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2 Department of Genetics and Molecular Biology, University of Szeged, Közép fasor 52, 6724 Szeged, Hungary
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In the housefly Musca domestica, synthesis of yolk proteins (YPs) depends on the level of circulating ecdysteroid hormones. In
female houseflies, the ecdysterone concentration in the hemolymph oscillates and, at high levels, is followed by expression of
YP. In male houseflies, the ecdysterone titre is constantly low and no YP is produced. In some strains, which are mutant in key
components of the sex-determining pathway, males express YP even though their ecdysterone titre is not significantly elevated.
However, we find that these males express a substantial amount of the female variant of the Musca doublesex homologue, Md-dsx.
The dsx gene is known to sex-specifically control transcription of yp genes in the fat body of Drosophila melanogaster. Our data
suggest that Md-dsx also contributes to the regulation of YP expression in the housefly by modulating the responsiveness of YP-
producing cells to hormonal stimuli.

Copyright © 2009 Christina Siegenthaler et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Yolk proteins (YPs) are the nutritional basis for the devel-
oping embryo in all oviparous animals. In insects, YP
are synthesized in the female fat body, secreted into the
hemolymph, and then taken up by the oocytes during
maturation. In some insect species, such as Drosophila
melanogaster and Musca domestica, YPs are also produced
by the follicle cells surrounding the growing oocyte [1–
3]. Three YP genes have been identified in Musca: Mdyp1,
Mdyp2, and Mdyp3. However, MDYP1 and MDYP3 share
the highest degree of amino acid similarity (82.5%), whereas
MDYP2 reveals only 58.9% similarity to MDYP1 and 63.5%
to MDYP3. Transcripts of all three Mdyp genes are expressed
in the fat body and in the follicle cells surrounding the
developing egg chamber in Musca females [4]. In Musca,
ovarian development is synchronized, and after about five
days of maturation, oocytes are laid in a batch. Adams [5]
described ten oocyte stages: Stages 1–3 are the previtellogenic
stages when the developing cysts have not yet taken up

YP. Stages 4–8 are the vitellogenic stages, characterized by
the uptake of YP-synthesized by the follicle cells and from
the hemolymph. Stages 9-10, finally, are the postvitellogenic
stages, when YP uptake has stopped, the nurse cells are
degenerating, and the egg is ready to be laid.

In many insect species, YP synthesis is controlled by
a sex-specific hormonal regimen, in particular, by juvenile
hormone (JH) and ecdysteroid hormone [6]. A burst of
ecdysteroids after a blood meal, for instance, triggers YP
production in females of Aëdes aegypti [7]. Hormones play
also an important role in controlling YP expression in Musca
domestica. For instance, a decline of JH levels by removing
its site of production in the corpora-allata corpora-cardiaca
complex results in a loss of YP expression in females; when
these females are again supplied with JH or methoprene, a JH
analogue, YP production is resumed [8, 9]. While application
of methoprene cannot stimulate YP synthesis in males [8,
10, 11], injection of 20-hydroxy-ecdysone (20E), the active
isoform of ecdysone, induces YP synthesis in both males and
females, even when JH production is eliminated by removing
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Figure 1: Ecdysteroid and YP concentrations in hemolymph of Musca
domestica. In females, levels of ecdysteroids and yolk proteins
oscillate in synchrony with the stages of ovarian development. Both
levels reach a maximum in females with vitellogenic egg chambers.
Stages 2-3: previtellogenic, stages 4–8: vitellogenic, stages 9-10:
postvitellogenic stages. In males, the concentration of ecdysteroids
is constantly low and no YP are produced. Summarized results from
Adams and Filipi [13] and Adams et al. [14].

the corpora-allata complex [10]. Thus, it appears that JH is
rather a permissible factor in the regulation of YP synthesis,
but not a controlling agent. In Aëdes aegypti, fat body cells
require being exposed to high JH levels before ecdysteroids
can trigger vitellogenin synthesis [12]. In Musca, JH may
serve a similar function to make fat body cells competent to
respond to high ecdysteroid levels with the production of YP.

