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Ulcerative colitis is a chronic inflammatory bowel disease (IBD), but progress in exploring
its pathogenesis and finding effective drugs for its prevention and treatment has stalled in
recent years. The seeds of Moringa oleifera Lam. are rich in proteins known to have
multiple physiological activities. In our earlier work, we had isolated and purified a peptide
(MOP) having the sequence KETTTIVR, from M. oleifera seeds; however, its anti-
inflammatory activity and mechanism in vivo were unclear. Here we used the dextran
sulfate sodium (DSS)-induced colitis model to study the anti-inflammatory activity and
mechanism of this MOP. Our results are the first to show that MOP can ameliorate the
pathological phenotype, inflammation, and intestinal barrier disruption in mice with colitis.
Furthermore, RNA sequencing revealed that MOP inhibits the Janus kinase/signal
transducer and activator of transcription (JAK-STAT) pathway activation. Next, by using
16s rRNA gene sequencing, we found that MOP can ameliorate DSS-induced gut
microbiota dysbiosis. In addition, an untargeted metabolomics analysis suggested that
MOP is able to modulate the level of lipid and amino acid metabolites in IBD-stricken mice.
Altogether, these results indicate that MOP ameliorates colitis by remodeling intestinal
mucosal barrier by inhibiting JAK-STAT pathway’s activation and regulating gut
microbiota and its metabolites, thus providing a basis for further processing and design
of bioactive foods from M. oleifera seeds.
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INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic inflammatory
disease of the intestines, including Crohn’s disease (CD) and
ulcerative colitis (UC) (1, 2). Worryingly, in recent years the
prevalence and incidence of IBD have both increased annually (1,
3). In addition, patients who have had IBD for many years face
higher risks of developing related cancers, which can adversely
affect their body and mind (4, 5). Traditional drugs for treating
IBD, including 5-aminosalicylic acid (5-ASA), glucocorticoids or
immunomodulators, can relieve its progression but these drugs
may have significant side effects (6). Therefore, it is imperative to
explore natural products and their derivatives as support for the
treatment and management of IBD.

The intestinal mucosal barrier consists of mechanical barrier,
chemical barrier, microbial barrier and immune barrier (7).
Notably, the integrity of physical barriers in the gut is
regulated in part by cytokines produced by gut-resident cell (8,
9). Those cytokines that play key roles in IBD exert biological
effects by inducing activation of Janus kinase/signal transducer
and activator of transcription (JAK-STAT) by binding to
cytokine receptor (10, 11). Moreover, there is growing evidence
suggests that an imbalance between cytokines and excessive
activation of the JAK-STAT pathway leads to gut barrier
disruption, disease perpetuation and tissue destruction (8, 12).
Therefore, inhibiting activation of the JAK-STAT pathway may
be an effective way to impair intestinal inflammation and
improve the intestinal barrier.

Gut microbiota is one of the major components of the
intestinal mucosal barrier (13, 14). A large body of evidence
suggests that changes in the composition and function of gut
microbes are key factors directly contributing to the onset and
progression of IBD (15), and therefore targeting the gut
microbiota may be a novel strategy for the treatment of IBD.
Furthermore, bioactive metabolites derived from host and gut
microbiota, such as short-chain fatty acids, amino acids, choline
derivatives, and indole derivatives, are important molecules that
orchestrate the interaction between gut microbiota and host
medium (16, 17). Notably, these metabolites have been
reported to play an indirect role in remodeling the intestinal
barrier by modulating signal transduction and immune
responses (18).

Moringa oleifera Lam., in the plant family Moringaceae, has
various pharmacological potential and health benefits (19, 20). In
particular, studies have shown that M. oleifera seeds are rich in
protein and harbor a variety of therapeutic properties, namely
antibacterial, anti-oxidative stress, anti-inflammatory, and anti-
cancer activities (21–23). Although much research has
investigated the biological activity of M. oleifera seeds, far
fewer studies have considered the proteins in these seeds, and
even less is known about their peptides. According to many
studies, peptides can have immunomodulatory effects and may
ameliorate colitis injury by reducing inflammatory cell
infiltration, improving intestinal barrier, and modulating host
gut microbiota (24, 25). Currently, it is unclear whether M.
oleifera seed-derived peptides are also anti-inflammatory, and if
so, whether they modulate gut microbiota and regulate
Frontiers in Immunology | www.frontiersin.org 2
metabolism in vivo to exert their anti-inflammatory effects in
vivo, especially vis-à-vis acute colitis. In earlier work, we had
identified the ultrafiltration peptide components (i.e., < 3 kDa) of
M. oleifera seeds protein hydrolysates, finding a highly active a-
glucosidase inhibitory peptide with the amino acid sequence
KETTTIVR that also exhibited anti-inflammatory activity in
vitro (26). Yet whether it has anti-UC activity in vivo and its
mechanism of action remain unclear.

