection [7,8]. Nevertheless, survival has 
stagnated in recent years and the prognosis of patients with metastatic or recurrent osteosarcoma remains unsatisfactory, with a 5-year 
overall survival rate of 20% [2,9]. Therefore, an urgent need exists to understand the exact mechanism of osteosarcoma and identify 
potential prognostic biomarkers and new treatment targets to improve survival rates. 

The tumor immune microenvironment (TIME) comprises endothelial and mesenchymal cells, extracellular matrix molecules, 
tumor-infiltrating immune cells, and inflammatory mediators [10]. TIME is involved in the occurrence, metastasis, and prognosis of 
tumors [11–13]. In the TIME, tumor-infiltrating immune cells constitute the main non-tumor component, which is valuable for the 
prognostic evaluation of osteosarcoma [14]. As reported, osteosarcoma patients with a higher content of immune cells in the TIME 
have a better prognosis [15]. Therefore, systematically evaluating the immune characteristics of the TIME, determining the distri-
bution and function of tumor-infiltrating immune cells, and improving the immunotherapeutic effect on osteosarcoma are crucial. 

Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not encode proteins [16]. LncRNAs, 
which account for approximately 80% of the human transcriptome, play an important regulatory role in various cancers by interacting 
with DNA, RNA, and proteins [17]. Moreover, lncRNAs are involved in various biological processes such as proliferation, apoptosis, 
and invasion of tumor cells [18]. Specifically, immune-associated lncRNAs influence the prognosis of osteosarcoma and are correlated 
with the TIME [15]. These lncRNAs regulate the TIME by regulating immune-related gene expression and disturbing immune cell 
infiltration into the TIME [19]. Therefore, lncRNAs play key roles in the pathogenesis of osteosarcoma. 

Integrated bioinformatics analysis of microarray data is beneficial for uncovering functions and signaling processes associated with 
various physiological and pathological conditions [20]. Recent studies have identified osteosarcoma signaling pathways through 
bioinformatics analysis based on the Gene Expression Omnibus (GEO) database, providing potential diagnostic biomarkers for oste-
osarcoma, including serum miRNA panels [21,22]. However, public databases with extensive genomic profiling data from patients 
with osteosarcoma have not been thoroughly analyzed. Additionally, studies on the discovery of abnormal lncRNA expression in 
osteosarcoma through comprehensive bioinformatic analyses have not been reported. Therefore, this study sought to identify potential 
TIME-related biomarkers of osteosarcoma through bioinformatics analyses. 

2. Materials and methods 

2.1. Data extraction and preprocessing 

The transcriptome data (mRNA and lncRNA) from sarcoma tissues of 88 osteosarcoma patients in the TARGET project were 
downloaded from The Cancer Genome Atlas (TCGA). Additionally, clinical characteristics and follow-up outcomes of the patients were 
obtained. The original count matrix and annotation files of the RNA sequencing results from transcriptome dataset GSE99671, con-
taining osteosarcoma and normal bone tissues from reliable samples, were downloaded from GEO [23]. GSE99671 includes the mRNA 
transcriptome data of 18 osteosarcomas and 18 normal bone tissues. 

2.2. Analysis of immune infiltration score 

The ESTIMATE algorithm was employed to calculate the infiltration score of immune cells in tissues using transcriptome data. 
Specifically, we used the Estimate package (version 1.0.13) to calculate and compare the immune cell infiltration score based on os-
teosarcoma mRNA data from TCGA database across different clinical subgroups [24]. We applied the Maxstat package (version 
0.7–2.5) and Cox regression to determine the cutoff value for immune scores. Subsequently, osteosarcoma patients were categorized 
into high and low expression groups of immune invasion based on the established cutoff value for further downstream analyses [25]. 

2.3. Analysis of immune cell infiltration 

We used the gene expression matrix to compute the immune cell infiltration of samples using the CIBERSORTx online analysis tool, 
and samples wit significance level of P < 0.05 were retained for further analysis [26]. Differences in the degree of immune cell 
infiltration between the high and low immune score groups were analyzed using the Wilcoxon test. In instances where immune cells 
exhibited significant differences, we conducted a correlation analysis to evaluate the degree of infiltration among various immune 
cells. 

