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Left main coronary artery stenting requires rigorous planning and optimal execution. This case series presents a new

approach to left main stenting guided by preprocedural patient-specific computational simulations. Three patients with

significant left main artery disease underwent simulation-guided intervention using a novel stent scaffold purpose-built

for large coronary arteries. (Level of Difficulty: Advanced.) (J Am Coll Cardiol Case Rep 2022;4:325–335) © 2022 The

Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
“By failing to prepare, you are preparing to fail.”
—Benjamin Franklin1

INTRODUCTION

Angiographically significant (>50%) left main (LM)
coronary artery disease (CAD) is present in 4% to 6%
EARNING OBJECTIVES

To present a novel methodology of patient-
specific computational stent simulations.
To understand the role of computational
stent simulations in preprocedural planning
of complex LM coronary artery percutaneous
interventions.
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of all angiograms.2 Percutaneous coronary interven-
tion (PCI) is a viable alternative for anatomically
complex LM coronary artery disease not amenable to
surgical revascularization. The size of LM (average
lumen diameter of 5 mm) and the fibrocalcific nature
and anatomical location (ostium or bifurcation) of LM
disease make PCI of an unprotected LM challenging.2

Synergy Megatron everolimus-eluting stent (Boston
Scientific) is a new purposely designed stent with
improved strength and expansion capabilities that
is suitable for large proximal coronary artery in-
terventions, including LM.3 The stent received
Food and Drug Administration approval on January
22, 2021.

Preprocedural planning of LM interventions ap-
pears to be essential for angiographic, procedural,
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AND ACRONYMS

CAD = coronary artery disease

CFD = computational fluid

dynamics

HD IVUS = high-definition

intravascular ultrasound

LAD = left anterior descending

LCx = left circumflex

LM = left main

PCI = percutaneous coronary

intervention

3D = 3-dimensional
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and clinical (short- and long-term) success.
Patient-specific computational simulations
have the potential to help interventional
cardiologists preprocedurally plan complex
interventions, including LM. Here we
report for the first time in humans the
feasibility and safety of computationally
preplanned LM PCI using the Synergy Mega-
tron stent.

HISTORY OF PRESENTATION AND

PAST MEDICAL HISTORY

The clinical and imaging characteristics of
the patients described in this report are
1 Clinical, Angiographic, IVUS, and Procedural Characteristics

Patient #1

61

Female

es No

ipidemia Yes

ension Yes

c kidney disease No

c obstructive pulmonary disease No

ian Cardiovascular Society class 3

l presentation Exertional angina

myopathy No

us percutaneous coronary
ention

Mid-LAD

ntricular ejection fraction, % 60

X score Low

phic

n of left main disease Ostial

of stenosis Fibrotic

ricity Eccentric

nt minimum lumen area, mm2 6.3

nt mean lumen diameter, mm 2.8

ent minimum lumen area, mm2 15.4

ent mean lumen diameter, mm 4.4

al

tion 3.5 � 12 mm Emerge balloon
(Boston Scientific) inflated at 7 at

g 4.0 � 12 mm Synergy Megatron
inflated at 12 atm with 0.7 mm

protrusion into the aorta

lation 4.0 � 8 mm NC Emerge balloo
(Boston Scientific) inflated at 19

atm (effective 4.2 mm)

al optimization technique Not performed

diagonal branch; IVUS ¼ intravascular ultrasound; LAD ¼ left anterior descendi
summarized in Table 1. The 3 patients are as follows:

� Patient 1: A 61-year-old woman with a history of
intermediate CAD in the mid left anterior
descending (LAD) coronary artery presented with
new severe exertional angina.

� Patient 2: A 60-year-old woman with type 2 dia-
betes mellitus, ischemic cardiomyopathy, and CAD
status post primary PCI in the right coronary artery
a few months ago, as well as in the LAD and first
diagonal branch 10 years ago, presented with
worsening exertional shortness of breath.