The main controlling agent of YP production in Musca
appears to be ecdysone. In adult females, the ecdysterone
level in the hemolymph is oscillating and followed by cyclic
expression of YP, both reaching a maximum when syn-
chronously developing oocytes arrive at stages 6-7 (Figure 1;
Adams and Filipi [13], Adams et al. [14], Agui et al. [8]).
Likewise, transcription of the Mdyp genes follows the same
cyclic pattern: mRNAs of Mdyp1 and Mdyp3 are maximally
abundant in the fat body and in the ovary at oocyte stages
4–8, and Mdyp2 transcripts show a maximum at stages
5–9 [4]. Peak ecdysteroid levels in females are variable
ranging between 18 pg/μL [8] and 50 pg/μL [14], depending
on Musca strains used. In males, the ecdysteroid level
remains continuously low at about 5 pg/μL [8]. Injection of
20E into males induces transient YP expression [11]. Yet,
ecdysteroids are not the only factor involved in YP regulation.
In ovaryectomized females, ecdysteroids in the hemolymph
drop to a very low, male-like level (<4 pg/μL), but these
females nevertheless continue to produce YP, if only at a low
rate [8]. Furthermore, both allatectomized females and males
start to produce YP after injection of 20E, but males are about
100 times less sensitive, and the response is significantly
delayed [10].

Thus, it seems that in females additional factors are
present which render the Mdyp genes more susceptive to
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Figure 2: Sex determination in Musca domestica. Presence or
absence of the male determinant M determines the sexual fate of the
zygote. When M is present, it represses F, the female-determining
switch gene. By default, Md-dsx, the Musca homologue of doublesex,
expresses a male product Md-dsxM and male development follows
[15]. When M is absent, zygotic F is activated. This activation
depends on maternally supplied F activity [16]. Zygotically acti-
vated F, together with its cofactor Md-tra2, imposes a change in the
splicing pattern of Md-dsx, which results in the production of the
female variant Md-dsxF and female development [15].

activation by ecdysteroids. In this report, we demonstrate
that Md-dsx is a likely candidate. In Drosophila, dsx is known
to directly control the transcription of the three yp genes
in fat body cells. The male variant, DSXM , represses YP
transcription, whereas the female variant, DSXF , acts as an
enhancer of YP transcription (reviewed in Bownes [17]).
The Musca homologue, Md-dsx, produces sex-specific splice
variants, Md-DSXF and Md-DSXM which structurally and
functionally correspond to DSXF and DSXM in Drosophila
[15]. As in Drosophila, the Md-dsx gene is proposed to
be the terminal regulator in the sex-determining cascade,
relaying the primary sex-determining signal to the sex-
differentiating genes [15]. The primary signal in Musca
sex determination is the male-determining factor M (for a
review, see Dübendorfer et al. [18]). When M is present in
the zygote, it represses the female-determining key gene F
and, as a result, Md-dsx is spliced by default in the male mode
producing transcripts, which encode Md-DSXM . When M
is absent in the zygote, the zygotic F gene is activated by
maternally supplied F activity [16] and, together with its
cofactor Md-tra2 [19], promotes the female splice mode
of its downstream target Md-dsx to give rise to the female
splice variant which encodes Md-DSXF (Figure 2; Hediger
et al. [15]). In natural populations, M factors are located
at different sites in the genome, most commonly on the
Y chromosome but also on any of the five autosomes or
even on the X chromosome [20]. These M factors seem to
differ in their capacity to repress the female pathway. For
instance, MI (M on chromosome I) allows production of YP,
a typically female-specific physiological trait, in otherwise
normal and fertile males [21, 22]. Likewise, YP production
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is found in males with a female genotype. Such males arise
due to homozygosity of a recessive mutant allele of the
female determiner F, Fman (Figure 2). Based on this finding,
Schmidt et al. [21] suggested that these males express some
residual F activity and concluded that Fman is not a null allele,
but rather a strong hypomorph.

In this study, we demonstrate that MI and Fman males
which express YP even when ecdysteroid hormones levels are
low produce substantial levels of Md-DSXF suggesting that
Md-dsx contributes to the sex-specific regulation of yp genes
in Musca.

2. Materials and Methods

2.1. Fly Strains. As control strains we used a wild-type, a
white (w/w), and a multiply marked strain (ac/ac; ar/ar;
bwb/bwb; ocra/ocra). These strains have standard-type sex
determination: XY males and XX females. Autosomal mark-
ers used in this study are as follows:

Chromosome I: ac—ali curve, curved wings,

Chromosome II: ar—aristapedia,

Chromosome III: bwb—brown body, w—white eyes,

Chromosome IV: Ba—Bald abdomen,

Chromosome V: ocra—ochre eyes,

MI strain: Male genotype XX; MI + / + ac; ar/ar;
bwb/bwb; ocra/ocra. Female genotype XX, ac/ac;
ar/ar; bwb/bwb; ocra/ocra,

Fman strain: Male genotype: XX; ac/ac; Fman/Fman.
Female genotype: XX; ac/ac; FmanBa+/F+Ba.

