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Large amounts of xylose cannot be efficiently metabolized and fermented due to strain
limitations in lignocellulosic biorefinery. The conversion of xylose into high value chemicals
can help to reduce the cost of commercialization. Therefore, xylonic acid with potential
value in the construction industry offers a valuable alternative for xylose biorefinery.
However, low productivity is the main challenge for xylonic acid fermentation. This
study investigated the effect of three reaction parameters (agitation, aeration, and
biomass concentration) on xylose acid production and optimized the key process
parameters using response surface methodology The second order polynomial model
was able to fit the experimental data by using multiple regression analysis. The maximum
specific productivity was achieved with a value of 6.64 ± 0.20 g gx

−1 h−1 at the optimal
process parameters (agitation speed 728 rpm, aeration rate 7 Lmin−1, and biomass
concentration 1.11 g L−1). These results may help to improve the production efficiency
during xylose acid biotransformation from xylose.
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INTRODUCTION

Xylose, which constitutes about 25% of the total biomass components, is unable to be converted in
the lignocellulosic biorefinery process due to the limitation of microorganisms (Zaldivar et al., 2001).
Therefore, the utilization of xylose is one of the key factors affecting the commercial production of
lignocellulose (Nogue and Karhumaa, 2015). Currently, the bioconversion of xylose to xylonic acid is
considered as a promising pathway and has gained much attention (Zhou et al., 2015, Zhou et al.,
2017). Xylonic acid (XA), a bio-based chemical of great interest in recent years, is a non-toxic, non-
volatile, non-corrosive, water-soluble organic acid. This aldonic acid compound has a similar
structure and properties to gluconic acid, and shows a wide variety of applications in various fields.
XA can be used as a dispersant to improve the dispersibility of concrete, which can effectively reduce
the amount of concrete. In addition, XA has been also used as a raw material for chelating agent,
antibiotic, polyamide, hydrogel modifier and 1,2,4-butanetriol precursor (Gupta et al., 2001;
Deppenmeier et al., 2002; Chun et al., 2006).

Compared to other bacteria such as Saccharomyces cerevisiae and Escherichia coli, Gluconobacter
oxydans has been the most productive in producing XA (Toivari et al., 2012a). G. oxydans is known
for its rapid but incomplete oxidation of sugars and sugar alcohols as an obligate aerobic bacterium
with a wide range of industrial applications (Toivari et al., 2012b; Zhang et al., 2016a). XA is derived
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primarily from the further oxidation of xylose, relying on xylose
dehydrogenase on the cell membrane of G. oxydans (Mientus
et al., 2017). Then, XA is recovered from the culture broth by ion
exchange or precipitation methods for downstream processing
(Liu et al., 2012; Cao and Xu, 2019). Although G. oxydans shows
great potential for XA fermentation, low production efficiency is
the main challenge. For bioengineering, an important goal is to
achieve high productivity in order to ensure an adequate supply
of valued product and to reduce manufacturing costs
(Handlogten et al., 2018). Therefore, improving the production
efficiency of G. oxydans oxidized xylose would provide new
options for large-scale production of XA.

For aerobic bacteria, the inability to utilize sufficient oxygen is
the main cause of low productivity. Biochemically speaking, the
xylose biocatalysis by G. oxydans is a closely coupled bio-
oxidation reaction of cellular respiration and dehydrogenation
that relies heavily on oxygen supply (Hoelscher et al., 2009).
However, the solubility of oxygen in the broth is less than
0.21 mmol L−1, and the metabolism of bacterial cells is
significantly constrained (Hua et al., 2020), leading to a
decrease in the catalytic performance of the biological process
(Garcia-Ochoa and Gomez, 2009). Therefore, the level of oxygen
utilization is a key factor in the final production efficiency.

Often, oxygen utilization is related to the interaction between
the oxygen transfer and the oxygen uptake. During aerobic
biological reactions, oxygen transfer is the process by which
oxygen is transferred from the gas into the liquid phase to
come into contact with the cells, while oxygen uptake is the
process by which oxygen is utilized by the cells (Garcia-Ochoa
et al., 2010). Theoretically, increasing the biomass concentration
would enhance the level of oxygen uptake for aerobic biological
reactions, but it would break the relationship between oxygen
uptake and oxygen transfer. This leads to a decrease in the
dissolved oxygen concentration in the broth and thus reduces
the catalytic performance of the bacteria, which ultimately leads
to a decrease in productivity. Therefore, it is necessary to adjust
the appropriate level of oxygen transfer (by changing the agitation
and aeration) and oxygen uptake (by changing the biomass
concentration) to increase productivity.