In this study, we demonstrate, for the first time to our best
knowledge, the beneficial effects of an active peptide
(KETTTIVR, MOP) identified by our team from M. oleifera
seeds in mice with ulcerative colitis and explored the
mechanisms by it ameliorates colitis.
RESULTS

MOP Improved the Pathological
Phenotype of DSS-Induced Colitis
To investigate the effect of the MOP on dextran sulfate sodium
(DSS)-induced colitis, colitis was induced in mice by continuous
administration of 3% DSS in water for 10 days, with different
doses of MOP supplemented to them during DSS induction
(Figure 1A). Compared with the DSS group, DSS-induced colitis
was significantly reduced in DSS+H MOP group, as evinced by
their significant weight loss (Figure 1B), reduced DAI scores
(Figure 1C), and remission of colonic shortening (Figure 1D).
Moreover, an enlarged spleen was observed in colitis mice
whereas the MOP treatment was capable of significantly
relieving that splenomegaly condition, particularly in the high
dosage group (Figure 1E). We next examined the level of
myeloperoxidase (MPO) in serum, finding it was significantly
higher in DSS-induced colitis mice than the control group,
whereas the high dosage of MOP intervention reversed this
abnormal change (Figure 1F). Histological analysis uncovered
colonic mucosal damage in colitis mice. Importantly, the high
dosage of MOP intervention significantly reduced such mucosal
damage (including the greater crypt depth) and inflammatory
cell infiltration, resulting in lower histological scores
(Figures 1G–I). These results suggested the MOP treatment
significantly improved DSS-induced colitis.

MOP Improved the Colon Inflammation
and Gut Barrier Disruption of
DSS-Induced Colitis
To further estimate the influence of MOP upon inflammation in
colitis, we detected the levels of TNF-a, IL-1b, IL-6, and IL-10 in
the serum from the control, DSS, and DSS + H MOP groups
(Figures 2A–D). Higher levels of pro-inflammatory cytokines
including TNF-a, IL-1b, and IL-6 and lower levels of anti-
inflammatory cytokine IL-10 were found in colitis mice when
compared with the control group. By contrast, MOP reversed
these changes to cytokines in serum. Consistently, we found that
MOP decreased the expression level of TNF-a, IFN-g, IL-1b, and
IL-6 but increased that of IL-10 in colon tissue (Supplementary
Figures 2A–E).
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To assess how MOP may affect the DSS-induced colonic
inflammatory infiltration, colon tissue sections were stained for
specific markers of macrophages (F4/80) and neutrophils
(LY6G). We found that the DSS group displayed macrophage
and neutrophil infiltration, as evinced by its significantly
increased counts of F4/80 and Ly6G-positive cells. Conversely,
MOP intervention evidently reduced the infiltration of
macrophages and neutrophils (Figures 2E–H).

Furthermore, alisin blue staining results revealed fewer
mucus-secreting goblet cells in the DSS group than the control
group. In stark contrast, the MOP intervention reversed this the
reduction of goblet cells as well as damage to the colon crypt
(Figures 2I, J). In line with these findings, the expression level
Frontiers in Immunology | www.frontiersin.org 3
for the gene encoding mucin-2 (Muc-2) in colon tissue showed
the same trend (Supplementary Figure 2F). To evaluate the
expression of antibacterial peptides in colitis, we examined the
expression levels of antimicrobial peptide genes in colon tissue,
finding that the MOP treatment reversed the DSS-induced
decrease in mRNA expression levels of both Reg3b and Reg3g
(Supplementary Figures 2G, H).

To further studyMOP’s effect on the gut barrier, we examined
the mRNA expression levels of zonula occludens 1 (ZO-1),
occludin, and claudin-1 in mice colon tissue. Their expression
levels were significantly lower in the colitis group than the
control group. But the MOP administration significantly
reversed the DSS-induced downregulation in the levels of
B C

D E

F G H

I

A

FIGURE 1 | MOP ameliorated the pathological phenotype of DSS-induced colitis. (A) Study design of the in vivo mouse experiment. Colitis was induced by
administration of 3% DSS dissolved in drinking water for 10 days. (B) Daily changes in body weight in each experimental group (n = 8) during disease progression.
(C) Daily assessment of DAI scores in each group. (D) Colons were observed and the colon length was determined fo each group (n = 8). (E) Calculation of the
spleen-to-body weight ratio (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 vs. DSS; #P < 0.05, ##P < 0.01, ###P < 0.001 and ####P < 0.0001 vs.
control. (F) Measurement of MPO activity in serum (n = 8). (G) Histological scoring and (I) representative images of HE-stained colonic sections (scale bar = 200 mm,
n=8). (H) Quantification of crypt depth in the colon (n = 48). Data are the mean ± SEM. *P< 0.05, ** P< 0.01, ***P < 0.001 and ****P < 0.0001. Statistical analysis
was performed using Student’s t-test.
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FIGURE 2 | MOP ameliorates colonic inflammation and intestinal barrier disruption in DSS-induced colitis. (A–D) Expression levels of TNF-a, IL-6, IL-1b, and IL-10
in serum determined by ELISA (n = 8); (E, F) Representative immunohistochemical images of macrophages (F4/80) in mouse colon sections (scale bar = 50 mm,
n=8) and the number of positive cells (n = 23); (G, H) Representative images of immunohistochemistry of neutrophils (Ly6G) in mouse colon sections (scale bar = 50
mm, n=8) and the number of positive cells (n = 20). (I, J) Representative images of Alcian blue-stained colon sections (scale bar = 50 mm, n=8) and the number of
mucus-producing cupped cells (n = 40). (K) Representative images of ZO-1 and occluding, and representative protein blot images of claudin-1, with their associated
protein expression normalized to b-tubulin. Quantification of immunoblots, performed in Image J software (n = 3). Data are the mean ± SEM. *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001. Statistical analysis was performed using Student’s t-test.
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occludin, ZO-1, and claudin-1 (Supplementary Figures 2I–K).
To confirm this pattern in gene expression, we used western
blotting to assess the protein expression of ZO-1, occludin, and
claudin-1; these results were consistent with those of their genes’
mRNA expression (Figure 2K). Collectively, these results
suggested that MOP treatment suppressed DSS-induced
colonic inflammation and attenuated the DSS-impaired
functioning of the intestinal mucosal barrier.

