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Machine learning methods 
to predict attrition 
in a population‑based cohort 
of very preterm infants
Raquel Teixeira1,2*, Carina Rodrigues1,2, Carla Moreira1,2,3, Henrique Barros1,2,4 & 
Rui Camacho5,6

The timely identification of cohort participants at higher risk for attrition is important to earlier 
interventions and efficient use of research resources. Machine learning may have advantages over 
the conventional approaches to improve discrimination by analysing complex interactions among 
predictors. We developed predictive models of attrition applying a conventional regression model 
and different machine learning methods. A total of 542 very preterm (< 32 gestational weeks) infants 
born in Portugal as part of the European Effective Perinatal Intensive Care in Europe (EPICE) cohort 
were included. We tested a model with a fixed number of predictors (Baseline) and a second with a 
dynamic number of variables added from each follow-up (Incremental). Eight classification methods 
were applied: AdaBoost, Artificial Neural Networks, Functional Trees, J48, J48Consolidated, K-Nearest 
Neighbours, Random Forest and Logistic Regression. Performance was compared using AUC- PR 
(Area Under the Curve—Precision Recall), Accuracy, Sensitivity and F-measure. Attrition at the four 
follow-ups were, respectively: 16%, 25%, 13% and 17%. Both models demonstrated good predictive 
performance, AUC-PR ranging between 69 and 94.1 in Baseline and from 72.5 to 97.1 in Incremental 
model. Of the whole set of methods, Random Forest presented the best performance at all follow-
ups [AUC-PR1: 94.1 (2.0); AUC-PR2: 91.2 (1.2); AUC-PR3: 97.1 (1.0); AUC-PR4: 96.5 (1.7)]. Logistic 
Regression performed well below Random Forest. The top-ranked predictors were common for both 
models in all follow-ups: birthweight, gestational age, maternal age, and length of hospital stay. 
Random Forest presented the highest capacity for prediction and provided interpretable predictors. 
Researchers involved in cohorts can benefit from our robust models to prepare for and prevent loss to 
follow-up by directing efforts toward individuals at higher risk.

Attrition, the loss of participants belonging to the initial sample of recruitment who do not return for subsequent 
follow-ups, is one of the most challenging problems faced by researchers in charge of cohorts1. Importantly, a 
cohort affected with attrition may have the validity of its results questioned, as attrition introduces selection bias 
if related to the outcome of interest2,3.

Efforts to tackle attrition in cohorts have been concentrated in two main actions: prevent its occurrence and 
develop statistical methods to alleviate its consequences in data analysis1. For the latter, regression imputation, 
inverse probability weighting, and multiple imputation are some of the available techniques4–6. To prevent or 
diminish the loss of participants during the study, retention strategies have been widely implemented, such as 
voucher incentives, reminders, birthday cards, and reimbursement of transport costs7. However, conflictual 
results on the effectiveness of these strategies7,8 suggest that there may not be a unique solution for all types of 
cohorts, settings, and participants, but rather specifically tailored strategies are required.
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Birth cohorts of high-risk children, like those born very preterm (< 32 weeks of gestation), have an impor-
tant role in providing a comprehensive assessment of the needs and development of these children across their 
lifespan9. Very preterm infants experience increased and long-term adverse outcomes, such as cognitive and 
behavioural problems, when compared with children born at term10. Hence, this type of cohort may provide 
valuable scientific evidence that, ultimately, will contribute to improving clinical care, supporting public health 
decisions, and planning health and education provisions to these children11.

An early and precise identification of which participants present an increased risk for dropping out may be 
of large benefit. Conventional statistical methods, such as Logistic Regression, have been the usual choice to 
predict attrition in cohorts12–14. However, these classical theory-based models are constrained by independence, 
additivity and linearity assumptions which may oversimplify complex relationships between predictors and 
outcome variables15.