The strains were reared as described previously [21, 22].

2.2. SDS-PAGE and Western Blotting. Hemolymph samples
of individual flies were collected by inserting a glass capillary
into the ventral thorax. The samples were transferred into
13 μL of 2x SDS sample buffered on ice, boiled for 5
minutes, and stored at −78◦C. Oocyte stages in females
were determined after taking the hemolymph samples, using
the definitions of Adams [5, see introduction]. Preparations
of ovaries and fat body extracts: flies were dissected in
Musca Ringer’s solution (7.5 g/L NaCl, 1 g/L KCl, 0.18 g/L
CaCl2·2H2O, 0.12 g/L NaHCO3, pH 7); ovaries or fat body
were homogenized in 20 μL 2x SDS, and insoluble material
was removed by centrifugation. The supernatant was boiled
for 5 minutes, and the samples were stored at −78◦C. SDS-
PAGE was carried out using the BioRad MiniProtean II
System; entire samples (hemolymph) or 5 μL (ovary and
fat body samples) were loaded on a 12% SDS gel and
separated by electrophoresis. Proteins were transferred to a
0.45 μm nitrocellulose membrane (BioRad) in Tris-Glycin-
Methanol. The membranes were incubated in blocking
solution (4% low fat milk powder in TBS/0.05% Tween).
The primary antibody (polyclonal anti-yolkprotein antibody,
kindly provided by Dr. T. Adams) was diluted 1 : 20 000
in TBS/0.05% Tween with 1 mg/mL BSA; membranes were
incubated in the antibody solution for 1 hour at room

temperature. The antigen-antibody complex was detected
using the alkaline phosphatase- (AP-) conjugated antirabbit
antibody by Promega at a dilution of 1 : 7500 in
TBST/1 mg/mL BSA.

2.3. Radio Immunoassays. Hemolymph samples were taken
as described earlier and pooled on ice. The volume of
the samples was measured using a micropipette. The
pooled samples were dried in a SpeedVac for 45 minutes.
The hemolymph samples were exhaustively extracted with
60 p.c. methanol. Aliquots of the extract were subjected to
RIA. High avidity (20 000 fold) rabbit antiserum, raised
against 20-hydroxyecdysone-6-ketoxime thyroglobulin con-
jugate, was used. RIA measurements were performed using
a protocol described earlier [23], but with overnight incu-
bations at 4◦C. Results are expressed in 20-hydroxyecdysone
equivalents, and normalised to hemolymph volume (μL).

2.4. Northern Blot Analysis. Total RNA of 250 mg flies (∼18
adult males or ∼15 adult females) were extracted with the
AGPC technique [24]. Poly(A)+ RNA was isolated using the
Oligotex mRNA Maxi Kit (Qiagen). An amount of 1 μg of
mRNA per lane was fractioned by formaldehyde agarose gel
electrophoresis, transferred to Hybond-N+ nylon membrane
(Amersham) by blotting with 10x SSPE and cross-linked in
a UV Stratalinker 2400 (Stratagene). Hybridizations were
carried out in formamide hybridization solution at 42◦C
using 6·106 cpm of labelled probe. Labelled antisense RNA
probes were generated by in vitro transcription of PCR
fragments of the Mdyp genes using T7 RNA polymerase
(Promega) and α-32P-rCTP (Amersham).

2.5. Injection of 20E. In fact, 20-hydroxy-ecdysone (Sigma)
was diluted in Musca Ringer’s solution to concentrations
of 10 ng/μL and 1 μg/μL. Also, 1 μL of these solutions was
injected with a glass needle into the abdomen of 3d old
males of the MI strain and of a standard strain as a control.
Hemolymph of the injected flies was taken 24 hours after
injection and analyzed by western blotting as described
earlier.