To address these issues, this study attempts to use a response
surface approach to improve the productivity of xylonic acid
fermentation. Response surfaces were used to understand the
interactions of aeration, agitation, and biomass concentration on
the productivity of xylonic acid production from whole-cell
catalytic xylose by G. oxydans using a statistical model.
Optimized fermentation conditions were designed to address
the low productivity limitations that exist in xylonic acid
fermentation. These optimized conditions will provide
guidance for the design of xylonic acid production process.

MATERIALS AND METHODS

Microorganism
G.oxydans NL71 purchased from Nanjing Forestry University of
China, was stored on sorbitol agar (sorbitol 50 g L−1, yeast extract
5 g L−1, agar 15 g L−1) at 4°C. The inoculum of G. oxydans NL71

was prepared in 250 ml shake flasks containing 50 ml of medium
(sorbitol 50 g L−1, yeast extract 5 g L−1) and incubated at 220 rpm
and 30°C for 24 h. The proliferation medium was centrifuged at
6,000 g for 5–10 min to collect cells, and the centrifuged cells were
transferred to the fermentation medium on an ultra-clean bench
(Zhou et al., 2015).

Whole-Cell Catalysis
The fermentation equipment consists of a stirred tank bioreactor,
motor, and control system. Whole-cell catalysis is performed in a
5 L stirred tank reactor containing 3 L of production medium.
The biotransformation medium: 5.0 g L−1 yeast extract, 0.5 g L−1

MgSO4, 1.0 g L−1 KH2PO4, 2.0 g L−1 K2HPO4 and 5.0 g L−1

(NH4)2SO4 (Zhou et al., 2017). The temperature was
maintained at 30°C throughout the fermentation process. The
pH of the medium was monitored online by means of electrodes
connected to the pH meter. The peristaltic pump was controlled
to add 10% NaOH to maintain the pH at 5.5 automatically (Zhou
et al., 2015; Zhang et al., 2017; Zhou et al., 2017).

Experimental Design and Statistical
Optimization
A three-factor, three-level Box-Behnken experiment design was
used, with specific productivity values (Px) as response values to
understand the combined effect of agitation (A), aeration (B) and
biomass concentration (C). Table 1 shows the range of agitation,
aeration, and biomass concentration of the RSM.

Fifteen experiments (Table 2) were designed using Design-
Expert 12, and the fermentation results were finally subjected to
multiple regression analysis to obtain the optimal fermentation
conditions. A second-order polynomial equation was designed to
express the predicted response (Y) as a polynomial equation in
the independent variable (A-C), expressed as Eq. 1:

Y � x0 + x1A + x2B + x3C + x11A
2 + x22B

2 + x33C
2 + x12AB

+ x13AC + x23BC (1)

where Y is the response, x0is the intercept coefficient,x1,x2, x3are
the linear coefficients andx11,x22,x33 are the squared coefficients;
andx12, x13, andx23 are the interaction coefficients.

Biomass Measurement
The optical density (OD) of the cells was measured at 600 nm
using a UV-Vis spectrophotometer (Ultrospec 2100, Amersham
Biosciences Corp., United States). Samples were diluted with
deionized water and a blank control was also used for the
measurements.

Determination of Xylose and Xylonic Acid
Content
The simultaneous determination of xylose and XAwas performed
using high performance anion exchange chromatography
combined with pulsed amperometric detection (Thermo ICS-
5000) using a CarboPac™ PA10 column (Wang et al., 2014). The
samples were filtered (0.22 μm membrane) and injected (10 μL)
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on a CarboPac PA-10 guard column (2 mm × 50 mm) attached to
a CarboPac PA-10 anion-exchange analytical column (2 mm ×
250 mm). The column temperature was maintained at 30°C.
100 mM NaOH was used as mobile phase at a flow rate of
0.3 ml min−1. Before each injection, the column was re-
equilibrated by running for 15 min with 6 mM NaOH to
achieve good repeatability.

Specific Productivity and Volumetric
Productivity
XA specific productivity (PX) was calculated for each experiment
employing Eq. 2:

PX � Cmax
XA

CX · tmax
(2)

Volumetric productivity (QP) was calculated by Eq. 3:

QP � Cmax
XA

tmax
(3)

where Cmax
XA (g L−1) is the maximum XA concentration for each

experiment, CX is the biomass concentration (g L−1) and tmax (h)
is the time in which the maximum XA concentration is reached.