The growing access to clinical data and the rapid advances in machine learning raised a great enthusiasm 
about its use to improve clinical care over the past decade16 and an increasing number of its application in epide-
miological research and practice is known17. In addition, machine learning methods may bring advantages over 
conventional approaches. It offers highly flexible algorithms that often do not require underlying distributional 
assumptions or model specification, and is able to adapt to complex non-linear and non-additive interrelations 
between outcome and covariates18. However, when it concerns employing machine learning techniques to address 
methodological challenges in epidemiological studies, the results are scarce.

In this study, we developed predictive models of attrition in a birth cohort of very preterm infants applying 
a conventional regression model and different machine learning methods, and looked for the most relevant 
predictors of attrition.

Methods
Study population.  The study population consisted of Portuguese children participating in the prospec-
tive population-based Effective Perinatal Intensive Care in Europe (EPICE) cohort. It included all very preterm 
births (between 22 + 0 and 31 + 6 weeks of gestation) in 2011/12 in 19 regions of 11 European countries19. In 
Portugal, there were 724 very preterm live births occurring in this period in the two geographic regions (North-
ern and Lisbon and Tagus Valley) included in the cohort20. This study included all infants discharged alive from 
Neonatal Intensive Care Units (NICUs) whose parents provided written informed consent to participate in the 
EPICE cohort in Portugal (EPICE-PT) and to be long-term followed-up, resulting in 544 children (89.6% of 
607 eligible participants)19. We excluded two infants who died after discharge, remaining 542 participants for 
the analysis. Participant’s data at baseline were extracted from medical charts by health care professionals using 
a pretested standardized questionnaire19. In this study, we focused on the first four years of follow-up (follow-
up 1–follow-up 4), where questionnaires on child’s health and development were administered to parents by 
telephone (follow-up 1, 3 and 4) and postal questionnaires (follow-up 2).

Outcome.  The outcome of interest was attrition, i.e., non-participation in offered follow-ups. Attrition was 
identified when the participant (a) could not be reached by any available contact (including relative’s contact), 
(b) repeatedly postponed the call to answer the questionnaire, (c) verbally refused to participate in that specific 
follow-up, (d) verbally requested to withdrawal from the cohort, or (d) did not mail the questionnaires back, 
even after several reminders (follow-up 2). Attrition at each follow-up was calculated considering the eligible 
participants, i.e., excluding possible deaths and/or previous formal refusals. Participation was considered when 
parents accepted the invitation for that specific follow-up and answered the questionnaires (either totally or 
partially) through any available method.

Predictors.  Predictors were taken from information collected at baseline and from questionnaires com-
pleted at the three subsequent follow-ups. Based on the literature and experience of the researchers involved 
in the cohort, we selected a list of demographic, socioeconomic and clinical characteristics that are likely to be 
important predictors of attrition (Supplementary Table 1). The decision to not include all predictors available 
in the cohort dataset was taken to mitigate the curse of dimensionality21, to diminish the computational costs, 
prevent overfitting22 and, increase the usability of the model in similar cohorts.

Model development.  Two predictive models framework were developed: (1) “Baseline”, where prediction 
of the first four follow-ups was done using baseline data only, independently and, (2) “Incremental”, where 
baseline variables were used to predict attrition in the follow-up 1 and from that on, we continuously added 
new predictors extracted from the subsequent follow-up (e.g. baseline plus follow-up 1 to predict attrition in the 
follow-up 2; baseline plus follow-up 1 and 2 to predict attrition in the follow-up 3, etc.). For the first follow-up, 
both models are equivalent.

To test the model’s performance in predicting new data, we have used, for each year, 5 repetitions with replace-
ment of a hold-out method23. In each of the five folds, the whole dataset was randomly split into a training set 
(80%) and a testing (20%). Most machine learning algorithms have a set of parameters that may be adjusted to 
get a good model (parameter tunning). We have adopted a wrapper approach24 to estimate the best combination 
of parameter’s values. We have split the training set into a tuning-training set (95% of the original training set) 
and a tuning-test set (5% of the original training set). The result of the wrapper is the parameter’s values that 
produced the best (AUC-PR) value on the prune-test set. The best combination of parameter values is used on 
the training set and the model is finally evaluated on the test set.