2.6. RT-PCR. Poly(A)+ RNA was prepared as described
earlier [15]. Also, 0.5 μg mRNA was retro-transcribed using
Enhanced AMV Reverse Transcriptase (Sigma), following the
manufacturers protocols. Male and female transcripts of Md-
dsx were amplified from cDNA by standard PCR techniques
using Taq DNA polymerase (Promega). Primers used for
Md-dsxF amplification: Primer C in the common exon 3,
primer F in the female exon 4. Primers used for Md-dsxM

amplification: primer C (common exon 3) and primer M in
the male exon 5 (Figure 5). Samples of 5 μL were taken after
24, 27, 30, and 39 PCR cycles and analyzed on a 1% agarose
gel.

2.7. RNAi. The RNAi experiments of Md-tra2 in Musca
strain MI were performed by injections of dsRNA in early
embryos as described in Burghardt et al. [19].
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Figure 3: RNA and protein expression of yp genes in MI and Fman strains. (a) Anti-YP crossreactivity in hemolymph (h), fat body (fb), and
ovaries (ov) of males and females of a standard strain (st.: stages of ovarian development). The doublet at 45 kD represents the products
of Mdyp1 and Mdyp3, while the single band at 50 kD are products of the Mdyp2 gene. (b) Anti-YP crossreactivity in males (left panel) and
females (middle panel) of the MI strain; and in hemolymph of Fman males (right panel). In each h lane the hemolymph of a single adult
was loaded. Animals were 4d old when the samples were taken. (c) Northern blot of standard females (left panel), standard males (right
panel) and MI males (middle panel) probed with labeled sequences specific for Mdyp1, Mdyp2, and Mdyp3. (d) Anti-YP crossreactivity in
the hemolymph of single male after injection of 20E (1 μg, 10 ng: amount of 20E injected), M: size marker.

3. Results

3.1. Mdyp Expression in Males of the MI and Fman Strains.
We compared YP synthesis in males of the MI and Fman

strains with control males and females of a standard wildtype
strain. Control males, regardless of their age, never show
any traces of YP in their hemolymph or in fat body
extracts when probed with a polyclonal anti-YP serum
(Figure 3(a)). In extracts of control females, on the other
hand, three cross-reacting bands are detected, one at 50 kD
and a doublet at 45 kD. This pattern of YP-specific cross-
reactivity is in accordance with data reported by Agui et al.
[8] and Adams and Filipi [13]. The amount of detectable
YP in the hemolymph depends on the stage of ovarian
development. Low levels of the doublet are detected in
females containing pre- or post-vitellogenic oocytes (stages

1–3 or 9-10), and their levels increase several folds during
the vitellogenic stages reaching a maximum around stages
6 and 7 (Figure 3(a)). The 50 kD variant was only seen in
females of this stage and its concentration was generally
lower than that of the doublet proteins (Figure 3(a)). Agui et
al. [10] and White and Bownes [4] observed that the amount
of Mdyp transcripts in females also oscillates in synchrony
with ovarian development. White and Bownes [4] reported
that Mdyp2-mRNA was only detected in vitellogenic females
suggesting that the 50 kD protein is a product of the Mdyp2
gene.

In the MI strain, about 80% of the males contain
detectable levels of YP in the hemolymph. These males are
otherwise morphologically normal and fertile. In the Fman

strain, the frequency of homozygous Fman males producing
YP varied between 4% and 40% in successive generations. We
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Figure 4: RNA analysis of Md-dsx in MI and Fman strains. (a) Schematic representation of the Md-dsx gene and its splice variants. The male
transcript consists of exons 2, 3, m, and 5; and the female transcript contains exons 2, 3, and 4 [15]. Arrows: primers used for amplification of
the two Mdsx splice variants. C: common 5′ primer, F: female-specific 3′ primer, M: male-specific 3′ primer. (b) RT-PCR analysis of mRNA
samples prepared from wildtype, MI and Fman males and females. Of each amplification reaction, 5 μL were removed after cycle 24, 27, 30,
and 39 and analyzed on a gel to estimate transcript abundance. Level of Md-Sxl transcripts served as an internal control for mRNA quality
and abundance.
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Figure 5: Model for YP regulation. Synthesis of YP in the fat body is regulated by a combination of different nonautonomous (green and red
boxes) and autonomous (blue boxes) factors. The relative contribution of each depends on the mode of oogenic development. In fly species
with continuous egg production, for example, Drosophila, competence factors play a more relevant role than synchronization factors. While
in fly species with synchronized production of eggs, for example, Musca, hormones such as ecdysteroids (ECD), which control YP synthesis
cyclically, have a more significant contribution than the autonomous sex-specific regulators.
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observed highly variable levels of YP expression in individual
MI males even among siblings of the same age. The amount
of YP in their hemolymph ranges from undetectable to levels
comparable to that in vitellogenic females (Figure 3(b)).
Variations in the level of circulating YP between individuals
may in part be explained by gradual accumulation in the
hemolymph, since males do not have an ovarian “sink” to
dispose of secreted YP. A striking difference in the expression
profile between males and females of the MI strain is the
complete absence of the 50 kD variant in male hemolymph
even when the concentration of the doublet reaches a level
as high as in vitellogenic females. Similarly, the level of
circulating YP in the hemolymph of Fman males varied
considerably from individual to individual and a 50 kD band
was never detected even in extracts of the strongest YP-
expressing individuals.