� Patient 3: A 69-year-old woman presented with
worsening exertional angina refractory to optimal
medical therapy.
Patient #2 Patient #3

60 69

Female Female

Yes No

Yes Yes

Yes Yes

No Yes

No Yes

N/A 3

Exertional shortness of breath Exertional angina

Ischemic cardiomyopathy No

RCA and LAD/D1 No

34 45

Intermediate to high Low

Distal Ostial

Fibrocalcific Fibrotic

Concentric Eccentric

4.9 4.9

2.1 2.3

16.4 11.8

4.6 4.0

m
3.5 � 12 mm Emerge balloon

(Boston Scientific) inflated at 8 atm
3.5 � 12 mm Emerge balloon
(Boston Scientific) inflated at

7 atm

3.5 � 16 mm Synergy Megatron
(Boston Scientific) inflated at 12
atm with 1.0 mm protrusion into

the aorta

4.0 � 8 mm Synergy Megatron
(Boston Scientific) inflated at 11
atm with 0.6 mm protrusion

into the aorta

n Not performed 4.5 � 8 mm NC Euphora balloon
(Medtronic) inflated at 9 atm

(effective 4.3 mm)

4.5 � 12 mm NC Emerge balloon
(Boston Scientific) inflated at 18

atm (effective 4.7 mm)

Not performed

ng (coronary artery); N/A ¼ not applicable; NC ¼ noncompliant; RCA ¼ right coronary



FIGURE 1 Preprocedural and Postprocedural Imaging of Patient 1

(A) Coronary computed tomography (CT) angiography showing a severe fibrocalcific ostial left main (LM) coronary artery stenosis (yellow

arrow). (B) Fractional flow reserve computed tomography (FFRCT) analysis showing the pressure drop distal to the LM ostium (yellow arrow;

fractional flow reserve 0.73 in the distal left anterior descending artery [LAD]). (C) Preprocedural angiogram showing the ostial LM stenosis

(yellow arrow). (D) Final angiogram after computationally planned LM stenting (yellow arrow). (E) Preprocedural long view of high-

definition intravascular ultrasound showing the ostial LM stenosis with calculated minimum lumen area (MLA) and mean lumen diameter

(MLD) (white arrow). (F) Postprocedural high-definition intravascular ultrasound long view showing the deployed new everolimus-eluting

stent (Boston Scientific) at the left main ostium (white arrow). LV ¼ left ventricle; LCx ¼ left circumflex artery; iFR ¼ instantaneous

wave-free ratio.
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FIGURE 2 Preprocedural and Postprocedural Imaging of Patient 2

(A to C) Preprocedural angiogram and high-definition intravascular ultrasound showing severe fibrocalcific stenosis at the distal left main (LM)

coronary artery (yellow arrow in A and dashed line in C) with (B) a minimum lumen area (MLA) of 4.9 mm2. (D to F) Final angiogram and high-

definition intravascular ultrasound following computational stent planning. A new everolimus-eluting stent (Boston Scientific) 3.5 x 16 mm was

deployed from the proximal left anterior descending artery (LAD) to the LM coronary artery ostium covering the ostium of the left circumflex

artery (LCx) according to the provisional technique. Note the differential expansion of the stent from 3.4 mm into LAD artery to 4.8 mm into

the proximal LM artery with adequate scaffolding of the LCx ostium as predicted by the computational planning. MLD ¼mean lumen diameter.
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FIGURE 3 Patient-Specific Computational Stent Simulation Workflow

Representative example using data from patient 2. HD IVUS ¼ high-definition intravascular ultrasound; PCI ¼ percutaneous coronary

intervention; 3D ¼ 3-dimensional; other abbreviations as in Figure 1.
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INVESTIGATIONS

PATIENT #1. Initial screening with coronary
computed tomography angiography followed by
fractional flow reserve computed tomography anal-
ysis demonstrated anatomically and hemodynami-
cally significant ostial LM disease (Figures 1A and 1B).
Invasive angiography (Figure 1C), high-definition
intravascular ultrasound (HD IVUS) (Figure 1E), and
invasive functional studies (instantaneous wave-free
ratio: 0.83) confirmed the significance of ostial LM
disease. The mid LAD disease was angiographically
unchanged. Following the heart team’s discussion
that considered the low SYNTAX score and the pa-
tient’s preference, a decision for LM PCI was made.

PATIENT #2. Coronary angiography and HD IVUS
during the primary PCI to RCA revealed significant
disease in the distal LM (Figures 2A to 2C), obtuse
marginal branch, and distal LAD. Cardiac magnetic
resonance imaging showed moderate to severe
ischemic cardiomyopathy with viable myocardium in
the left coronary territory and transmural scar in the