The prevalence of the outcome (attrition) in the various follow-up of EPICE-PT cohort ranged from 13 
to 25%. Hence, we have a set of imbalanced datasets, which turns the models prone to be biased towards the 
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majority class. In order to cope with this problem, the Synthetic Minority Over-Sampling Technique (SMOTE)25 
was applied to mitigate the imbalance of the datasets.

Classification methods.  Different classification methods were leveraged to build the predictive models. 
Selected machine learning methods included AdaBoost, Artificial Neural Networks, K-Nearest Neighbours, 
Decision Trees Classifiers (Functional Trees, J48 and J48Consolidated), and Random Forest. We also applied 
Logistic Regression, performed with identical predictors, without interaction terms. A short explanation of the 
different methods is described below:

AdaBoost is one of the most popular boosting algorithms, a group of methods that produce a classifier as a 
linear combination of weak classifiers, and does so in a way that minimizes exponential loss over such linear 
combinations26. A weak classifier can be described as one whose error rate is only slightly better than random 
guessing15.

Artificial Neural Networks are nonlinear statistical models, which extract linear combinations of the predic-
tors as derived features, and then generate an outcome as a nonlinear function of these features. This learning 
method, inspired by neuroscience, is quite robust to noise in the training data15,27.

K-Nearest Neighbours models are based on the sample’s geographic neighbourhood. It uses the nearest obser-
vations, based on a distance measure, to predict the final classification outcome of a new observation28.

Decision Trees Classifiers (Functional Trees, J48 and J48Consolidated) are a group of algorithms that use a 
binary recursive partitioning of instant space29. It is an iterative process of splitting the data into partitions, and 
then splitting it up further on each of the branches, aiming to partition the data into smaller, more homogeneous 
groups. By fully revealing the feature space partition of a single tree, it allows for great flexibility in data analysis 
and interpretability15,29.

Random Forest algorithms are an extension of bagging30, an ensemble learning method that builds successive 
independent trees using a bootstrap sample of the data set. It adds a new layer of randomness when selecting 
predictors or combinations of predictors at each node to split it, while bagging considers all of the original 
predictors for splitting a node31.

Logistic Regression is typically the foremost statistical analysis used to model binary responses. It belongs 
to a family of techniques called Generalized Linear Models, which models the log odds of a binary dependent 
variable as a linear function28.

All models and algorithms were run using WEKA32.

Performance metrics.  We used four metrics to estimate the performance of the different classification 
methods33: (1) Sensitivity: the ability of the model to identify all the relevant cases (dropouts) within the dataset, 
(2) Accuracy: it measures the fraction of all correct predictions, (3) F- measure: conveys the balance between 
precision and sensitivity and (4) AUC-PR: Area Under the Curve of Precision-Recall. AUC-PR was the primary 
metric adopted to assess the performance of the algorithms, given the purpose of our study is to identify the 
cohort’s participants more prone to attrition and to select a predictive model that is as generalizable as possible 
to other cohorts of very preterm infants.

Predictor variables importance.  We collected the variable rank given by the best algorithm in each run 
and then we calculated the overall mean rank of the five best variables over all runs. To investigate the effects of 
the most relevant continuous predictor variables across different values, partial dependence plots were generated 
for the most accurate algorithm34. Aiming to improve interpretability, partial dependence plots were stratified 
by categories, when appropriated. The plots were presented with smooth curves to allow possible important pat-
terns to more clearly stand out. Graphs were constructed using R programming language.

Ethics.  The EPICE-PT cohort was approved by the Ethics Committee of the participating hospitals and by 
the Portuguese Data Protection Authority (authorization 7426/2011)20. All research was performed in accord-
ance with relevant guidelines and informed consent was obtained from all parents or legal representatives, as 
required by national legislation. The study complies with the Helsinki Declaration 2008.

Ethics committees that approved the study. 