These findings suggested that the 50 kD band is absent
in these males because the Mdyp2 gene is transcriptionally
inactive. Consistent with this conclusion we observed that,
in MI males, Mdyp2 transcripts are absent, in contrast
to substantial amounts of Mdyp1 and Mdyp3 transcripts
present in these flies (Figure 3(c)). Mdyp2 transcripts are
only observed in vitellogenic females (Figure 3(c)). The
presence of Mdyp2 transcripts in female fat bodies excludes
the possibility that Mdyp2 is expressed only in ovarian tissues
(Figure 3(a)). Absence of Mdyp2 transcripts in MI and Fman

males can thus not be simply explained by the fact that these
males have no ovaries.

Presence of the 50 kD variant, the putative product of
Mdyp2, is limited to vitellogenic stages suggesting that Mdyp2
expression can only be induced when the concentration of
circulating ecdysteroid surpasses a high-level threshold. We
tested whether injection of 20-hydroxy-ecdysone can trigger
expression of the full repertoire of YP products in males
if applied in high concentrations. Our results show that
10 ng of 20E was sufficient to induce expression of the 45 kD
doublet in control males and in MI males, whereas a 100
fold higher dose, 1 μg, was necessary to trigger the expression
of the 50 kD band (Figure 3(d)). These results demonstrate
that male tissues have the competence to produce MdYP2
and that transcriptional activation of Mdyp2 requires higher
concentrations of ecdysteroid hormones than activation of
Mdyp1 and Mdyp3.

3.2. Ecdysteroid Levels are not Increased in YP Synthesizing
Males. Since YP synthesis in males can be triggered by
injections of 20E, we examined whether expression of YP in
MI and Fman males results from elevated levels of ecdysteroid
hormones. To this end we analyzed hemolymph samples
of 3 days old flies. A radio-immuno assay (RIA) with an
antiserum against 20E was conducted to measure the level of
circulating hormones. Our results show that the ecdysteroid
level in MI and Fman males is low and comparable to that of
control males (Table 1). The ecdysteroid levels measured in
samples of control females and females of the MI and Fman

strains were 3-4 fold higher.

Table 1: Ecdysteroid concentration in MI and Fman males. Ecdys-
teroid levels in hemolymph samples prepared from adult flies were
measured by radioimmuno assay (see, Section 2): (n) number of
adult flies pooled.

Ecdysteroid concentration (pg/μL)

Fly strain females (n) males (n)

Standard XX/XY 28.5 (98) 7.5 (200)

MI 18.8 (150) 5.1 (150)

Fman 16.2 (118) 8.2 (258)

3.3. YP Synthesizing Males Express the Female Variant of
Md-dsx. Since ecdysteroid levels are not increased in MI

and Fman males, we concluded that other factors must be
responsible for the induction of YP expression. The Musca
dsx gene is a potential candidate in the light that YP genes in
Drosophila are direct transcriptional targets of dsx [17]. In
Musca, Md-dsx pre-mRNA is spliced differentially producing
two sex-specific transcripts, Md-dsxM in males, and Md-dsxF

in females (Figure 4(a); Hediger et al. [15]). We tested the
possibility that Md-dsx is misregulated in Fman and MI males.