Determination of kLa
The dissolved oxygen concentration was monitored using a fast
dissolved oxygen electrode (605-ISM, Mettler Toledo,

United States), and the kLa values were determined by the
dynamic method. First, aeration was stopped, and dissolved
oxygen levels were decreased to measure oxygen uptake rate.
Then, the broth was reaerated with air until the steady state was
reached, and kLa value was calculated by the dissolved oxygen
mass balance equation (Garcia-Ochoa and Gomez, 2009).

RESULTS AND DISCUSSION

Statistical Analysis
In comparison to univariate experiments, RSM takes into account
the interaction of all factors on response variables, and also
obtains appropriate optimization conditions. In this study, the
RSM examined the effect of three variables: agitation (A), aeration
(B) and biomass concentration (C) on PX. The evaluation results
show that the model has 9 degrees of freedom (df) and the ‘lack of
fit’ has 5 df, indicating that the design is suitable for model
development. The model with second-order polynomial was
defined according to the coding factor as follows:

Y � 5.21 + 2.31A + 0.3366B − 0.6698C − 0.1057AB − 0.4338AC

− 0.0386BC − 1.67A2 + 0.0725B2 − 0.6721C2

(4)

The results in Table 3 were verified by Fisher’s test for analysis
of variance (ANOVA), which showed that the experimental data
fitted well with the second-order polynomial function. TheModel

TABLE 1 | Experimental range of variables studied during designing of experiments.

Factors Symbols and units Coded levels

Low (-1) Mid (0) High (+1)

Agitation A (rpm) 200 500 800
Aeration B (L min−1) 1 4 7
Biomass concentration C (g L−1) 1 1.5 2

TABLE 2 | Experimental matrix design.

Run Factor A Factor B Factor C Response: PX

Agitation (rpm) Aeration (L min−1) Biomass
concentration (g L−1)

(g gx
−1 h−1)

1 200 1 1 0.32
2 200 7 1 1.28
3 500 4 1 5.75
4 800 1 1 6.00
5 800 7 1 6.33
6 200 4 1.5 0.94
7 500 1 1.5 4.67
8 500 4 1.5 5.50
9 500 7 1.5 5.76
10 800 4 1.5 6.01
11 200 1 2 0.33
12 200 7 2 0.93
13 500 4 2 3.18
14 800 1 2 4.07
15 800 7 2 4.45
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F-value of 44.44 implied the model was significant. The
probability of not getting the results predicted by the
regression model is only 0.01%. The large p-value for ‘lack of
fit’ (0.1273 > 0.05) indicated that the “lack of fit” is not significant
relative to the pure error. The R2 value of 98.28% indicated that

the response model explains 98.28% of the total variation.
Usually, regression models with R2 values above 0.9 are
considered to have a robust correlation (Ávila-Lara et al.,
2015). The value of the adjusted coefficient of determination
(R2

Adj � 96.07%) was also high enough to indicate the significance

TABLE 3 | Analysis of variance (ANOVA) for all model terms.

Source Sum of squares df Mean square F-value p-value

Model 77.82 9 8.65 44.44 <0.0001
A-Agitation 53.27 1 53.27 273.77 <0.0001
B-Aeration 1.13 1 1.13 5.80 0.0469
C-Biomass concentration 4.49 1 4.49 23.06 0.0020
AB 0.0894 1 0.0894 0.4597 0.5196
AC 1.50 1 1.50 7.71 0.0274
BC 0.0114 1 0.0114 0.0588 0.8154
A2 7.44 1 7.44 38.21 0.0005
B2 0.0141 1 0.0141 0.0723 0.7957
C2 1.21 1 1.21 6.22 0.0413
Residual 1.36 7 0.1946 — —

Lack of Fit 1.29 5 0.2580 7.14 0.1273
Pure Error 0.0722 2 0.0361 — —

Cor Total 79.18 16 — — —

FIGURE 1 | Parity plot: showing the relation between actual response and predicted values for PX estimation.
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of the model. These results all suggest that the model can
appropriately account for the cumulative as well as univariate
effects of all selected variables on productivity in this
biotransformation system.

Figure 1 shows the good correlation between the predicted
values and the actual values. The predicted values of the model can
match well with the actual values, indicating the good applicability
of the model. The model gave the optimized levels of agitation
speed (728 rpm), aeration rate (7 L min−1), and biomass
concentration (1.11 g L−1), and experiments were conducted in
the fermenter. The final PX reached 6.64 ± 0.20 g gx

−1 h−1, which is
slightly lower than the model value of 6.74 g gx

−1 h−1.