2.4. Analysis of immune-related differentially expressed mRNAs/lncRNAs 

The limma package (version 3.58.1) was used to evaluate differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in the 
high and low immune infiltration groups, employing a linear model [27]. The screening criteria for DEGs/DElncRNAs were set at P <
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0.05 and |log2FC| > 1. We employed the ggplot2 package (version 3.4.4) to generate a volcanic map of DEGs/DElncRNA to present the 
outcomes of differential expression analysis. Furthermore, a Wayne diagram was constructed to illustrate the immune-related DEGs 
obtained from TCGA and GEO datasets [28]. 

2.5. Co-expression analysis of DEGs and DElncRNAs 

We conducted co-expression analysis of immune-related DEGs and DElncRNAs, and calculated the Pearson correlation coefficient 
(PCC) between lncRNAs and mRNAs. Subsequently, we selected the lncRNA-mRNA pairs with an absolute PCC value ≥ 0.9 and P <
0.05 to construct the lncRNA-mRNA co-expression network. This network was then visualized by importing it into the regulatory 
network visualization software, Cytoscape (version 3.10.1) [29]. 

2.6. Functional enrichment analyses 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on DEGs 
following established protocols [30–32]. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were also 
performed [33]. Finally, differential pathways were screened using the limma package, with a significance threshold set at P < 0.05 for 
screening. 

2.7. Weighted gene co-expression network analysis (WGCNA) 

The identified DElncRNAs were assessed using WGCNA. The DElncRNAs were analyzed for calculating the PCC of each lncRNA- 
mRNA pair using the WGCNA package (version 1.72–5) [34]. All the selected lncRNAs were annotated using LNCipedia (version 
5.2) [35]. 

2.8. Least absolute shrinkage and selection operator (LASSO) analysis 

Following the identification of immune-related DElncRNAs, univariate Cox regression was used to screen lncRNAs significantly 
associated with the survival of patients with osteosarcoma. Subsequently, LASSO regression analysis was used to further screen for 
prognostic markers [36]. The glmnet package (version 4.1–7) facilitated the screening process, considering combinations of diagnostic 
markers with a minimum coefficient of variation [37]. 

2.9. Risk score (RS) and prognosis prediction model construction 

The formula for calculating the RS of each case was RS =
∑n

i=1Coefi × Expi, where Coef represents the regression coefficient ob-
tained from LASSO analysis, and Exp is the expression level of corresponding lncRNA (log2 converted). We used the Maxstat package 
(version 0.7–25) to determine the optimal cutoff value of RS for predicting osteosarcoma survival rate. Subsequently, patients with 
osteosarcoma were assigned to high and low-risk groups, and the survival curve was generated using the Kaplan-Meier method. We 
also predicted the survival time (1, 3, and 5 years) of patients using survivalROC package (version 1.0.3.1), plotted the predicted 
receiver operating characteristic (ROC) and calculated the area under the curve (AUC) value [38]. We used the Cox proportional 
hazard model to evaluate the impact of other clinical features (age, sex, and metastasis) on prognostic survival and the forestmodel 
package (version 0.6.2) to generate a forest plot [39]. Next, the clinical features that had significant effects on prognosis were 
incorporated into multivariate Cox regression analysis to evaluate the independent predictive ability of RS. Finally, we employed the 
rms package (version 6.7–1) to generate the nomograms and calibration curves for visualizing the multivariate model. Additionally, 
the consistency index (C-index) was calculated to evaluate the survival prediction ability of the nomogram. 

2.10. Experimental validation 

2.10.1. Cell culture and transfection 
Human osteosarcoma cells (143 B, MG63, and SW1353) and human osteoblasts (hFOB 1.19) were obtained from the National 

Collection of Authenticated Cell Cultures (Shanghai, China) and cultured in specific media. Cells were cultured at 37 ◦C in a 5% CO2 
atmosphere for all experiments. Small-interfering RNA (siRNA) and a negative control (siCON) were synthesized by YouBio (Hunan, 
China). Lipofectamine™ 3000 (Thermo Fisher Scientific, Waltham, MA, USA) was used for cell transfection [40]. The target sequences 
for transient silencing are listed in Table S1. 

2.10.2. Cell viability and apoptosis 
Cell viability was assessed using a Cell Counting Kit-8 (CCK-8; Solarbio, Beijing, China) [41]. Apoptotic cells were assessed using 

the Annexin V-FITC/PI Apoptosis Detection Kit (Vazyme, Nanjing, China) [42]. 

2.10.3. Enzyme-linked immunosorbent assay (ELISA) 
Cell supernatants were harvested and the level of TNF-α was determined by an ELISA kit (ELK1190, ELK Biotechnology, Wuhan, 
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China) as described previously [43]. 