MOP Ameliorates Colitis by Inhibiting
Activation of the JAK-STAT Pathway
To determine the underlying biological processes and pathways by
which MOP ameliorates DSS-induced colitis in mice, RNA-Seq
analyses were conducted. Significant differences in transcriptional
profiles were detected among control, DSS, and DSS+H MOP
mice groups (Figures 3A, B). Specifically, relative to the control
group, DSS caused the upregulation of 2274 genes and the
downregulation of 1280 genes in the mouse colon
(Supplementary Figures 3A, B). In addition, a total of 621 and
1873 genes were respectively uregulated and downregulated in the
DSS+H MOP group compared with the DSS group
(Supplementary Figure 3C). The follow-up GO enrichment
analysis indicated that MOP modulates the immune response of
DSS-induced colitis (Figure 3C). Interestingly, the KEGG pathway
analysis of the differentially expressed genes (DEGs) indicated that
the JAK-STAT pathway was a highly enriched functional pathway
(Figure 3D). Heatmap results showed that DSS induced the
upregulation of JAK-STAT pathway-related genes’ expression in
mice with colitis, but the MOP administration significantly
downregulated it (Figure 3E). This suggested the MOP
intervention could have exerted its anti-inflammatory effects by
inhibiting the JAK-STAT signaling pathway.

To further confirm whether or not MOP inhibits the JAK-
STAT pathway, RT-qPCR was used to check the expression levels
of key genes operating in this pathway (Figure 3F). The results
revealed augmented levels of their expression in the DSS group
vis-à-vis the control group. As expected, in the DSS+H MOP
group the increasing expression of these genes involved in the
JAK-STAT pathway was reversed. Consistent with that, the
western blotting results showed that phosphorylation levels of
JAK2 and STAT3 were significantly increased in DSS-induced
colitis mice, and MOP administration reversed this trend
(Figure 3G). Overall, MOP suppressed inflammatory responses
by participating in DSS-induced immunomodulation and
inhibiting the JAK-STAT pathway in mice with colitis.

MOP Could Alleviate Gut Microbiota
Dysbiosis in Colitis Induced by DSS
To investigate whether MOP can alleviate DSS-induced gut
microbiota dysbiosis, we used 16S rRNA gene amplicon
sequencing to profile the composition of mouse gut
microbiota. These results showed that MOP ameliorated the
DSS-induced reduction in gut microbiota richness and diversity
in mice with colitis, as seen in the changed Chao, Shannon, and
Simpson indices (Figures 4A–C). The Bray-Curtis-based PCoA
(principal coordinates analysis) revealed a significant difference
Frontiers in Immunology | www.frontiersin.org 5
between the control and DSS groups (R2 = 0.393, P = 0.001,
Figure 4D). Further, gut microbiota structures were
also segregated between the DSS+H MOP and control groups
(R2 = 0.3693, P = 0.001) and likewise for the DSS and DSS+H
MOP groups (R2 = 0.2453, P = 0.001). Next, we performed a
LEfSe analysis of the differential gut microbiota found between
the three groups at the taxonomic level, from the phylum to
genus (Supplementary Figure 4). These results indicated that
Escherichia-Shigella (from the Proteobacteria phylum to genus),
Bacteroides (from the Bacteroidetes family to genus), and
Clostridium_sensu_stricto_1 (from the Clostridium phylum to
genus) were the dominant microbial taxa in the DSS group, while
Blautia and Oscillibacter (from Firmicutes phylum to genus)
were relatively enriched in the DSS+H MOP group.

To further investigate the possible impact of MOP on the gut
microbiota of mice with colitis, we analyzed different taxa in the
three experimental groups. At the phylum level, Firmicutes,
Bacteroidetes, Verrucomicrobia, and Proteobacteria were the
major phyla dwelling in the cecal contents microbiota
(Figure 4E). At the family level, in the DSS group the relative
abundance of Enterobacteriaceae increased while that of
Lachnospiraceae as well as Oscillospiraceae decreased, being
characteristic of gut dysbiosis that could be reversed by the
MOP treatment (Figure 4F). The changed microbiota at the
genus level are depicted in Figure 4G. Compared with the
control group, the relative abundances of Bacteroides,
Escherichia-Shigella, and Enterococcus increases in colitis mice.
However, MOP treatment restored the relative abundances of
these various bacteria. It is crucial to note that MOP caused an
enrichment of Lachnospiraceae_NK4A136_group, norank_f:
Lachnospiraceae, Blautia, Ruminococcus, and unclassified_f:
Ruminococcaceae, these belonging to Lachnospiraceae and
Ruminococcaceae, respectively.