Interactive Effect of the Selected Variables
on PX
Three different response surface plots (Figures 2A–C) were used
to determine the interaction effect between the selected variables

FIGURE 2 | (A) Interactive effect of agitation and aeration on PX. (B)
Interactive effect of agitation and biomass concentration on PX. (C) Interactive
effect of aeration and biomass concentration on PX.

TABLE 4 | Mass transfer coefficients (kLa) in fermenters under different operating
conditions.

Run Agitation (rpm) Aeration (L min−1) kLa (s−1)

1 200 1 0.0018
6 200 4 0.0035
2 200 7 0.005
7 500 1 0.0143
3 500 4 0.029
9 500 7 0.037
4 800 1 0.04
10 800 4 0.08
5 800 7 0.11

FIGURE 3 | Specific productivity of XA production using different
concentrations of G. oxydans NL71 at different kLa conditions.
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on PX. In Figure 2A, the response surface plot shows that the PX
value was small at lower agitation speed and aeration rates; as the
value of agitation and aeration increase, PX was also enhanced.
Theoretically, both agitation speed and aeration affect the oxygen
transfer in the fermenter, and an increase in the agitation speed
and aeration rates can effectively increase the oxygen transfer
coefficient (kLa) in the fermenter (Table 4). Meanwhile, Figure 3
shows that PX was significantly improved as kLa was increased
from 0.0018 s−1 to 0.04 s−1, while the increase in PX flattened out
as kLa continued to increase. In addition, similar productivity was
achieved when kLa was increased from 0.04 s−1 to 0.08 s−1 at a
biomass concentration of 1 g L−1 and 1.5 g L−1, respectively. From
these results, it can be concluded that the production efficiency of
G.oxydans can be effectively increased with an appropriate value
of kLa. However, the production efficiency could not be further
improved by increasing kLa to a higher level. It can be considered
that the overall rate of the biological process is controlled by
oxygen transfer when kLa is less than 0.04 s−1. When increasing
the oxygen transfer coefficient to more than 0.04 s−1, the reaction
efficiency cannot be further improved effectively. At this stage,
the overall rate of the biological process is controlled by oxygen
uptake. In addition, it can be observed that the curve of aeration is
slightly curved on the surface. This observation suggests that the
dominant factor in the interaction is agitation, which has been
confirmed by previous studies (Dixit et al., 2015; Li et al., 2019).
This is in agreement with the report of Pooja Dixit et al. (2015),
who also found that agitation has the most decisive effect on kLa.
The reason is that agitation reduces the bubble size and increases
the gas-liquid contact area.

However, it can be observed that the PX value tends to a
plateau in the high agitation region (Figure 2A). In addition, an
examination of the data (Table 2) showed that the increase in
agitation value from 200 to 500 rpm (run no. 6 and 8) caused an
increase in PX value from 0.94 g gx

−1 h−1–5.50 g gx−1 h−1, whereas
an increase in agitation from 500 to 800 rpm (run no. 8 and 10)
increased the PX value from 5.50 g gx

−1 h−1–6.01 g gx−1 h−1, which
was not so significant as compared to previous experiments (run
no. 6 and 8). It can be concluded that the improved oxygen
transfer conditions brought about by the agitation speed of
800 rpm provide an adequate oxygen supply for oxygen
uptake, thus enabling the maximum catalytic performance of
the strain.

Figure 2B shows the dependence of PX on biomass concentration
CX and agitation at a specific aeration rate. In the low agitation region,
the value of PX is small; as the agitation speed is enhanced, PX is also
increased. The PX increase tends to level off when the agitation speed
exceeds 500 rpm. The maximum Px of 6.33 g gx

−1 h−1 was reached at
an agitation speed of 800 rpm, which indicates that the catalytic
capacity of the bacteria is close to the maximum value at this
operating condition. When the capacity of oxygen uptake was
enhanced, the results showed that PX instead decreased. It can be
confirmed by comparing the data of run 3 and 13 (Table 2), wherePX
decreased from 5.75 g gx

−1 h−1–3.18 g gx−1 h−1 by increasing the
biomass concentration from 1 g L−1–2 g L−1. Previously, Yuan
et al. (2016) reported similar observations and suggested that the
oxygen limitation brought about by the growth of the bacterium at
the beginning of fermentation could affect the expression of

transhydrogenase on the G. oxydans membrane, which might
reduce the catalytic performance of the bacteria. Theoretically, an
increase in biomass concentration could improve the level of oxygen
uptake, but the imbalance between oxygen uptake and oxygen
transfer leads to lower dissolved oxygen levels in the medium.
Lack of oxygen may affect the activity of enzymes on the cell
membrane.