2.10.4. Quantitative real-time polymerase chain reaction (qRT-PCR) 
Total RNA was extracted with TRIzol Reagent (Vazyme). Subsequently, the extracted RNA was reverse-transcribed into cDNA using 

the cDNA Synthesis Kit (Yeasen, Shanghai, China), and quantified with Universal SYBR Green qPCR Supermix (UElandy, Suzhou, 
China), sequentially [44]. The primers utilized for these procedures were synthesized by Generay (Shanghai, China) and are listed in 
Table S2. 

Fig. 1. Comparison of immune infiltration score in different clinical subgroups and its relationship with prognosis. A–C: Comparison of immune 
infiltration scores among the patients of different ages, sex, and metastasis; D: Comparison of immune infiltration scores between the survival and 
death groups; E: The K-M survival curve of the high/low immune score groups and prognosis. 
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Fig. 2. Analysis of immune cell infiltration. A: Comparison of infiltration levels of different immune cells in the high/low immune score groups. 
Kruskal–Wallis test was used for comparisons between groups, and "*" indicated statistically significant differences. B: Correlation matrix between 
immune cells with the significant difference in the degree of infiltration in the high/low immune score groups; red represents positive correlation, 
blue represents negative correlation (darkness of the color reflects the degree of correlation), and the cells without statistical significance are 
represented by black X. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.10.5. Transwell assay 
Transwell migration assays were conducted to measure cell invasion as previously described [40]. 

2.11. Statistical analysis 

All data calculations and statistical analyses were performed using the R software. The Benjamini-Hochberg test was used for 

Fig. 3. Immune-related DEGs/DElncRNAs screening and lncRNA-mRNA co-expression analysis. Volcanic maps of DEGs (A) and DElncRNAs (B) in 
TCGA dataset; C: Co-expression analysis network diagram of DEGs and DElncRNAs; the yellow hexagon represents lncRNAs, and the blue circle 
represents mRNAs; D: Correlation matrix between co-expressed lncRNAs and mRNAs; the colored square indicates the correlation coefficient; red 
represents positive correlation, blue represents negative correlation (the darker the color is, the larger the correlation coefficient band); correlation 
coefficient and P values are marked in the box; E: Volcano map of GEO data machine GSE99671 DEGs; F: Venn diagram of intersections of DEGs in 
TCGA and GEO datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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multiple test corrections. For comparisons between two groups, the independent Student’s t-test or Mann-Whitney U test was applied 
as appropriate. All statistical P values were obtained from bilateral tests, and P < 0.05 indicated statistical significance. 

3. Results 

3.1. Immune microenvironment assessment and immunization grouping 

We used the ESTIMATE algorithm to calculate the immune invasion score of osteosarcoma patients in TCGA database, with a 
median score of 121.9 and a quartile range of 80.9–160.9, and compared the differences in immune invasion scores across clinical 
subgroups. No difference was observed in immune infiltrations among the groups with different ages, sex, and degrees (Fig. 1A–C), 
whereas significant differences were observed in the death/survival groups (Fig. 1D). The cutoff value of the score calculated using the 
Maxstat package was 125.3. Patients were divided into high and low immune infiltration groups based on the cutoff value, and a 
survival curve was generated. The results showed a difference in survival time between the groups (Fig. 1E). 

CIBERSORT was employed to examine the infiltration of different immune cells. The infiltration of 22 types of immune cells is 
shown in Fig. 2A, among which M1 macrophages, M2 macrophages, and monocytes showed greater infiltration in the high immune 
score group. However, the degree of infiltration of resting dendritic cells, resting NK cells, naïve CD4 T cells, and gamma delta T cells 
was relatively higher in the group with low immunity scores. We analyzed the correlation between immune cells with significant 
differences in the degree of infiltration between the two groups; the correlation matrix is shown in Fig. 2B. The correlation between 
resting NK cells and naïve CD4 T cells was positive, and the absolute value of the coefficient was large. The correlation between M1 
macrophages and naïve CD4 T cells was negative, and the absolute value of the coefficient was large. 