To understand the associations between differentially enriched
microbes and inflammatory factors, intestinal barrier,
and antimicrobial peptides , Spearman correlat ions
were performed (Figures 4H, I). These results showed
that Eubacter ium_fi s s i ca tena_group , Enterococcus ,
Eubacterium_nodatum_group, Bacteroides, Escherichia-Shigella,
and Clostridium_sensu_stricto_1 each had a strong positive
correlation with the TNF-a, IL-1b, IL-6, and MPO levels in
serum, as well as the TNF-a level in colon. However, those six
taxa had negative correlations with the mRNA IL-10 levels (P <
0.05) in serum, and likewise with colonic barrier proteins ZO-1,
occludin (P < 0.01), claudin-1 (P < 0.001), mucin Muc-2, and
antimicrobial peptides Reg3g, Reg3b (P < 0.01) levels in the colon,
respectively. In addition, Lachnospiraceae_NK4A136_group,
Ruminococcus, norank_f:Lachnospiraceae, unclassified_f:
Ruminococcaceae, and Family_XIII_UCG-001, were negatively
correlated with TNF-a, IL-1b, IL-6, and MPO levels in the
serum, yet positively correlated with IL-10 in the serum, ZO-1,
occludin and claudin-1, Muc-2, and Reg3g, Reg3b in the colon.
Altogether, these results suggested that MOP can alleviate DSS-
induced gut microbiota dysbiosis and increased the relative
abundance of Lachnospiraceae and Ruminococcaceae members
in particular.
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MOP Alters Metabolic Profiles and
Regulates the Metabolism of Lipids and
Amino Acids
To investigate the effect of MOP on the metabolic profile of
colitis mice, we analyzed plasma samples via untargeted
metabolomics. The resulting PLS_DA plot showed that the
Frontiers in Immunology | www.frontiersin.org 6
metabolic profiles of DSS-induced colitis mice and the control
group differed significantly, in terms of both negative and
positive ion mode, while the MOP intervention group was also
significantly different from the DSS group (Figures 5A, B). The
resulting PCA plot also indicated a satisfactory classification
among the three groups (Supplementary Figures 5A, B). We
B

C D

E F

G

A

FIGURE 3 | MOP regulates colonic intestinal function and inhibits the JAK-STAT pathway. (A) Principal component analysis (PCA) between the three groups.
(B) Heatmap of three groups of DEGs (differentially expressed genes). The color in the graph indicates the expression value of the gene after normalization in each
sample, with red indicating higher expression of a given gene in that sample and blue indicating its lower expression. (C) GO enrichment analysis of DEGs between
the DSS and DSS+H MOP groups. (D) KEGG enrichment analysis of DEGs between the DSS and DSS+H MOP groups. (E) Heatmap of DEGs in the JAK-STAT
pathway. (F) Detection of DEGs in the JAK-STAT pathway by RT-qPCR (n = 6). (G) Representative western blotting images for the expression and phosphorylation
of JAK2 and STAT3, whose relative protein expression levels were quantified and normalized to b-tubulin (n = 3). Data are mean ± SEM. *P < 0.05, **P < 0.01,
***P < 0.001 and ****P < 0.0001. Statistical analysis was performed using Student’s t-test.
July 2022 | Volume 13 | Article 924178

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hong et al. Moringa oleifera Peptide Ameliorates Colitis
B C D

E F

G

H I

A

FIGURE 4 | MOP modified the dysbiosis of intestinal microbiota in DSS-induced colitis. (A–C) Alpha diversity index analysis of intestinal microbiota abundance
(Chao index) and diversity (Shannon and Simpson indexes). (D) Principal coordinate analysis (PCoA) plots of Bray–Curtis distance matrix for the composition of gut
microbiota of different groups at the ASV level. Community structure composition of different microbial groups, at the taxonomic level of phylum (E) and family
(F). (G) Comparison of relative abundances at the genus level among the three experimental groups (n = 7). (H) Spearman correlations between gut microbiota and
inflammatory factors and MPO enzyme activity in mice serum parameters (n = 7). (I) Spearman correlations between intestinal microbiota and parameters of
inflammatory genes, intestinal barrier genes, and antimicrobial peptide genes in mouse colon tissue (n = 6). The red coloring indicates positive correlations, while the
blue coloring indicates negative correlations. The intensity of the color is proportional to value (strength) of the Spearman correlation coefficient. Data are the mean ±
SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.
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detected 325 different metabolites between the three groups of
mice (P < 0.05, Supplementary Table S1). According to the
heatmap analysis of significantly changed differential metabolites
(Figure 5C), phosphatidylcholine (PC; 18:1/22:6, 14:0/0:0, 16:0/
18:3, 16:1/22:6), lysophosphatidylcholine (LPC; 18:2, 16:0), and
Frontiers in Immunology | www.frontiersin.org 8
LysoPC (15:0, 16:1/0:0) in the DSS group—as previously
reported by Tefas et al. (27)—being significantly lower than the
control group; however, the MOP treatment significantly
reversed the trend of decreasing these metabolites, which is
striking. Using the KEGG database, the differential metabolites
B

