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Symptomatic lumbar spinal stenosis is a leading cause of pain and mobility limitation in
older adults. It is clinically believed that patients with lumbar spinal stenosis adopt a flexed
trunk posture or bend forward and alter their gait pattern to improve tolerance for walking.
However, a biomechanical assessment of spine posture and motion during walking is
broadly lacking in these patients. The purpose of this study was to evaluate lumbar spine
and pelvic sagittal angles and lumbar spine compressive loads in standing andwalking and
to determine the effect of pain and neurogenic claudication symptoms in patients with
symptomatic lumbar spinal stenosis. Seven participants with symptomatic lumbar spinal
stenosis, aged 44–82, underwent a 3D opto-electronic motion analysis during standing
and walking trials in asymptomatic and symptomatic states. Passive reflective marker
clusters (four markers each) were attached to participants at T1, L1, and S2 levels of the
spine, with additional reflective markers at other spinal levels, as well as the head, pelvis,
and extremities. Whole-body motion data was collected during standing and walking trials
in asymptomatic and symptomatic states. The results showed that the spine was slightly
flexed during walking, but this was not affected by symptoms. Pelvic tilt was not different
when symptoms were present, but suggests a possible effect of more forward tilt in both
standing (p � 0.052) and walking (p � 0.075). Lumbar spine loading during symptomatic
walking was increased by an average of 7% over asymptomatic walking (p � 0.001). Our
results did not show increased spine flexion (adopting a trunk-flexed posture) and only
indicate a trend for a small forward shift of the pelvis during both symptomatic walking and
standing. This suggests that provocation of symptoms in these patients does not markedly
affect their normal gait kinematics. The finding of increased spine loading with provocation
of symptoms supports our hypothesis that spine loading plays a role in limiting walking
function in patients with lumbar spinal stenosis, but additional work is needed to
understand the biomechanical cause of this increase.
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INTRODUCTION

Lumbar spinal stenosis (LSS) is a common degenerative spinal
condition with the prevalence of 19%–47% in adults over age 60,
depending on the criteria used. Lumbar spinal stenosis is
symptomatic in 10%–14% of the adult population, and its
prevalence and associated health and economic consequences
are expected to increase with the aging of the population (Katz
and Harris, 2008; Kalichman et al., 2009; Ishimoto et al., 2012).
The most common symptom attributed to LSS is neurogenic
claudication characterized by pain and discomfort radiating from
the spine to the legs along with sensory loss, fatigue, weakness,
and balance problems (Katz and Harris, 2008; Suri et al., 2010).
Limited tolerance for standing and walking is characteristic of
symptomatic LSS and is the leading cause of disability and
restricted mobility, and it is also the most frequent indication
for spinal surgery, in patients over 65 years old (Deyo et al., 2010;
Hijikata et al., 2020). LSS symptoms are often initiated or
provoked by walking or prolonged standing, particularly when
the lumbar spine is in extended (lordotic or upright) postures,
and gradually aggravated to the point that the patient stops
walking. Trunk flexion or bending forward can partially
relieve the symptoms by reducing the magnitude of lumbar
lordosis, increasing spinal canal diameter, and decompressing
the nerves (Katz and Harris, 2008). Therefore, it is clinically
believed that patients with LSS adopt a flexed (hunched) trunk
posture or bend forward and alter their gait pattern to improve
tolerance for walking (Katz and Harris, 2008). While these
clinical observations are the basis for some of the therapeutic
exercises and clinical recommendations to increase walking
capacity in patients with LSS, they have not yet been
scientifically tested and quantified.

A biomechanical assessment of spine posture and motion
during walking is broadly lacking in patients with LSS, and
the available results are not consistent (Toosizadeh et al., 2015;
Wang et al., 2021). To the authors’ knowledge and a recently
published systematic review (Wang et al., 2021), only three
studies investigated spine kinematics (postural angles) in
patients with LSS during walking, and two of them reported
kinetic variables including hip and knee flexion moments and
paravertebral muscle activities (Kuwahara et al., 2016; Goto et al.,
2017; Igawa et al., 2018). The study of Goto et al. (2017) is the only
one that measured the spine flexion angle of five men and one
woman with LSS during the beginning of treadmill walking and
when leg symptoms appeared. Thoracic and pelvic angles

(reflecting the absolute movement in space) were increased
after walking, but the spine angle reflecting the relative
movement between the thorax and pelvis did not significantly
change when symptoms appeared.

The purpose of this study was to evaluate trunk posture,
particularly lumbar spine and pelvis angles, and lumbar spine
compressive loads in standing and walking and to determine the
effect of pain and neurogenic claudication symptoms, in patients
with symptomatic lumbar spinal stenosis. Optoelectronic motion
analysis along with detailed musculoskeletal modeling have been
recently implemented in healthy and patient populations to
measure spine posture and motion and estimate spine loading
during walking and activities of daily living (Schmid et al., 2016;
Mousavi et al., 2018; Burkhart et al., 2020). Here, we utilize this
methodology to characterize lumbar spine posture, pelvic tilt, and
spine loading in patients with LSS during standing and walking
and to determine whether these parameters change following
provocation of neurogenic claudication symptoms.