	 1.	 Ethics Committee of Hospital Center Alto Ave—Guimarães
	 2.	 Ethics Committee of Hospital Center Entre Douro e Vouga—Hospital São Sebastião
	 3.	 Ethics Committee of Hospital Center Médio Ave—Hospital de Famalicão
	 4.	 Ethics Committee of Hospital Center Porto—Maternidade Júlio Dinis
	 5.	 Ethics Committee of Hospital Center Póvoa de Varzim /Vila do Conde—Hospital Póvoa Varzim
	 6.	 Ethics Committee of Hospital Center São João—Hospital São João
	 7.	 Ethics Committee of Hospital Center Tâmega e Sousa—Hospital Padre Américo
	 8.	 Ethics Committee of Hospital Center Trás dos Montes e Alto Douro—Hospital São Pedro
	 9.	 Ethics Committee of Hospital Center Vila Nova de Gaia/Espinho—Unidade II
	10.	 Ethics Committee of Hospital São Marcos—Hospital São Marcos
	11.	 Ethics Committee of Local Health Unit Matosinhos—Hospital Pedro Hispano
	12.	 Ethics Committee of Local Health Unit Alto Minho—Hospital de Santa Luzia
	13.	 Ethics Committee of Hospital Center Nordeste—Hospital Bragança
	14.	 Ethics Committee of Hospital Center de Setúbal—Hospital São Bernardo
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	15.	 Ethics Committee of Hospital Center Barreiro/Montijo—Hospital São Bernardo ~ 
	16.	 Ethics Committee of Hospital Center Oeste—Hospital das Caldas da Rainha
	17.	 Ethics Committee of Hospital Center Oeste—Hospital de Torres Vedras
	18.	 Ethics Committee of Hospital Center Lisboa Central—Hospital Dona Estefânia
	19.	 Ethics Committee of Hospital Center Lisboa Central—Maternidade Alfredo da Costa
	20.	 Ethics Committee of Hospital Center Lisboa Norte—Hospital de Santa Maria
	21.	 Ethics Committee of Hospital Center Lisboa Ocidental—Hospital de São Francisco de Xavier
	22.	 Ethics Committee of Hospital Center Médio Tejo—Hospital de Abrantes
	23.	 Ethics Committee of Hospital CUF Descobertas
	24.	 Ethics Committee of Hospital Fernando Fonseca
	25.	 Ethics Committee of Hospital da Luz
	26.	 Ethics Committee of Hospital de Santarém
	27.	 Ethics Committee of Hospital de Vila Franca de Xira
	28.	 Ethics Committee of Hospital dos Lusíadas
	29.	 Ethics Committee of Hospital Garcia de Horta
	30.	 Ethics Committee of Hospital José de Almeida

Results
Of the 542 very preterm children included in the study, 57.2% were male. The median gestational age was 
29 weeks (p25–p75:27–31) and the median birthweight was 1172 g (p25–p75: 940–1436.2). Mothers were mostly 
primiparous (63.2%), native (84.9%), with a median age of 31 years (p25–p75:27–35) and 83.2% belonged to the 
least deprived quartiles of neighbourhood socioeconomic deprivation (Table 1). Attrition in the four follow-ups 
were, respectively: 16%, 25%, 13% and 17%.

The SMOTE technique improved the performance of all algorithms in both models, therefore, all the pre-
sented results are derived using this technique. To verify the reliability of the results with the oversampling 
technique, we compared the descriptive statistics of the original dataset and the oversampling counterpart and 
we found no significant differences.