We performed a semiquantitative RT-PCR to measure
the levels of Md-dsxF and Md-dsxM transcripts in males and
females of the MI and Fman strain and of the standard XX/XY
strain. As an internal standard, we monitored transcript
levels of the homologue of Sex-lethal (Md-Sxl), a gene that
is expressed in males and females at equal levels [25]. Using
sex-specific primer pairs (Figure 4(a)), our first experiment
confirmed that standard XY males express abundant levels
of Md-dsxM transcripts, but no Md-dsxF . On the other
hand, Md-dsxF transcripts were readily detectable in control
females (Figure 4(b)). Though transcripts of Md-dsxM were
also recovered in females, their level was substantially lower
than in males.

In males of the MI strain, we detected, in addition
to Md-dsxM products, a significant amount of Md-dsxF

transcripts (Figure 4(b)). Likewise, the Fman males tested
expressed clearly detectable amounts of Md-dsxF transcripts,
though at a much lower level than in MI males. Thus, the
presence of Md-dsxF in males correlates with YP expression.
To test whether these genes are functionally interrelated we
specifically silenced Md-tra2, a cofactor required for female-
specific splicing of Md-dsx, by RNAi. Injection of Md-tra2
dsRNA into early cleavage embryos has previously been
shown to irreversibly shift Md-dsx splicing from the female
to the male mode [19]. We observed an almost 30x reduction
in numbers of MI males expressing YP when female splicing
of Md-dsx was abolished by Md-tra2 RNAi (Table 2). From
this finding, it can be inferred that female expression of Md-
dsx is required to activate Mdyp1 and Mdyp3 in a milieu
low of ecdysteroid hormones. In line with this conclusion is
the finding that transgenic expression of Md-dsxF is capable
of inducing YP synthesis in standard males with a low
ecdysteroid level (Table 2; Hediger et al. [15]). We thus
conclude that Md-dsx is also involved in the control of this
physiological response.
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Table 2: Expression of YP in a milieu with low ecdysteroids levels depends on the presence of Md-dsxF products: (n) number of adult flies
tested for YP prod.

Genotype Splice products of Md-dsx Percentage of yolk producers (n)

MI/+ males Md-dsxF /Md-dsxM 89.4% 47

MI/+ males + Md-tra2 RNAi Md-dsxM 3.4% 59

XY males Md-dsxM 0% 53

XY males + p[hs82::Md-dsxF] Md-dsxF /Md-dsxM 9.8% 162a

adata compiled from 4 independent lines (see, Hediger et al. [15]).

4. Discussion

In the housefly, Musca domestica, eggs develop syn-
chronously after feeding [26]. Accordingly, YP production
is coordinated with the onset of vitellogenesis and occurs
in a cyclic fashion. In parallel to the YP concentration,
ecdysteroid levels are oscillating in females, whereas, in
males, they remain constantly low [13]. These results
suggested that Musca relies on ecdysteroids for controlling
YP synthesis in the fat body. However, studies based on
exogenous application of ecdysteroids showed that male and
female YP-producing cells respond differently [8]. In females,
the activation threshold for YP synthesis appears to be
significantly lower than in males. Since the fat body, the main
site of YP synthesis, is present in both males and females, this
difference cannot be attributed to tissue-specific regulation
but is more likely to be an intrinsic feature imposed by
the sex-determining cascade. A potential candidate that
modulates the responsiveness to hormones in a sex-specific
manner is the Musca dsx homologue, Md-dsx. In line with
such a role, we find that the threshold of activating YP
synthesis in males is substantially lowered when they express
the female variant of Md-dsx. Since these males contain a
normal low level of ecdysteroids in their hemolymph, we
propose that binding of Md-DSXF to the promoter of yp
genes enhances the binding of other stimulatory factors that
are activated by ecdysteroids. The possibility that expression
of Mdyp1 and Mdyp3 in these Md-DSXF expressing males is a
consequence of a gain-of-function mutation in the yp genes
themselves can be excluded for the following reasons: first,
the Fman and MI strains have different origins. Second, when
MIII, a strong M factor on chromosome 3, is introduced in
MI males, YP synthesis is completely abolished [22].