C

DA

FIGURE 5 | MOP alters metabolic profiles and regulates the metabolism of lipids and amino acids. (A, B) Linear discriminant analysis of metabolomic profiles in
mouse serum in the positive ion (A) and negative ion (B) mode (n = 5). (C) Heatmap of significantly altered metabolites. (D) KEGG pathway enrichment analysis of
differential metabolites.
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were then subjected to pathway enrichment analysis; 15
significantly enriched metabolic pathways (P < 0.05) were
identified, these mainly involving amino acid and lipid
metabolism (Figure 5D). To explore the relationship of
metabolites to inflammatory factors and gut barrier and
antimicrobial peptides, the top-100 differential metabolites in
terms of their relative abundance underwent Spearman
correlations (Supplementary Figure 5C). These metabolites
had strong correlations with inflammatory factors (TNF-a, IL-
1b, IL-6, IL-10, IFN-g) and MPO levels in serum, and intestinal
barrier (ZO-1, occludin, claudin-1), mucin (Muc-2) and
antimicrobial peptides (Reg3b, Reg3g) mRNA levels in colon.
We used Spearman correlation analysis to identify potential
relationships between alterations in gut microbes and
metabolites (Supplementary Figure 5D). Our findings reveal a
significant correlation between gut microbes and metabolites.

According to the KEGG database/pathway enrichment
results, the significantly enriched plasma metabolites and
metabolic pathways were interconnected and formed a
discernible metabolic network (Figure 6). The metabolic
pathways involved include sphingolipid metabolism,
sphingolipid metabolism, glycine, serine and threonine
metabolism, tyrosine metabolism, tryptophan metabolism, and
phenylalanine metabolism. This suggested that MOP has
ameliorated DSS-induced colitis not only by modulating a
s ingle metabol ic pathway, but a l so indirect ly v ia
interrelationships between certain metabolites, thereby
modulating a complex metabolic network.
DISCUSSION

Recent epidemiological statistics indicate that the incidence of
UC continues to increase worldwide, now affecting 0.3% of the
global population (28). Therefore, it is particularly urgent to
develop natural medicines with low side effects and proven
safety. Many studies have shown that peptides have various
physiological effects such as anti-inflammatory ones (29). Yet
whether MOP is capable of alleviating colitis and its mechanism
of action both remain unclear. In our study, we found that MOP
ameliorates colitis by remodelling intestinal mucosal barrier. Its
potential protective mechanism may be through inhibiting the
activation of the JAK-STAT pathway, regulating the composition
and function of gut microbiota, and the level of lipid and amino
acid metabolites. These findings suggest that MOP holds promise
as a natural and effective drug for supporting to IBD by restoring
the intestinal mucosal barrier (Figure 7).

As a new kind of natural medicine, peptides have many
advantages, such as their high bioactivity and selectivity, lower
toxicity than chemical drugs, easy absorption, and reduced
degree of accumulation (30). Similarly, we previously studied
the in vitro hypoglycemic activity and stability of MOP, and
found that after MOP was digested by pepsin, it still had an
inhibitory effect on a-glucosidase activity, with an inhibition rate
of 97.60%. And after MOP was digested by trypsin, it still had
inhibitory effect on a-glucosidase activity, and the inhibition rate
Frontiers in Immunology | www.frontiersin.org 9
was 86.76% (26). Through the above studies, we believe that
MOP has a certain resistance to pepsin and trypsin, and has good
stability. Therefore, we believe that MOP is a potential, highly
exploitable, functional food for the adjuvant treatment of colitis.

Several studies have shown that many active peptides have
anti-inflammatory properties and harbor potential to treat
ulcerative colitis (31, 32). For example, Ala-Gln can prevent
colitis through PepT1 and by decreasing the abundance of
Bacteroidetes and the ratio of Bacteroidetes to Firmicutes (33).
Furthermore, food protein-derived VPP and IPP inhibit colitis
through NF-kB and MAPK pathways (34). In the present study,
the MOP administration attenuated inflammation by inhibiting
the JAK-STAT pathway and significantly increased the relative
abundances of Lachnospira, Blautia, and Ruminococcus.
Although our findings are consistent with previous studies,
there are still many noteworthy differences, and these may be
related to the peptide sequence and amino acid composition (35).