Comparison of methods performance.  Figure 1 depicts the discriminatory abilities of all methods for 
the prediction of attrition. There was a consistent and large superiority of Random Forest over the other methods 
in the baseline model. For the incremental one, Random Forest also had the best performance, but only slightly 
higher than AdaBoost (follow-up 2, 3 and 4) and Artificial Neural Networks (follow-3 and 4). Discrimination 
performance of Random Forest was excellent across all follow-ups in both models, baseline [AUC-PR1: 94.1 
(2.0); AUC-PR2: 89.1 (2.3); AUC-PR3: 92.9 (2.2); AUC-PR4: 93.4 (2.6)] and incremental [AUC-PR1: 94.1 (2.0); 
AUC-PR2: 91.2 (1.2); AUC-PR3: 97.1(1.0); AUC-PR4: 96.5 (1.7)]. In all follow-ups, the conventional Logistic 
Regression approach had a worse performance than Random Forest, both in baseline [AUC-PR1: 78.8 (3.4); 
AUC-PR2: 72.2 (3.2); AUC-PR3: 81.1(2.0); AUC-PR4: 80.6 (3.8)] and incremental model [AUC-PR1: 78.8 (3.4); 
AUC-PR2: 79.1 (2.9); AUC-PR3: 92.1 (2.3); AUC-PR4: 91.4 (2.2)]. Supplementary Table 2 presents the odds-
ratios of the Logistic Regression for the most relevant predictors. Adding new predictors in the incremental 
model led to a greater performance of all algorithms in all follow-ups.

Table 2 presents the mean and standard deviation of the assessed metrics (sensitivity, accuracy and F-meas-
ure). At follow-up 1, Random Forest (82.3; 6.3) and AdaBoost (82.3; 6.0) presented the higher values for sensi-
tivity, which measures the proportion of positive cases (dropouts) that were correctly identified. At follow-up 2, 
K-Nearest Neighbours (87.6; 4.5) at the baseline model outperformed the other methods. Random Forest was the 
best algorithm for sensitivity in follow-3 (89.8; 4.1) and Functional Trees in follow-up 4 (91.5; 3.7), both at the 
incremental model. In an overall analysis of the three metrics, Random Forest presented the best performance 
in both models, at all follow-ups.

Predictor importance analysis.  Predictor importance was computed by evaluating the decrease of impu-
rity at each split across all decision trees in the forest35. Either in baseline or incremental model, of the five 
most relevant predictors, four were common for all follow-ups and circumscribed to clinical and demographic 
characteristics: birthweight, gestational age, maternal age, and length of hospital stay after birth. Region of birth 
(Lisbon and Tagus Valley) and sex of the child (male) were the other two more relevant predictors (Table 3). Fig-
ure 2 shows the top five predictors with the highest importance based on the Random Forest in Baseline model.

Partial dependence plots illustrating the effects of the continuous predictors across a range of values in the 
Random Forest algorithm are shown in Supplementary Figs. 1, 2, 3 and 4. As the plots are similar for baseline 
and incremental models, we opted to display only the baseline model. The risk for attrition increased with higher 
gestational age and lower maternal age, although the risk also increases for older mothers (> 35 years) at follow-
ups 3 and 4. The stratification of birthweight by sex revealed different tendencies. For male participants, the risk 
for attrition has an inverted U-shape, with a lower risk for extreme values; and it shows two peaks of increased 
risk (1000 and 2000 g) for females. Length of hospital stay after birth was stratified by gestational age (≤ 27 
and > 27 weeks). In both categories, the risk increased with length of hospital stay, with a more rapid increase 
generally occurring after 50 days.

Discussion
Using seven machine learning algorithms and conventional Logistic Regression, this study developed two models 
for characterizing the risk of attrition in the EPICE-PT cohort. Both models presented an optimal predictive per-
formance, with the best performance reached by the incremental one, in which new predictors were progressively 
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added. The Random Forest showed the best discrimination performance in all follow-ups, surpassing Logistic 
Regression. In addition, we achieved a good level of interpretability of the predictors, emphasizing the added 
value of this algorithm. Random Forest not only improved the discriminative ability but also provided clear 
information for supporting the development of tailored retention strategies along the cohort life cycle. Based 
on the results of the Random Forest algorithm, younger mothers, children born with higher gestational age and 
with longer length of hospital stay presented more risk of dropping out. Birthweight, sex, and region of birth 
were also among the most important risk factors for attrition.