FIGURE 4 Computational Preprocedural Planning of Patient #1

(A) Baseline anatomy, (B) computational flow dynamics, and (C) plaque stiffness by high-definition intravascular ultrasound (HD IVUS),

showing the fibrocalcific ostial left main (LM) coronary artery stenosis producing flow acceleration. (D) Computational stent deployment

from mid LM artery to the aortic ostium with 0.7 mm protrusion into the aorta. The actual stent protrusion into the aorta after percutaneous

coronary intervention was 1.0 mm. (E) Wall shear stress after computational LM stenting. (F to H) 3-dimensional reconstruction of the

clinically deployed stent from HD IVUS and comparison with the computationally deployed stent. Note the high quantitative and qualitative

agreement between the clinically and computationally deployed stent. MSD ¼ mean stent diameter; other abbreviations as in Figure 1.
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right coronary territory. The patient declined the
heart team’s recommendation for surgical revascu-
larization given her multivessel CAD, cardiomyopa-
thy, and diabetes. The decision was made to proceed
with multivessel PCI to the LM bifurcation.
PATIENT #3. Invasive angiography and HD IVUS
revealed significant ostial LM disease (Supplemental
Figures 1A to 1C). Echocardiography showed mild to
moderate cardiomyopathy. Following the heart
team’s discussion that considered the low SYNTAX
score and the patient’s preference, a decision for LM
PCI was made.
MANAGEMENT

PREPROCEDURAL PLANNING WITH PATIENT-SPECIFIC

COMPUTATIONAL STENT SIMULATIONS. The computa-
tional stent simulation steps are summarized in
Figure 3. Detailed description of the methods used
for stent simulations and computational fluid dy-
namics (CFD) is provided in Supplemental Table 1.4

Initially, we 3D reconstructed patient-specific LM
anatomies on the basis of angiography and HD IVUS
(Figures 4A, 4B, 5A, 5B, 6A, and 6B).3-6 The 3D
reconstructed LM anatomies were meshed and

https://doi.org/10.1016/j.jaccas.2022.02.001
https://doi.org/10.1016/j.jaccas.2022.02.001
https://doi.org/10.1016/j.jaccas.2022.02.001


FIGURE 5 Computational Preprocedural Planning of Patient #2

(A) Baseline anatomy, (B) computational flow dynamics, and (C) plaque stiffness by high-definition intravascular ultrasound (HD IVUS),

showing the fibrocalcific distal left main (LM) coronary artery stenosis with associated flow acceleration. (D) Provisional technique with

crossover stenting from the proximal left anterior descending artery (LAD) to the LM ostium with 1.0 mm protrusion into the aorta.

Computational simulation showed adequate stent scaffolding at the ostium of left circumflex artery (LCx) with minimum lumen area (MLA)

and mean lumen diameter (MLD) of 5.2 mm2 and 2.6 mm, respectively. After the actual percutaneous coronary intervention, the minimum

lumen area and mean lumen diameter achieved at the same location were 4.6 mm2 and 2.4 mm, respectively. Note the (E) flow restoration in

the computationally stented LM bifurcation and (F) high agreement in mean stent diameter (MSD) between the clinically and computationally

deployed stent.
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assigned realistic plaque stiffness properties
considering the longitudinal and circumferential
plaque heterogeneity derived from HD IVUS
(Figures 4C, 5C, and 6C).3,4 After performing
computational stent simulations and CFD analyses
(Figures 4D, 4E, 5D, 5E, 6D, and 6E, Videos 1 to 3),
we selected the optimal stent positioning, sizing
(length, diameter, inflation pressures), and strategy
for each individual patient (Figure 7). In these
computational simulations, we used the new
everolimus-eluting stent design provided by the
manufacturer (Boston Scientific). The patient-
specific stent simulations and CFD studies showed
that the flow environment became more homoge-
neous within the stented regions, whereas down-
stream to the stented regions, the wall shear stress
in both the LAD and left circumflex (LCx) arteries
increased to physiologic levels (1-2 Pa), thus



FIGURE 6 Computational Preprocedural Planning of Patient #3

(A) Baseline anatomy, (B) computational flow dynamics, and (C) plaque stiffness by high-definition intravascular ultrasound (HD IVUS),

showing the fibrotic ostial left main (LM) coronary artery stenosis with associated flow acceleration. (D) Computational stent deployment at

the ostium of the LM artery with 0.6 mm protrusion into the aorta. Note the (E) high agreement in mean stent diameter between the (F)

clinically and computationally deployed stent. Abbreviations as in Figure 1.
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potentially attenuating the propensity to athero-
sclerosis and stent restenosis (Figures 4E, 5E, and
6E). Interestingly, in patient #2, stenting of the LM
caused a focal increase of wall shear stress at the
ostium of the LCx that normalized in the immediate
downstream region (Figure 5E).

INTERVENTIONAL PROCEDURES AND COMPARISON

WITH PREPROCEDURAL COMPUTATIONAL PLANNING.