Intestinal mucosal barrier dysfunction is a key pathology of
colitis (36). In the immune barrier, overproduction of pro-
inflammatory cytokines (TNF-a, IFN-g, IL-1b, and IL-6) or
reduced production of anti-inflammatory cytokines (IL-10)
induces the persistence and severity of IBD, worsen the
intestinal environment (37, 38). In agreement with previous
studies (39, 40), MOP significantly reversed DSS-induced
changes in cytokine (TNF-a, IFN-g, IL-1b, IL-6, and IL-10)
levels. Notably, changes in cytokine levels are often caused by
inflammatory cell infiltration (41, 42). Therefore, we examined
the expression of immune cells (neutrophils and macrophages),
and as expected, MOP significantly reversed the DSS-induced
infiltration of F4/80+ macrophages and Ly6G+ neutrophils,
which consistent with previous studies (43). Furthermore,
MOP attenuated DSS-induced impairment of physical barrier
function, as evidenced by enhanced tight junction expression and
increased goblet cell numbers and mucus expression, consistent
with previous studies (40, 44, 45). Collectively, our results suggest
that MOP has anti-inflammatory effects and ameliorates DSS-
induced intestinal barrier dysfunction.

It is worth noting that cytokines such as IFN-g and IL-6 are
released and bind to receptors on cells, thereby activating JAK-
STAT pathway, further up-regulates claudin-2 expression, and
mislocalizes ZO-1 to form intercellular spaces, thereby
increasing intestinal epithelial permeability (46–48). In our
study, transcriptomics revealed that JAK-STAT pathway is a
highly enriched functional pathway. And it was demonstrated by
western blot that MOP could inhibit JAK-STAT pathway
activation. Therefore, we believe that MOP may inhibit
JAK-STAT pathway activation by inhibiting the expression of
inflammatory factors, and finally regulate intestinal
barrier dysfunction.

Gut microbes can directly or indirectly (through their
metabolites) modulate signal transduction and immune
responses to remodel the intestinal epithelial barrier. It has
been reported that Proteobacteria are the major contributors to
IBD (49, 50), whereas Firmicutes are depleted under IBD,
resulting in dystrophic gut microbiota (51). In addition, studies
have shown that Proteobacteria can invade intestinal epithelial
July 2022 | Volume 13 | Article 924178

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hong et al. Moringa oleifera Peptide Ameliorates Colitis
FIGURE 6 | Metabolic network of MOP-treated mice with colitis. Enriched metabolites are marked in red. The expression of metabolites in the different experimental
groups is conveyed by the heatmap blocks, based on Euclidean analysis, corresponding from left to right to the control, DSS, and DSS+H MOP groups. The
differing colors denote the magnitude of metabolites’ relative expression in the samples of a given group, with redder colors indicating the higher expression of
metabolites and bluer colors indicating the lower expression of metabolites (n = 5).
FIGURE 7 | Schematic diagram of the mechanism of action of MOP in alleviating colitis. MOP ameliorated colitis by remodeling the intestinal mucosal barrier by inhibiting
the activation of the JAK/STAT pathway, modulating the composition and function of the gut microbiota, as well as the levels of lipid and amino acid metabolites.
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cells and aggravate intestinal inflammation by releasing
endotoxin and lipopolysaccharide (LPS), affecting intestinal
permeabil i ty (52). Interest ingly, our findings show
Proteobacteria (including Escherichia-Shigella and Enterobacter
genera) as the dominant microbiota in mice with IBD. However,
Lachnospiraceae and Ruminococcaceae (Firmicutes) were
significantly enriched in the DSS+H MOP group, likely
inhibiting the DSS-induced increase in Proteobacteria and
improving overall gut dysbiosis. This is consistent with
previous studies, in which decreased relative abundances of
Lachnospiraceae and Ruminococcaceae were observed in colitis
(43, 53, 54). As major producers of butyrate, both taxa enhance
the integrity of the intestinal epithelial barrier and suppress
inflammation (54–56). Furthermore, also acting as butyrate
producers (57–59), Blautia, Intestinimonas, and Butyricicoccus
also occurred at greater relative abundances in the DSS+H MOP
group than the DSS group of mice.

Furthermore, as a pathogenic bacteria, Enterococcus is closely
related to inflammation-related diseases in vivo (60). It has been
shown that Enterococcus produces metalloproteinases, which
aggravate intestinal inflammation in mice by damaging
epithelial cells and destroying the integrity of the intestinal
barrier (61). We detected this bacterial genus increased in the
colon of the IBD group, but the MOP intervention reversed this
trend. Further, the correlation results showed that Enterococcus
was significantly positively correlated with the levels of pro-
inflammatory factors in serum and pro-inflammatory genes
(IFN-g) in colon, but negatively correlated with those of anti-
inflammatory factor (IL-10) in serum and colonic barrier (ZO-1,
Occludin, Claudin-1), mucin (Muc-2), and antimicrobial peptide
(Reg3b, Reg3g) in colon. Also, as a butyrate-producing
microorganism (62), Lachnospiraceae_NK4A136_group was
found significantly increased in abundance after the MOP
intervention, being negatively correlated with pro-
inflammatory factors and significantly positively correlated
with anti-inflammatory factors, intestinal barrier, mucin, and
antimicrobial peptide genes. Ruminococcaceae is reportedly
more closely related to the Treg/Th17 balance and to resisting
DSS-induced ulcerative colitis (63). In our study, as expected,
MOP reversed DSS-induced depletion of Ruminococcaceae and
was inversely associated with pro-inflammatory factors in the
correlations, with anti-inflammatory factors, intestinal barrier,
mucin, and antimicrobial peptides genes all positively correlated
to it. Taken together, these lines of evidence suggest that the
MOP administration ameliorates DSS-induced gut dysbiosis,
thereby increasing the abundance of anti-inflammatory-related
beneficial bacteria like Lachnospiraceae and Ruminococcaceae,
which may help to promote recovery from gut barrier.