The two predictive models of attrition have distinct advantages. The baseline model resulted in an excellent 
predictive performance, also offering the opportunity to predict attrition and plan tailored interventions to pre-
vent it at an early stage of the cohort. The incremental model achieved an even higher predictive performance 
compared to the baseline model and improves the performance of the other algorithms, broadening the option 

Table 1.   General characteristics of the study population (n = 542). a Calculation of percentages does not 
include missing values. b SGA, small for gestational age, based on intrauterine curves developed for the 
cohort54. c The sum of the categories surpasses 100% as the numbers were rounded up.

Characteristics na (%)

Sex

Female 232 (42.8)

Male 310 (57.2)

Birthweight (g)

Median (p25–p75) 1172 (940–1436)

Gestational age (weeks)

Median (p25–p75) 29 (27–31)

 < 26 27 (5.0)

26–27 118 (21.8)

28–29 148 (27.3)

30–31 249 (45.9)

Small for gestational ageb

Yes (< 10th percentile) 52 (9.7)

No (≥ 10th percentile) 485 (90.3)

Missing 5 (0.9)

Type of pregnancy

Singleton 372 (68.6)

Multiple 170 (31.4)

Parity

0 342 (63.2)

1 144 (26.6)

 ≥ 2 55 (10.2)

Missing 1 (0.2)

Caesarean

No 156 (29.1)

Yes 381 (70.9)

Missing 5 (0.9)

Maternal agec

Median (p25–p75) 31 (27–35)

 < 25 85 (15.7)

25–34 300 (55.4)

 ≥ 35 157 (29.0)

Native mother

No 81 (15.1)

Yes 454 (84.9)

Missing 7 (1.3)

Neighborhood socio-economic deprivation

Least deprived (q1–q4) 447 (83.2)

Most deprived (q5) 90 (16.8)

Missing 5(0.9)

Length of hospital stay (days)

Median (p25–p75) 51(37–71)
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of satisfactory methods. However, it increases the computational costs, is more time-consuming and less efficient 
at identifying potential dropouts at an early stage, which is a substantial disadvantage from the perspective of 
cohort maintenance. In both models, all the top-ranked predictors belonged to the baseline dataset. For these 
reasons, we consider the baseline model the most advantageous one to predict attrition in our study population 
and similar cohorts.

A superior performance of Random Forest over Logistic Regression for predictive models was shown in 
diverse biomedical applications, such as suicidal behaviour36, cancer metastasis37, readmissions in patients with 
heart failure38 and, unplanned rehospitalisation of preterm babies39. Likewise, a massive experimental evaluation 
of 179 algorithms using 121 datasets showed that Random Forest was very close to the best attainable accuracy 
for most of the datasets40. However, a systematic review consisting of 71 studies did not favoured machine learn-
ing methods over Logistic Regression for clinical prediction41. These discrepant results may be explained by the 
No-Free-Lunch theorem42, which states that no classifier can be always the best for all datasets. Nevertheless, 
the comparison of our model’s performance with previous research is limited by the lack of studies investigating 
the ability of machine learning methods to predict attrition in cohorts.

Identifying the key predictors of attrition is of great significance for mitigating its risk in cohorts. Although 
the top-ranked predictors of attrition in our research are non-modifiable variables, they certainly shed light on 
which participants should receive further attention and incentives to continue their participation. The identified 
predictors are consistent with previous findings in very preterm cohorts, such as lower maternal age43,44 and 
male sex45,46. The effects of the most relevant clinical predictors showed controversial results, either revealing that 
participants with better (higher gestational age, greater birthweight in females, average birthweight in males) or 
worse health (longer length of hospitalisation) are more prone to attrition. A systematic review of 57 publications 
of very preterm cohorts also identified the healthier (e.g., higher gestational age, better lung function) and the 
unhealthier participants (e.g., severe disabilities, poorer cognitive performance), more likely to drop out of the 
cohort47. Therefore, this paradox is not a new finding and remains to be elucidated. It is also important to refer to 
the noticeable absence of socioeconomic factors in our model, which are often among the strongest predictors of 
attrition43,44,48. This might be due to the small variability of our sample regarding the only socioeconomic indica-
tor among our baseline predictors, neighbourhood socioeconomic deprivation index49 (82.5% of the participants 
belong to the least deprived quartiles).