Informed consent was obtained from all 3 patients.
Using the preprocedural computational simulations
as reference, we proceeded to the PCIs with
Impella support (Abiomed). In each patient, we
faithfully replicated all the computational proce-
dural steps, using the same materials and inflation
pressures and in the same sequence according to
the computational simulations (Table 1, Figure 7).
All 3 procedures were completed seamlessly
and successfully without periprocedural or post-
procedural complications. Notably, patients #1 and
#2 received the first 2 Megatron implants in the
United States. Postprocedural angiography and HD
IVUS revealed optimally expanded and apposed
stents with optimal coverage of the LM ostium



FIGURE 7 Computationally Planned Left Main Interventions

Note the similarities between the computationally planned procedures and the actual percutaneous coronary interventions.

NC ¼ noncompliant; POT ¼ proximal optimization technique; other abbreviations as in Figure 1.
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CENTRAL ILLUSTRATION Patient-Specific Co
Stenting

Chatzizisis YS, et al. J Am Coll Cardiol Case Rep. 2022;4(6):325–

3D ¼ 3-dimensional; HD ¼ high definition; IVUS ¼ intravascular ultraso

LM ¼ left main.

FIGURE 8 Conceptual Framework for the Optimization of Percutaneous Interven-

tional Procedures and Outcomes

Advanced preprocedural planning and improved stent scaffolds have the potential to

optimize anatomically complex percutaneous coronary interventions (eg, left main,

bifurcations).
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in patients 1 to 3 and adequate scaffolding of the LCx
ostium in patient 2 (Figures 1D, 1F, 2D to 2F, and
Supplemental Figures 1D to 1F). The mean
stent diameter and shape of the clinically vs compu-
tationally deployed stents exhibited remarkable
agreement (Figures 4F to 4H, 5F, and 6F).

DISCUSSION

In this case series, we demonstrate the feasibility and
safety of advanced patient-specific computational
preprocedural planning of high-risk LM PCI (Central
Illustration). There were several novelties in our work:

1. For the first time, a well-validated patient-specific
computational stent simulations platform4 was
used for preprocedural planning of coronary in-
terventions. This platform could help interven-
tional cardiologists familiarize themselves with
mputational Planning of Left Main Coronary Artery

335.

und; LAD ¼ left anterior descending; LCX ¼ left circumflex;

https://doi.org/10.1016/j.jaccas.2022.02.001
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anatomically complex cases (eg, LM, bifurcations)
and optimize the equipment selection (eg, stents,
balloons) and procedural steps (eg, lesion prepa-
ration, 1-stent vs 2-stent technique, postdilatation
technique) in a safe, radiation- and contrast-free
environment.

2. We used a new everolimus-eluting stent, purpose-
built for large proximal coronary artery in-
terventions.3 Current drug-eluting stents are used
indistinctively in all coronary segments. However,
large proximal coronary artery usually develop
more calcified plaques that require stents with
improved radial and axial strength (as in patients #1
and #3). Moreover, LM interventions require stents
with improved overexpansion and differential
expansion capabilities to address the size mismatch
between LM and LAD or LCx (as in patient #2).

3. We introduced 2 technical novelties with important
clinical implications: 3D reconstruction of coronary
artery bifurcation from the fusion of angiography
with HD IVUS (Figures 4A, 5A, and 6A) and 3D stent
reconstruction from HD IVUS (Figure 4G).5,6

This case series provides a paradigm on how the
use of 21st century computational technologies could
transform the operations in the cardiac catheteriza-
tion laboratory of the future. Patient-specific
computational preprocedural guidance of coronary
interventions could reduce procedural costs and
duration and improve procedural efficiency, compli-
cation rates, patient satisfaction, and short- and long-
term clinical outcomes. Prospective clinical trials are
warranted to validate this perspective. As technology
evolves, application of faster computing systems (eg,
supercomputer clusters, quantum computing) and
integration of artificial intelligence algorithms (eg,
machine or deep learning, statistical emulation) have
the potential to allow real-time application of
computational preprocedural planning in the cardiac
catheterization laboratory.

FOLLOW-UP

All 3 patients were discharged home on the first
postprocedural day and were symptom-free in the 12-
month clinical follow-up. Notably, a 6-month angio-
graphic follow-up of patient 1 showed no changes in
the ostial LM stent and mid LAD disease.

CONCLUSIONS

Advanced computational preprocedural planning of
LM interventions, combined with stent scaffolds
purpose built for large coronary arteries (Figure 8),
appears to be a feasible and safe approach that could
optimize LM PCI and clinical outcomes (Central
Illustration).
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