As a link coordinating the interaction between gut microbes
and the host, the physiologically active compounds produced by
the metabolism of the host and gut microbes play an important
role. In particular, choline derivatives in lipid metabolism and
indole derivatives in amino acid metabolism have many
physiological functions, including regulating and maintaining
intestinal mucosal immune homeostasis and enhancing
intestinal barrier function (18). In our study, we found that
Frontiers in Immunology | www.frontiersin.org 11
MOP significantly regulated the levels of lipid and amino acid
metabolites. In fact, lipids play an important role in maintaining
the integrity of the intestinal epithelium (64). A previous study
revealed an important role for the de novo lipogenic enzyme fatty
acid synthase in maintaining gut barrier function by regulating
palmitoylation of Muc2 (65). Thus, disturbances in lipid
metabolism disrupt intestinal barrier integrity. In lipid
metabolism (Figure 6), L-serine generates phosphatidylserine
with the help of enzymes, which then enters glycerophospholipid
metabolism and undergoes a series of metabolic transformations
under the action of different enzymes to generate choline-related
metabolites. Choline is a metabolite produced from
phosphatidylcholine by some gut microbes with phospholipase
D enzymes, which plays an important role in maintaining the
structural integrity of cell membranes (17, 66, 67). Studies have
shown that choline supplementation helps maintain intestinal
mucosal immune homeostasis and strengthens the intestinal
barrier (68). Here, MOP reversed the DSS-induced disturbance
of lipid metabolite levels and had a tendency to promote choline
increases. Interestingly, we found that lipid metabolites including
choline were significantly associated with gut microbes.
Therefore, we speculate that this may be the metabolic
regulation of choline by gut microbes.

In addition, in amino acid metabolism, L-serine generates L-
tryptophan under the enzymatic action of tryptophan synthase
alpha chain and this product enters the tryptophan metabolic
pathway. It is well known that L-tryptophan is an aromatic
amino acid and a biosynthetic precursor of microbial and host
metabolites (69, 70). In this study, L-tryptophan generates a
series of indole derivatives, including 3-Indoleacetic Acid (IAA),
5-methoxyindoleacetate and indole-3-acetamide. Interestingly,
many microorganisms have been shown to synthesize IAA via
the indole-3-acetamide and indolepyruvate pathways (71, 72). As
a marker of gut microbiota metabolic activity (73), IAA plays a
role in gut barrier integrity, immune cell activity and maintaining
gut homeostasis (74, 75). Consistent with these findings, our data
suggest that MOP is effective in increasing serum concentrations
of indole derivatives in colitis and is significantly associated with
gut microbes. This may be regulated by the metabolism of
tryptophan by gut microbes. Interestingly, we found an
interesting phenomenon that serotonin (5-hydroxytryptamine
[5-HT]) and its derivative N-acetyl serotonin, produced by some
gut microbes, were significantly enriched in the DSS+H MOP
group, these signaling molecules are thought to regulate
intestinal motility (76). It is worth noting that intestinal
peristalsis dysfunction is a common symptom in patients with
inflammatory bowel disease (77). Therefore, whether MOP can
affect intestinal peristalsis through the intestinal microbial
metabolite 5-HT to improve ulcerative colitis warrants
future investigation.

In conclusion, we hypothesized that gut microbiota
imbalance in UC mice causes abnormal lipid and amino acid
metabolism, promoting gut barrier disruption. MOP may
improve intestinal barrier integrity and improve colitis by
regulating the disturbance of gut microbes and their
metabolites (including lipid and amino acid metabolism).
July 2022 | Volume 13 | Article 924178

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hong et al. Moringa oleifera Peptide Ameliorates Colitis
MATERIALS AND METHODS

Preparation of the Moringa oleifera
Peptide (MOP) in Seed
The peptide (KETTTIVR) was synthesized (by GUOPING
Pharmaceutical, Anhui, China) using a solid phase procedure
that relied on Fmoc-protected amino acid synthesis methods
(78). The peptide’s purity was > 95%, and the MOP formally
identified by GUOPING Pharmaceutical (Supplementary File 1:
Supplementary Figure 1).