3.2. Differentially expressed mRNA/lncRNA analysis and mRNA-lncRNA co-expression analysis 

According to high/low immune infiltration grouping, 80 DElncRNAs were screened from TCGA lncRNA expression matrix using 
limma package, of which 57 were upregulated and 23 were downregulated. A total of 1125 DEGs were screened from TCGA mRNA 
expression matrix, of which 775 were upregulated and 350 were downregulated. The volcanic diagrams of the DElncRNAs and DEGs in 
TCGA dataset are shown in Fig. 3A–B. In the GEO dataset, differential expression analysis was also conducted according to the high/ 
low grouping of immune infiltration (the median immunity score was used as a cutoff value), and 176 DEGs were identified, among 
which 68 were the same as those identified in TCGA dataset (Fig. 3E–F). 

Co-expression analysis of 1125 immune-related DEGs and 80 DElncRNAs obtained from TCGA was performed. The PCC test was 
used to verify the relationship between mRNA and lncRNA levels (log2 transformation) in the pairs. Finally, a total of 11 pairs of 
lncRNA-mRNA were selected with an absolute value of PCC >0.9 and P < 0.05. The correlation results are presented in the form of a 
network (Fig. 3C), and the correlation matrix of the 11 lncRNA-mRNA pairs is shown in Fig. 3D. 

3.3. Functional enrichment analysis of immune-related DEGs 

KEGG analysis showed that the DEGs enrichment pathways mainly included hematopoietic cell lineage, allograft rejection, viral 
protein interaction with cytokines and cytokine receptors, graft-versus-host disease, and cytokine-cytokine receptor interaction 
(Fig. 4Ã D). GO analysis showed that DEGs were primarily related to T-cell activation, positive regulation of cell activation, positive 
adjustment of leukocyte activation, regulation of immune effector processes, leukocyte cell-cell adhesion, and other biological pro-
cesses associated with cell components, such as immune receptor activity, antigen binding, cytokine activity, peptide antigen binding, 
and MHC protein complex binding, and associated with molecular function, such as the external side of the plasma membrane, tertiary 
granule, MHC protein complex, secretory granule membrane, and endocytic vesicle membrane (Fig. 5A&B). The pathways enriched by 
GSEA mainly involved the chemokine signaling pathway, hematopoietic cell lineage, Leishmania infection, cytokine receptor inter-
action, T-cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, systemic lupus erythematosus, and cell adhesion 
molecule cascades (Fig. 6A–H). The GSVA results are presented in Fig. 6I–J. The DEGs enrichment pathways of the two datasets mainly 
included pathogenic Escherichia coli infection, vasopressin-regulated water reabsorption, adherens junctions, neurotrophin signaling 
pathways, and amyotrophic lateral sclerosis. 

3.4. WGCNA 

WGCNA was performed on the selected DElncRNAs (Fig. 7Ã E), and three modules that showed an association with immune cell 
infiltration were identified. Among these, module brown contained 30 genes, module blue contained 27 genes, and module turquoise 
contained 21 genes. 

Fig. 4. KEGG analysis of immune-related DEGs. A: Bubble diagram of KEGG results; the closer the color is to red, the smaller P value is, and the 
larger the bubble is, the more DEGs are enriched in the pathway; B Bar graph of KEGG results; the closer the color is to red, the smaller the P value is, 
and the horizontal axis represents the number of genes enriched in the pathway; C: Network diagram of KEGG results; D: Cnetplot circle diagram of 
KEGG results. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. GO enrichment analysis of immune-related DEGs. A: The enrichment results of biological process, cellular component, and molecular 
function analyzed by GO were presented in the form of a bubble graph; B: The enrichment results of biological process, cellular component, and 
molecular function in GO analysis were presented in a bar graph. 
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Fig. 6. GSEA and GSVA analysis of immune-associated DEGs. A–H: GSEA of enrichment pathways of immune-related DEGs; P value was determined 
by Kolmogorov–Smirnov test; I–J: the different pathways of immune-associated DEGs in GSVA analysis are shown in the volcanic map (I) and heat 
map (J). 
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Fig. 7. WGCNA. A–B: Power parameter screening process; C: Cluster analysis tree diagram of samples and corresponding immune cell infiltration; 
D: Gene cluster analysis tree diagram; E: The correlation matrix between the module score and the degree of differential immune cell infiltration. 
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Fig. 8. Screening of prognostic lncRNAs by LASSO regression model. A–B: LASSO logistic regression model was used to screen prognostic markers; 
C: ROC curves; D–G: Correlation analysis of candidate prognostic lncRNAs and immune infiltration score; H: Correlation matrix between signifi-
cantly different immune cells and candidate prognostic lncRNAs. 
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3.5. Prognostic marker screening 