We hypothesized that patients would display an increased
trunk flexion posture and spine loading during walking and in the
presence of claudication symptoms.

METHODS

Subjects
Seven participants aged 44–82, with symptomatic LSS confirmed
by imaging and clinical examination, who were scheduled for
spine decompression surgery (laminectomy with or without
fusion) for lumbar spinal stenosis were recruited.
Characteristics of the participants (four women and three
men) are presented in Table 1. These were the mean ± SD of
age: 64.4 ± 13.8 years, height: 164 ± 9.5 cm, body mass:
79 ± 29.8 kg, and BMI: 29.2 ± 3.8 kg/m2. Participants were
excluded if they had conditions (unrelated to LSS) that altered
walking or spine function, such as history of traumatic spinal
injury or surgery, vascular insufficiency, Parkinson’s disease,
stroke, or cognitive impairment. The study was approved by
the Institutional Review Board of Beth Israel Deaconess Medical
Center, and all patients provided written informed consent prior
to participation.

Experimental Procedure
All patients underwent a 3D opto-electronic motion analysis
during standing and walking trials between 2 and 10 days

TABLE 1 | Characteristics of the participants.

Participants Age Sex Height (cm) Weight (kg) BMI (kg/m2) Surgery level Pain at resta Pain after walkinga Walking capacity time (min)

1 50 F 166.3 73.3 26.5 L3–S1 3 6 30
2 82 F 158.9 79.9 31.7 L2–L5 8 10 2.4
3 73 M 170.6 100.5 34.5 L3–L5 3 6 15
4 44 M 172.7 72.5 24.3 L5–S1 2 4 17
5 66 F 149.8 71.1 31.7 L3–L5 5 7 3.8
6 75 F 155.8 62 25.5 L4–L5 1 2 1.7
7 61 M 175.2 93.4 30.4 L5–S1 3 8 1.7

aBased on the Brief Pain Inventory (BPI) at rest and after walking capacity test. Zero (0) denotes no pain and 10 denotes the worst pain.
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before surgery. Passive reflective marker clusters (four markers
each) were attached to participants at T1, L1, and S2 levels of the
spine, with additional reflective markers at other thoracic and
lumbar spinal levels, as well as the head, manubrium of the
sternum, posterior superior iliac spines, shoulders, upper and
lower arms and legs, and feet. The marker position was recorded
by a motion analysis system (Vicon Motion Systems,
Centennial, CO).

Tasks
Whole-body motion data was collected in asymptomatic and
symptomatic states. Asymptomatic state refers to the state or
time that participants did not experience any neurogenic
claudication symptoms. Almost all of the participants
experienced a range of back and/or leg pain during the
relaxed sitting position, but they were able to distinguish this
pain from the neurogenic claudication symptoms that are
usually provoked during walking and forced them to stop or
limit their walking. To produce the symptomatic state,
participants performed a standard walking capacity test,
walking over ground or on a motorized treadmill at a self-
selected pace until reporting the onset of neurogenic
claudication symptoms, up to a maximum of 30 min
(Rainville et al., 2012). Time to onset of symptoms and
distance walked were recorded. Participants reported their

pain severity both before and after provocation based on the
10 Brief Pain Inventory. The following tasks were conducted in a
consecutive order (Table 2): 1) static upright standing posture
(asymptomatic), 2) walking at a self-selected pace without
neurogenic claudication symptoms present (asymptomatic)
(three trials), 3) walking after onset of neurogenic claudication
symptoms (symptomatic) (three trials), and 4) static upright
standing posture (symptomatic).

Data Processing and Musculoskeletal
Modeling
A whole-body musculoskeletal model was created for each
participant, incorporated with our established model of the
thoracolumbar spine, and adjusted according to patient age,
sex, height, weight, motion analysis measurements, and
standing spine radiographs (Bruno et al., 2015; Bruno et al.,
2017; Burkhart et al., 2020) (Figure 1). Base model was first
adjusted according to anthropometrics and marker data in a
neutral posture using the OpenSim scale tool (Delp et al., 2007).
Lumbar spine curvature was assessed from the subject’s pre-
treatment standing radiograph (available from the online
medical records); thoracic curvature (Cobb angle) was
estimated based on our recently proposed regression
equation using the participant’s thoracic angle calculated
from spine markers, age, and BMI, and intervertebral angles
in the model were adjusted accordingly producing a subject-
specific model (Hashemirad et al., 2013; Grindle et al., 2020).
Measured marker data for standing and walking trials were
applied to the subject-specific model to estimate movements of
the spine and other body joints. Similar to prior studies, we
applied kinematic constraints to limit spinal degrees of freedom

TABLE 2 | Testing procedure and outcome measurements.