In Drosophila, sex-specific variants of dsx bind to the
125 bp Fat Body Enhancer (FBE) in the intergenic region of
yp1 and yp2 genes to either enhance the basal transcription
rate in females (DSXF) or to completely repress it in
males (DSXM) [27–30]. Likewise, it has been shown in the
lepidopteran species Bombyx mori that expression of the
female-specific products of the dsx homologue is sufficient
to induce vitellogenin synthesis in males [31]. Sequences that
match the consensus dsx binding sites were found in the
promoter region of the Musca yolk protein gene 1 (Mdyp1;
Tortiglione and Bownes [32]). In addition, these authors
showed that Drosophila DSX can bind to these putative
binding sites in Mdyp1 promoter in vitro. Although these
upstream sequences of Mdyp1, when introduced into the

genome of Drosophila, were able to drive expression of a
lacZ reporter in a tissue-specific pattern identical to that of
the endogenous yp genes, sex-specificity was not conferred
[32]. Based on this finding, the authors suggested that Mdyp
genes are not responsive to the action of sex-specific dsx
variants and that such transcription factors thus may play
no or only a minor role in controlling YP synthesis in
the housefly. However, it can be argued that the promoter
sequences tested did not contain all enhancer elements crit-
ical for conferring sex-specificity. Also, divergent evolution
of dsx and the yp genes, since the separation of Musca
and Drosophila is estimated 120 mya, may have prevented
a functional interaction between the Musca yp promoter
and the Drosophila transcriptional factors conferring sex-
specificity. This apparent lack of sex-specific regulation
closely resembles that of yp3 in Drosophila [33]. It has been
suggested that yp3 regulation has diverged from that of yp1
and yp2 and may require additional hormonal inputs to
achieve sex-specificity similar as in Musca and Calliphora
[33].

Based on our results, we propose the following model for
regulation of YP expression in Musca domestica (Figure 5). It
is the combination of several different inputs that regulates
the level of yp transcription in the fat body. A major
contribution comes from the endocrine system to attune the
production of YP not only with the synchronized maturation
of oocytes but also with the availability of food resources.
Both of these signals are nonautonomously transduced to
the fat body cells. The ecdysteroid hormone seems to be
the major component in reconciling the cyclic progress of
vitellogenesis and availability of YP and therefore can be
referred to as a synchronization factor. Also, hormones play
a critical role in assessing the availability of nutrients and
other environmental conditions relevant to egg production.
In addition, YP synthesis depends on signals that confer sex-
and tissue-specificity. These signals act cell-autonomously
in the fat body cells and can be referred to as competence
factors (Figure 5). In Musca, they play a minor but relevant
role in modulating the responsiveness of yp genes to the
nonautonomous signals. Presence of the female-specific
variant of Md-DSX acts as a stimulatory factor, which upon
binding to the yp promoters, in particular, that which drives
expression of Mdyp1 and Mdyp3, enhances transcription in
the presence of ecdysteroids. The male-specific variant, on
the other hand, may have the converse effect by inhibiting
rather than stimulating hormone-induced transcription.
The molecular nature of these interactions remains to be
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investigated. Apart from sex-specificity, a different set of
transcription factors is needed to confer tissue-specificity.
Some of these factors have been identified in Drosophila to
be activators, such as the CCAAT/enhancer-binding protein
(C/EBP) or inhibitors such as the adult enhancer factor-1
(AEF-1) [34]. It is conceivable that the same set of factors
is also operational in Musca to confer tissue-specificity
based on the studies demonstrating that the expression
of a reporter gene driven by the Musca yp1 promoter
is specifically confined to fat body cells in Drosophila
[32].

Altogether, it appears that the relative contribution
of nonautonomous and autonomous signals depends on
the mode of egg production. In Drosophila where egg
production does not occur in a cyclic fashion but is
rather continuous, synchronization factors play a marginal
role in regulating YP synthesis (Figure 5). In this system,
hormonal control is mainly used to attune YP synthesis to
environmental conditions such as food availability, while a
much larger contribution comes from autonomously acting
transcription factors to maintain a continuous supply of
YP. We propose that the yp genes were initially controlled
by ecdysteroids produced by the ovaries to coordinate the
maturation of the oocytes with YP production. Later, dsx was
recruited as an additional factor to control the responsiveness
to ecdysteroids in male and female fat bodies. In species like
Drosophila with continuous YP production, dsx became then
the major controlling agent. In Musca, where YP production
is cyclic, ecdysteroids kept their role as the main regulator.
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[16] A. Dübendorfer and M. Hediger, “The female-determining
gene F of the housefly, Musca domestica, acts maternally to
regulate its own zygotic activity,” Genetics, vol. 150, no. 1, pp.
221–226, 1998.

[17] M. Bownes, “The regulation of the yolk protein genes, a family
of sex differentiation genes in Musca domestica,” BioEssays, vol.
16, no. 10, pp. 745–752, 1994.
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