Our study’s strengths include: (1) data from a population-based prospective cohort, which represented almost 
70% of all VPT births that occurred in Portugal in 2011/2012, (2) several machine learning methods tested, given 
that the most appropriate algorithm may differ depending on data structure, (3) the selection of usual predic-
tors collected at very preterm cohorts instead of all available predictors in our dataset, to broaden the usability 
of the model for similar cohorts, (4) the satisfactory level of model interpretation, allowing further practical 
implementation of the obtained results. Moreover, to the best of our knowledge, this is the first study developing 
prediction models of attrition in longitudinal cohort studies through machine learning techniques.

The primary limitation of the current study is that we assessed the performance of machine learning mod-
els by the hold-out method, a form of internal validation. External validation in other very preterm cohorts is 
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Figure 1.   Area Under the Curve-Precision Recall (AUC-PR) for follow-ups 1, 2, 3 and 4.
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Table 2.   Performance results of the classification methods applied to the prediction of attrition in four follow-
ups of EPICE-PT cohort. a At follow-up 1, baseline and incremental model are equivalent.

Follow-up Methods

Performance metrics (mean, SD)

Baseline model Incremental modela

Sensitivity Accuracy F-measure Sensitivity Accuracy F-measure

1

AdaBoost 82.3 6.0 83.2 5.7 83.3 5.7 N/a N/a N/a N/a N/a N/a

Artificial Neural Networks 81.4 3.1 81.1 3.1 81.2 3.1 N/a N/a N/a N/a N/a N/a

Functional Trees 74.5 5.2 74.7 1.8 74.7 1.8 N/a N/a N/a N/a N/a N/a

J48 76.9 3.3 78.0 2.9 78.0 2.8 N/a N/a N/a N/a N/a N/a

J48Consolidated 82.0 4.2 79.3 2.0 79.3 1.9 N/a N/a N/a N/a N/a N/a

K-Nearest Neighbours 86.0 3.9 76.5 2.1 76.5 2.2 N/a N/a N/a N/a N/a N/a

Logistic Regression 69.7 5.7 73.7 2.0 73.6 2.1 N/a N/a N/a N/a N/a N/a

Random Forest 82.3 6.3 88.2 1.9 88.1 2.0 N/a N/a N/a N/a N/a N/a

2

AdaBoost 82.4 5.8 71.6 7.2 70.9 7.6 85.6 3.6 82.3 3.7 82.3 3.7

Artificial Neural Networks 82.6 6.3 75.2 3.5 74.8 3.5 82.2 1.8 79.9 1.9 79.9 2.0

Functional Trees 76.8 3.8 71.4 2.6 71.2 2.6 76.1 2.8 73.1 3.2 73.1 3.2

J48 77.8 7.4 73.2 5.3 73.1 5.3 79.4 3.1 77.0 1.8 76.9 1.9

J48Consolidated 73.7 4.1 73.6 4.2 73.6 4.3 76.5 4.1 78.1 1.5 78.2 1.5

K-Nearest Neighbours 87.6 4.5 71.7 3.9 70.5 4.0 85.4 2.7 76.7 1.6 76.4 1.7

Logistic Regression 77.2 2.5 67.0 1.7 66.4 1.8 80.2 4.7 74.7 2.5 74.6 2.4

Random Forest 86.8 2.4 82.6 1.8 82.5 1.8 85.0 3.3 84.6 2.5 84.6 2.5

3

AdaBoost 75.4 6.2 85.0 3.5 84.8 3.6 87.9 7.3 90.3 1.7 90.3 1.8

Artificial Neural Networks 79.0 7.0 81.3 3.1 81.3 3.2 87.2 5.1 89.8 0.3 89.8 0.3

Functional Trees 74.4 5.7 78.2 3.0 78.3 3.0 84.9 6.0 87.5 2.1 87.5 2.1

J48 70.8 3.4 81.0 2.2 80.8 2.2 84.2 6.4 89.0 2.7 89.0 2.8

J48Consolidated 74.1 4.6 80.5 2.7 80.5 2.7 87.8 3.0 89.6 1.9 89.6 1.9

K-Nearest Neighbours 72.5 2.6 77.7 2.0 77.7 1.9 88.9 6.6 90.1 1.8 90.1 1.9

Logistic Regression 69.5 5.5 77.6 1.1 77.4 1.2 87.9 6.4 88.1 3.0 88.2 3.1

Random Forest 73.4 3.8 86.1 2.1 85.7 2.2 89.8 4.1 92.9 0.9 92.9 0.9

4

AdaBoost 83.3 3.1 84.2 1.5 84.2 1.5 88.5 4.5 92.1 2.6 92.1 2.6

Artificial Neural Networks 82.3 4.0 78.4 2.9 78.4 2.9 91.0 1.6 92.9 2.1 92.9 2.1