Univariate COX regression was used to identify the correlation between DElncRNAs and patient prognosis and survival of patients, 
and obtained 16 lncRNAs associated with prognosis were identified. Subsequently, LASSO regression analysis was performed and four 
lncRNAs were identified as prognostic markers (Fig. 8A–B), namely AC015819.1, AC015911.3, AL365361.1, and USP30.AS1. Details 
of these lncRNAs are listed in Table 1. The predictive ROC curve of LASSO regression showed an AUC value of 0.744, indicating a good 
prognostic ability (Fig. 8C). We then conducted a correlation analysis of the expression of these four lncRNAs and the immune 
infiltration score, which revealed a significant positive correlation between the candidate lncRNAs and the immune score (Fig. 8D–H). 
Finally, we evaluated their association with different immune cells and found that AC015911.3, AL365361.1, and USP30.AS1 were 
significantly and positively correlated with M1 macrophages. 

3.6. RS and prognostic prediction model construction 

According to the LASSO regression model, the coefficients of the candidate prognostic markers were determined, and the RS was 
calculated. The formula was as follows: RS = (− 0.1203) * AC015819.1 + (− 0.0644) * AC015911.3 + (− 0.0186) * AL365361.1 +
(− 0.0067) * USP30.AS1. Subsequently, the Maxstat package determined that the best cutoff for predicting the survival time of patients 
with osteosarcoma by RS was − 0.6760. According to the cutoff value, patients with osteosarcoma were allocated to high/low-risk 
groups, and those without survival information were excluded. Finally, 29 and 56 patients were included in the low-and high-risk 
groups, respectively. The prognostic survival of patients with a high RS was lower than that of patients with a low RS (Fig. 9A). The 
ROC curves of 1-, 3-, and 5-year survival predicted by the RS are shown in Fig. 9B, among which the predictive ability for 5-year 
survival was the best (AUC = 0.769). Univariate Cox regression analysis showed that tumor metastasis had an impact on patient 
survival in addition to RS/grouping (Fig. 9C). 

Based on tumor metastasis and RS, a COX regression model was applied to the multivariate prognostic prediction model. The forest 
plot is shown in Fig. 9D. The rms package was used to create a nomogram and calibration curve to predict the probability of survival at 
1, 3, and 5 years in patients (Fig. 10Ã D). These variables were good predictors, as shown by the nomogram constructed using tumor 
metastasis (C-index = 0.701) or RS (C-index = 0.698) alone. The c-index of the survival prediction model constructed using the 
combination of metastasis and RS was 0.800, indicating better prognostic prediction ability. 

3.7. AC015911.3 and AL365361.1 promote osteosarcoma 

We first detected the expression of four lncRNAs in different osteosarcoma cells, and found that AC015911.3 and AL365361.1, had 
the highest expression in 143 B cells (Fig. 11A and B, Fig. S1A). There is no doubt that the content of TNF-α, one of the markers of the 
immune response, in 143B cells was significantly higher than that in hFOB 1.19 cells (Fig. 11C, Fig. S1B). We then focused on the 
molecular mechanisms of AC015911.3 and AL365361.1 in osteosarcoma. siRNA with three different sequences of AC015911.3 and 
AL365361.1, significantly reduced their expression in 143 B cells; among them, siAC015911.3–2 (siAC015911.3) and siAL365361.1–3 
(siAL365361.1) had the most obvious effect (Fig. 11D and E). After knockdown of AC015911.3 and AL365361.1, cell viability 
decreased significantly in hFOB 1.19 cells (Fig. 11F) and 143 B cells (Fig. 11G). Similarly, after the knockdown of AC015911.3 and 
AL365361.1, cell invasion ability decreased (Fig. 11H) and apoptosis increased (Fig. 11I). 

4. Discussion 

Despite improvements in treatment strategies, most patients with metastatic or recurrent osteosarcoma have a poor prognosis [45]. 
Immunoreconstitution can inhibit osteosarcoma recurrence and improve the survival rate of metastatic osteosarcoma [46]. A previous 
study showed that abnormal lncRNA expression in osteosarcoma is highly linked to poor prognosis [47]. lncRNAs are conducive to the 
early diagnosis of osteosarcoma and contribute to improving the survival probability of patients with osteosarcoma [48]. Our study 
illustrates that lncRNAs (AC015819.1, AC015911.3, AL365361.1, and USP30.AS1) are potential prognostic biomarkers of 
osteosarcoma. 