Figure 2C depicts the effect of biomass concentration and
agitation on PX at a specific agitation rate. The response surface
plots show that the interaction between aeration rate and biomass
concentration onPX is not significant. Although Px is appropriately
enhanced by increasing aeration rate, simultaneous increase of in
aeration and biomass concentration cause a decrease in PX. The
reason is that the increase in biomass concentration leads to an
increase in oxygen demand by the cells, while the increase in
aeration rate does not bring about optimal oxygen transfer
conditions, resulting in oxygen transfer limitation.

Optimization of Specific Productivity for
Xylonic Acid Fermentation
By solving Eq. 4, the optimal operating conditions were estimated
to be agitation speed 728 rpm, aeration rate 7 L min−1, and
biomass concentration 1.11 g L−1 by response surface analysis.
Triplicate fermentation experiments were conducted using the
predicted optimal conditions to verify the applicability of Eq. 4.
After 12 h of whole-cell catalysis, the DO, xylose, and XA content
of the fermentation broth decreased from 0.200 mmol L−1 to
0.140 mmol L−1, 100 g L−1 to 21.04 ± 2.6 g L−1, and 0 g L−1

increased to 88.44 ± 2.7 g L−1, respectively (Figure 4).The
experimental value of PX was 6.64 ± 0.20 g gx

−1 h−1, which is
in excellent agreement with the predicted value (6.74 g gx

−1 h−1).

A Comparison of Specific Productivity for
Xylonic Acid Fermentation in the Literature
It can be said that the commercialization of any fermentation
technology is impossible without the economic cost considerations.

FIGURE 4 | XA production under the optimized conditions. Xyl � xylose;
XA � xylonic acid; DO � dissolved oxygen.
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Therefore, it is important to produce xylonic acid economically with a
high volumetric productivity. In the literature, many strategies have
been conducted to obtain high product titer of xylonic acid. For
example, Toivari et al. (2012a) reported that S. cerevisiae was
engineered to increase xylonic acid production by genetic
engineering. 43 g L−1 of xylonic acid was produced in S. cerevisiae
B67002 xylB with a specific productivity of 0.06 g gx

−1 h−1. However,
the much lower productivity compared to G. oxydans is still a serious
weakness. Hahn et al. (2020) reported the effect of different nitrogen
sources on the growth and subsequent xylonic acid production. With
the addition of 0.32 g L−1 glutamate and 0.15 g L−1 ammonium sulfate
as inexpensive nitrogen sources, a xylonic acid volumetric
productivity of 2.92 g L−1 h−1 is obtained. The increase in the
volumetric productivity was due to the higher cell content
obtained by changing the medium conditions. However, the
volumetric productivity of 2.92 g L−1 h−1 is still lower when
compared to other literature. In shake flask fermentation, oxygen
utilization is not the main issue. However, oxygen transfer limitations
should be considered when the fermentation system changes from a
shake flask to a fermenter. Table 5 shows a comparison of the
experimental results for xylonic acid production by other authors. Dai
et al. (2020) reported an attempt to use powdered activated carbon
treatment to reduce the viscosity of concentrated pre-hydrolysis
products and other non-sugar compounds, and 143.6 g L−1 XA
and Qp of 4.48 g L−1 h−1 were achieved at 300 rpm. Reducing the
viscosity of the medium can change the physicochemical properties
and improve the oxygen transfer coefficient, but the final Px of the
biotransformation process was only 1.12 g gx

−1 h−1.The result
indicating that this mass transfer conditions was not sufficient to
maximize the catalytic capacity of the strain. Zhang et al. (2017)
reported the production of XA using xylose from cellulosic ethanol
distillation distillate with a Qp of 5.42 g L−1 h−1 at 500 rpm and
2.5 Lmin−1. This study provided a practical process option for the
production of XA from lignocellulosic feedstock, but the Px was only
2.18 g gx