Functional Trees 76.2 4.1 74.3 1.2 74.2 1.2 91.5 3.7 92.2 3.1 92.2 3.1

J48 74.6 5.6 79.6 2.5 79.5 2.6 88.7 3.4 92.5 1.7 92.4 1.7

J48Consolidated 77.4 4.3 77.0 5.4 77.0 5.3 89.2 3.3 92.7 1.6 92.7 1.6

K-Nearest Neighbours 84.1 1.0 72.6 2.0 72.4 2.1 89.0 1.5 93.3 1.4 93.3 1.4

Logistic Regression 76.1 3.0 73.5 1.8 73.6 1.9 87.7 4.9 89.2 1.6 89.2 1.6

Random Forest 82.6 3.0 85.3 2.3 85.2 2.3 91.0 2.3 94.3 2.2 94.2 2.2

Table 3.   The top- ranked variables by the variable importance for each year in Baseline and Incremental 
Model.

Mean rank Follow-up 1 Follow-up 2 Follow-up 3 Follow-up 4

Baseline

1 Birthweight Birthweight Birthweight Birthweight

2 Maternal age Gestational age Maternal age Region of birth

3 Length of hospital stay Maternal age Gestational age Gestational age

4 Gestational age Length of hospital stay Length of hospital stay Length of hospital stay

5 Sex Region of birth Sex Maternal age

Incremental

1 Birthweight Birthweight Birthweight Birthweight

2 Maternal age Maternal age Length of hospital stay Maternal age

3 Length of hospital stay Gestational age Gestational age Gestational age

4 Gestational age Sex Sex Region of birth

5 Sex Length of hospital stay Maternal age Length of hospital stay
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needed to confirm the performance of the developed models. Another limitation was the lack of information on 
sociodemographic indicators at baseline, important known predictors of attrition, such as mother’s employment50 
and educational level51. Though the availability of such information at baseline would likely improve the pre-
diction ability, our models performed well enough. Moreover, the neighbourhood socioeconomic deprivation 
index is a robust measure that has been used as a valid proxy of individual socioeconomic position in previous 
research52. Lastly, variable importance of Random Forest was estimated by the mean decrease in impurity (or 
Gini importance) mechanism, which may produce biased variable selection when predictor variables vary in 
their scale of measurement or number of categories, such as in our dataset. Notwithstanding, the identified top-
ranked predictors are in line with previous research on attrition in very preterm cohorts, reassuring our results. 
In addition, previous research has demonstrated that when Random Forest uses a significant number of trees in 
each run, which is our case, stable variable importance rankings are achieved53.

In conclusion, we have developed and validated robust machine learning predictive models of attrition in a 
cohort of very preterm infants and demonstrated their superiority and feasibility compared with conventional 
Logistic Regression. Other than the high-performance model, this study also provided interpretability of the 
most relevant predictors that contribute to attrition. Researchers involved in cohorts lack effective tools to early 
identify participants at risk of attrition and can benefit from our results to prepare for and prevent loss to follow-
up, e.g., by directing efforts and developing tailored interventions geared toward those individuals to promote 
their continued participation54–56.

Data availability
Participants data used for modelling are available to researchers upon reasonable request.
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