We downloaded the transcriptome data (mRNA + lncRNA) of patients with osteosarcoma (N = 88) from TCGA database. The 
transcriptome dataset GSE99671 (mRNA) for osteosarcoma (N = 18) and normal bone tissue (N = 18) was downloaded from the GEO 
database. The TIME is typically associated with immune cell invasion [49]. As expected, differences in immune infiltration scores were 
found in the TIME of patients with a death/survival outcome, suggesting that the TIME plays a role in the outcome of patients with 
osteosarcoma. Additionally, we found that the higher the degree of immune infiltration, the longer the survival time. In line with our 

Table 1 
Details of four lncRNAs annotated in LNCipedia.  

lncRNA Ensembl Gene ID LNCipedia gene ID Location (hg38) Strand Class Transcript size 

AC015819.1 ENSG00000273669 lnc-ZNF407-2 chr18:75073543–75074205 + intergenic 663 bp 
AC015911.3 ENSG00000267074 lnc-SLFN14-3 chr17:35499690–35510270 – intronic 849 bp 
AL365361.1 ENSG00000259834 lnc-KCNA3-3 chr1:110653560-110657040 – intergenic 3481 bp 
USP30-AS1 ENSG00000256262 USP30-AS1 chr12:109051791–109053971 – antisense 1234 bp  
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conclusion, the immune score of patients with osteosarcoma was associated with their survival outcomes, and a high immune score 
indicated that patients had an advantage in survival time [50]. Patients with osteosarcoma and reduced immune cell infiltration 
frequently have high metastasis rates and poor clinical outcomes [51]. Immune cells in the TIME are associated with tumor treatment 
and prognosis [15]. The TIME of osteosarcoma consists primarily of macrophages, T lymphocytes, and other subsets, such as B 
lymphocytes and mast cells [52]. The CIBERSORT algorithm further determined the proportion of infiltrating immune cells in the 
TIME of osteosarcoma. In our study, macrophages (M1, M2) and monocytes infiltrated more in the TIME of patients with a high 
immune score, whereas dendritic cells, resting NK cells, naïve CD4 T cells, and gamma delta T cells infiltrated patients with a low 
immune score. The proportions of memory B cells, naïve T cells, M2 macrophages, and activated NK cells are enhanced in high/low 
immune subsets [53]. Gomez-Brouchet et al. showed that the higher the tumor-associated macrophage infiltration, the lower the 
metastasis and the better the prognosis [54]. Hence, different immune cell infiltrates in osteosarcoma may serve as prognostic 

Fig. 9. Univariate and multivariate Cox regression analysis of RS for predicting clinical prognosis and survival in patients with osteosarcoma. A: 
Survival curves of the high/low RS groups; B: ROC curve; C: Univariate Cox regression analysis; D: Multivariate Cox regression analysis. 
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indicators and immunotherapy targets. 
Some lncRNAs are important regulators of TIME [55,56]. Abnormal expression is highly correlated with the occurrence and 

metastasis of tumors [57,58]. Several studies have shown the significant role of immune-related lncRNAs in the assessment of cancer 
patient prognosis [59,60]. A total of 80 DElncRNAs and 1125 DEGs were screened from TCGA database. To analyze their biological 
functions and explain their role in osteosarcoma, we subsequently conducted a co-expression analysis of DEGs and DElncRNAs and 
screened 11 lncRNA-mRNA pairs. Similarly, Shi et al. identified that lncRNA-C3orf35 and HMGB1 were linked to poor prognosis in 
osteosarcoma patients, and high levels of lncRNA-C3orf35 and HMGB1 were correlated with a low proportion of macrophage infil-
tration and low immune scores [61]. Next, we performed immune-related DEGs functional enrichment analysis to determine the 
functional categories and biological pathways of the DEGs. KEGG, GO, GSEA, and GSVA analyses revealed that the DEGs were involved 
in chemokine signaling pathways and cytokine-cytokine receptor interactions. Functional enrichment analysis revealed that immune 
responses and T-cell receptor cascades represented the main functions of immune-related genes in DEG between the high- and low-risk 
groups [62]. These deregulated immune genes may be the basis of TIME changes, and these findings provide a direction for further 
studies on immune response mechanisms. 