−1 h−1. The agitation rate at 500 rpm and aeration rate at
2.5 Lmin−1 still does not take advantage of the maximum catalytic
capacity of this strain when compared to other reports in the

literature. Zhou et al. (2017) reported the improvement of oxygen
transfer by increasing the fermenter pressure and introducing pure
oxygen, and obtain a total Qp of 32.5 g L−1 h−1 and a PX of
5.26 g gx

−1 h−1 at a biomass concentration of 6.08 g L−1, which is
the maximum volumetric yield and specific productivity achieved so
far. The elevated pressure changes the solubility of oxygen in the
mediumand the supply of pure oxygen increases the dissolved oxygen
concentration, resulting in a significant improvement in oxygen
delivery. The high level of oxygen supply makes it feasible to
provide the large amounts of oxygen required for high biomass
concentration, thus achieving high productivity. However, the costs
associated with the supply of pure oxygen and the potential
operational difficulties under elevated pressure conditions cannot
be ignored. Moreover, Zhou et al. (2019) reported the use of
PVA-alginate immobilized G. oxydans NL71 as a biocatalyst for
whole-cell catalysis of xylose. Although the immobilized cells could
improve the catalytic performance, with a volumetric yield of
7.10 g L−1 h−1 at a biomass concentration up to 10 g L−1, the PX
was only 0.71 g gx

−1 h−1, which severely wasted the catalytic
performance of G. oxydans NL71. The reason may be the oxygen
transfer limitation imposed by immobilized cells, which limits the
level of oxygen uptake.

To solve the problem of low productivity caused by the
mismatch between oxygen transfer and oxygen uptake, the
fermentation conditions (agitation, aeration, biomass
concentration) were optimized by Box-Behnken response
surfaces. A final PX of 6.64 ± 0.20 g gx−1 h−1 is achieved, which
is significantly higher than that was reported in the literature. The
above results indicate that the developed model can be used to
improve the production efficiency of xylonic acid.

CONCLUSION

The efficient bioconversion of xylonic acid using G. oxydans
NL71 as a biocatalyst has been investigated using response surface
methodology. Also, the maximum PX for xylonic acid production

TABLE 5 | Comparative literature report on the production of XA under various process conditions.

References Operating conditions Strain CX (g L−1) Xylose (g L−1) Qp (g L−1 h−1) PX (g gx−1 h−1)

Present study Agitation-728 rpm, aeration-7 L min−1 G. oxydans NL71 1.11 100 7.37 6.64
Zhang et al. (2017) Agitation-500 rpm, aeration-2.5 L min−1 G. oxydans 2.50 63 5.42 2.17

DSM 2003
Zhou et al. (2015) Agitation-500 rpm, aeration-3 L min−1 G. oxydans NL71 2 450 3.67 2.35
Zhou et al. (2017) Agitation-500 rpm, aeration-3 L min−1 G. oxydans NL71 6 300 32.5 5.26
Dai et al. (2020) Agitation-300 rpm, aeration not mentioned G. oxydans NL71 4 141 4.48 1.12
Zhou et al. (2019) Agitation-300 rpm, aeration- L min−1 G. oxydans NL71 10 200 7.10 0.71
Zhang et al. (2016b) Agitation-500 rpm, aeration-2.5 L min−1 G. oxydans DSM 2003 1.5 40 1.43 -
Hou et al. (2018) Agitation-500 rpm, aeration-1 vvm G. oxydans 5% 54 0.82 -

DSM 2003
Hou et al. (2019) Agitation-500 rpm, aeration-1 vvm G. oxydans 5% 60 0.96 -

DSM 2003
Yim et al. (2017) Shaking at 200 rpm Corynebacterium glutamicum 2% 20 1.02 -
Liu et al. (2012) Agitation-650 rpm, aeration-0.5 vvm E. coli 3.2 40 1.09 0.34
Toivari et al. (2010a) Agitation-500 rpm, aeration-01 vvm S. cerevisiae Xyd1 4.6 20 0.03 0.0065
Toivari et al. (2010b) Agitation-500 rpm, aeration-01 vvm S. cerevisiae

B67002 xylB
7 49 0.44 0.06
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was successfully obtained by multivariate optimization such as
agitation, aeration and biomass concentration. A maximum
specific productivity of 6.64 ± 0.20 g gx

−1 h−1 for xylonic acid
was obtained under optimized conditions (728 rpm, 7 L min−1,
1.11 g L−1). The optimized variables not only proved the validity
of the models, but also effectively improved the production
efficiency of G. oxydans NL71 in the whole-cell catalytic xylose
process. Therefore, this study presents the potential application in
improving the efficiency of xylonic acid production.
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