Animal Experiments
The animal protocol used in this study was reviewed and
approved by the Institutional Animal Care and Use
Committee of Yunnan Agricultural University (Yunnan,
China) for ethical issues and scientific care [license no. SYXK
(Dian) K2020-0006]. Six-week-old male C57Bl/6J mice (each
15–18 g) were obtained from Hunan SJA Laboratory Animal
Co., Ltd., China [license no. SCXK (Hunan) 2019-0004]. Prior
to the experiments, the mice were housed in a climate-
controlled rearing box at 55% ± 5% relative humidity with a
12-h day/night cycle. After 1 week of acclimatization, the mice
were randomly divided into five groups of 8 mice each: control,
DSS, DSS+200 mg/kg MOP (DSS+L MOP), DSS+400 mg/kg
MOP (DSS+M MOP), and DSS +800 mg/kg MOP (DSS +H
MOP) (Figure 1A). The UC model was induced by
administering to mice 3% (w/v) DSS (molecular weight
36,000–50,000 kDa; MP Biomedicals, UK) in their drinking
water for 10 days. The MOP was dissolved in water. At the same
time, the mice in the control group and the DSS group were
gavaged with an equal volume of water. Body weight and
disease activity index (DAI), including stool consistency and
rectal bleeding, were monitored daily.

Histology and Immunohistochemistry
Fresh colon tissues were fixed in 4% paraformaldehyde solution
(Sigma-Aldrich), embedded in paraffin, sectioned (3-mm
thickness), and stained with hematoxylin and eosin (H&E) and
Alcian Blue. Tissue sections were incubated with Ly6G (Abcam,
ab25377) and F4/80 (Abcam, ab6640). Images of each were
collected using a microscope (Olympus, Tokyo, Japan) and
then analyzed with Image pro-Plus 6.0 software (Media
Cybernetics, Inc., MD, USA), and colitis was scored
histologically as previously described (79). Crypt depth, goblet
cells, Ly6G and F4/80 positive cells were counted.

Evaluation of Serum Cytokine and
Myeloperoxidase Activity
Cytokine levels and myeloperoxidase (MPO) activity in serum
were determined using enzyme-linked immunosorbent assay
(ELISA) kits, by following the manufacturer’s manual
(Meimian, Jiangsu, China) instructions.

RT-qPCR
Total RNA extractions from colon tissue samples were
performed and reverse transcribed. Gene expression was
measured using the SYBR Realtime PCR Kit (Takara, Japan) in
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the LightCycler/LightCycler 480 System (Roche Diagnostics,
USA). RPL-19 served as the internal reference. The mean Ct
values of triplicate analyses were normalized from the mean Ct
values of RPL-19. Primer sequences were described and
synthesized by Generay Biotech Co., Ltd (Shanghai, China)
(Supplementary Table S2).

Western Blotting Analysis
Mouse colon tissues were excised and their protein
concentrations determined. Proteins were separated by SDS-
polyacrylamide gel electrophoresis, and then transferred onto
polyvinylidene fluoride (PVDF) membranes (0.45 mm; Millipore,
USA). To these, specific antibodies (ZO-1 (Abcam, ab190085),
Occludin (Abcam, ab216327), Claudin1 (Abcam, ab180158),
JAK2 (Abcam, ab108596), pJAK2 (Abcam, ab32101), STAT3
(Abcam, ab68153), pSTAT3 (Abcam, ab267373) and b-Tubulin
(Abcam, ab18207) were added for the immunoreaction, with the
chemiluminescence reaction performed to observe the protein
bands. b-tubulin was used as an internal control. Image J
software was used to analyze the gray value of obtained
protein bands.

RNA Sequencing
Total RNA was extracted from colon tissue samples according
the manufacturer’s instructions (Invitrogen). Then RNA quality
was determined by 2100 Bioanalyser (Agilent) and quantified
using the ND-2000 (NanoDrop Technologies). RNA-seq
transcriptome library was prepared following TruSeq™ RNA
sample preparation Kit from Illumina (San Diego, CA) using
RNA samples with high -quality. Paired-end RNA-seq
sequencing library was sequenced with the Illumina HiSeq
xten/NovaSeq 6000 sequencer.

Sequencing of 16S rRNA Genes of
Gut Microbiota
Total microbial genomic DNA was extracted from mouse colon
contents. The quality and concentration of DNA were
determined by agarose gel electrophoresis and a NanoDrop®

ND-2000 spectrophotometer (Thermo Scientific Inc., USA).
PCR amplifications were performed, and their ensuing
products were extracted and purified. Purified amplicons were
pooled in equimolar amounts and paired on the Illumina MiSeq
PE300 platform/NovaSeq PE250 platform (Illumina, San Diego,
USA), this done according to the standard protocol of Majorbio
Bio-Pharm Technology Co. Ltd. (Shanghai , China)
End Sequencing.

Non-Targeted Metabolomics
Serum samples from mice were extracted and transferred to a
sample vial with an inner cannula for its machine analysis carried
out using the UPLC-TripleTOF System of AB SCIEX.
The resulting LC-MS raw data were processed using the
metabolomics software program Progenesis QI (Waters
Corporation, Milford, USA), to obtain the final data matrix for
use in the formal analysis. Meanwhile, their MS and MSMS mass
spectral information was searched against and matched with that
in two public metabolic databases, HMDB (http://www.hmdb.ca/)
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and Metlin (https://metlin.scripps.edu/), to obtain each
metabolite’s information.
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