WGCNA can identify a set of co-expressed genes (modules), and the modules can be associated with phenotypic data for analysis to 
mine potential marker genes [63]. Next, we performed WGCNA on the selected DElncRNAs and identified three modules that 
correlated with immune cell infiltration. Several studies have shown that lncRNAs are essential for predicting the prognosis of in-
dividuals [59,60]. To evaluate the association between DElncRNAs and the prognosis and survival of patients with osteosarcoma, the 
identified DElncRNAs were analyzed using univariate COX regression and LASSO regression. Four lncRNAs (AC015819.1, 
AC015911.3, AL365361.1, and USP30-AS1) were identified as prognostic markers (AUC = 0.744). Moreover, these four lncRNAs were 
positively correlated with immune infiltration scores. Most importantly, we found a significant positive correlation between M1 
macrophages and AC015911.3, AL365361.1, and USP30.AS1. These genes are regulated by USP30.AS1 is mainly related in genetic 
regulation and the immune system [64]. The level of the immunophenotype-related lncRNA biomarker USP30-AS1 is correlated with 
immune cell infiltration in glioblastoma multiforme [65]. Five immune-related lncRNA signatures, including USP30-AS1, could 
predict the prognosis of cutaneous melanoma and contribute to immunotherapy [66]. Based on bioinformatics analyses, Zhang et al. 
revealed that certain lncRNAs (e.g., AL365361.1) with strong correlations with immune scores may modify the TIME of patients with 
high immune scores [67]. Taken together, the expression patterns of four lncRNAs (AC015819.1, AC015911.3, AL365361.1, and 
USP30-AS1) were associated with immune cell infiltration in osteosarcoma. The results of our experiments verified this hypothesis. 

Fig. 10. Multivariate Cox regression model analysis of RS. A: Nomogram; and B–D: calibration curves.  
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Fig. 11. AC015911.3 and AL365361.1 promote osteosarcoma. A: AC015911.3 was upregulated in the 143B cells; B: AL365361.1 was upregulated in 
the 143B cells; C: TNF-α was upregulated in the 143B cells; D: Verification of knockdown efficiency of AC015911.3; E: Verification of knockdown 
efficiency of AC015911.3; F: Knockdown of AC015911.3 and AL365361.1 decreased hFOB 1.19 cell viability; G: Knockdown of AC015911.3 and 
AL365361.1 decreased 143B cell viability; H: Knockdown of AC015911.3 and AL365361.1 decreased cell invasion ability; I: Knockdown of 
AC015911.3 and AL365361.1 increased cell apoptosis. 
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Metastasis and RS are two independent prognostic factors associated with overall survival in osteosarcoma patients [68]. Prior 
research has built an RS model to examine the prognosis of patients with osteosarcoma and lung adenocarcinoma based on 
tumor-infiltrating immune cells, and its prognostic value is superior to that of the TNM staging system. The immune RS model can be 
used to evaluate patients with recurrence risk [69,70]. The TNM staging system can be applied to stage-adapted therapy and prog-
nostic prediction, showing more clinically relevant differentiation than the modified Masaoka staging system [71]. RS significantly 
correlated with metastasis, and high-risk patients were more likely to have tumor metastasis. A relevant study using Cox regression 
analysis illustrated that metastasis and RS were independent prognostic factors for osteosarcoma [72]. Furthermore, we constructed 
RS-and/or metastasis-dependent survival prediction models to assess patient outcomes. Interestingly, the results revealed that the two 
variables of tumor metastasis and RS alone could be used as good prognostic indicators, and the combination of the two variables 
showed better prognostic ability. The prognosis of patients at a high risk of osteosarcoma is worse than that of patients at a low risk, 
and tumor metastasis is another factor that affects the prognosis of patients [50,68]. Overall, the survival prediction model combined 
with metastasis and RS showed potential application for clinical prediction of the prognosis of patients with osteosarcoma. 

However, this study has some limitations. First, the risk-scoring model was not validated in multicenter clinical trials or prospective 
studies. Second, the functions and mechanisms of these four immune-related lncRNAs remain unclear. Therefore, in future studies, we 
need to validate the risk-scoring model in multicenter clinical trials and prospective studies. Additionally, the functions and mecha-
nisms of these four immune-related lncRNAs require further study. 

5. Conclusions 

Here, we identified abnormally regulated lncRNAs in osteosarcoma and lncRNAs (AC015819.1, AC015911.3, AL365361.1, and 
USP30.AS1) as potential biomarkers for OS prognosis. 
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