Asymptomatic state
Walking capacity test
to provoke symptoms

Symptomatic state
Trunk posture Trunk posture
Spine and hip motion Spine and hip motion
Spine loading Spine loading

FIGURE 1 | Basic workflow for creating subject-specific musculoskeletal model to determine spine motion and loading. Walking trials were measured, and
outcomes of body motion and loading were evaluated for a single gait cycle in each trial. Spine loading was evaluated during standing and walking trials.
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when evaluating spinal motion (Actis et al., 2018; Ignasiak et al.,
2018; Beaucage-Gauvreau et al., 2019; Alemi et al., 2021). We
allowed six spinal degrees of freedom in our models, two each in
flexion-extension, lateral bending, and axial rotation, which
produces realistic, repeatable spine motions from motion
analysis data with relatively low marker error (Alemi et al.,
2021). With this, the flexion-extension motion of the spine has
two independent coordinates applied to sections T1–T9 and
T9–S1, respectively, and the reported spine flexion outcome in
this study is the flexion of the T9–S1 segment of the spine
(Alemi et al., 2021). An inverse kinematics analysis was
performed to evaluate body positions during standing and
walking, including lumbar flexion/extension angles and pelvic
anterior/posterior tilt. Kinematics were applied in a static
optimization analysis to solve for muscle and joint loads, and
thereby lumbar spine compressive loading, during standing and
walking trials. The magnitude of peak compressive load within
each subject was evaluated as the average of the peak load at
all lumbar vertebral levels. The outcomes of pelvic tilt,
spine flexion, pelvic tilt plus spine flexion, and lumbar
compressive load were then averaged across one gait cycle.
Postural outcomes were referenced to the asymptomatic
neutral standing trial. Secondary outcomes of peak angle and
ROM of the hips, pelvis, and spine during walking were also
evaluated.

Statistical Analysis
Mixed-effects regression analysis was used to examine the effects
of walking and symptoms on the outcome measures, with
participant as a random effect. Lumbar load was analyzed
similarly for the effects of walking and symptoms.

RESULTS

Participants walked for an average of 10.0 min (range
1.7–30.0 min) to provoke symptoms and reported an average
increase in pain by 2.6 points (range 1–5), from 3.57 to 6.14
(p < 0.05) (Table 1). Mean (SD) of the lumbar spine flexion,
forward pelvic tilt (pelvic flexion), and spine flexion + pelvic tilt
angles were 3.4° (3.4°), 0.7° (4.5°), and 4.1° (2.6°), respectively, in
asymptomatic walking and 3.4° (2.6°), 1.2° (4.3°), and 4.6° (3.2°),
respectively, in symptomatic walking (Table 3). Example
kinematics data from a single participant during a single gait
cycle in three independent trials is presented in Figure 2. The
spine was slightly flexed during walking, but this was not affected

by symptoms. Pelvic tilt was not different when symptoms were
present, but suggests a possible effect of more forward tilt in both
standing (average change 1.1°, p � 0.052) and walking (average
change 0.5°, p � 0.075). Provocation of symptoms did not affect
the peak angle or ROM of the hips, pelvis, or spine during walking
(Table 3). Lumbar loading averaged 564 (217) N in
asymptomatic standing and was increased by an average of
26% during asymptomatic walking. Loading in symptomatic
standing was not larger than asymptomatic standing, while
loading during symptomatic walking (769 ± 269) was increased
by an average of 7% over asymptomatic walking (704 ± 221)
(p � 0.001). Figure 3 shows peak compressive loading of each
lumbar level in standing and walking.

DISCUSSION

Our results did not show increased spine flexion (adopting a
trunk-flexed posture) and only indicate a trend for a small
forward shift of the pelvis during both symptomatic walking
and standing. This suggests that provocation of symptoms in
patients with symptomatic LSS does not markedly affect their
normal gait kinematics and does not support our overall
hypothesis. Our results are in line with Goto et al. (2017) who
reported increased thoracic and pelvic sagittal plane angles, but
no change in spine flexion angle, immediately after the symptoms
appeared. While bending forward during clinical examination
can relieve pain and symptoms in patients with LSS, our results
are not in line with the clinical observations that patients with LSS
bend forward or adopt a stooped posture during walking to
improve tolerance for walking, by relieving pressure on the
nerves (Katz and Harris, 2008). We also noticed that forward
pelvic tilt (pelvic flexion) when symptoms are present was
associated with age in standing position (Figure 4), but spine
flexion and loading was not. This suggests that the effects of LSS
symptoms may not be uniform, but dependent on patient
characteristics. A recent motion analysis study on patients
with LSS showed that the patients adopt two different
strategies during walking; some of them used a trunk-flexed
posture to increase step length and hip extension angle, while
others walked with upright trunk posture to decrease step length
and hip extension angle (Igawa et al., 2018). Both of these patterns
were attributed to patients’ efforts to decrease the activation of
psoas major muscles and therefore decrease the degree of lumbar
lordosis during walking, but the study did not compare
kinematics with and without symptoms (Igawa et al., 2018). A

TABLE 3 | Mean (SD) of average postural measurements (forward pelvic tilt, spinal flexion, and pelvic tilt + spinal flexion) relative to asymptomatic neutral standing, in
asymptomatic walking, symptomatic walking, and symptomatic neutral standing.

Asymptomatic walking Symptomatic walking Symptomatic neutral standing

Pelvic tilt (°) 0.7 (4.5) 1.2 (4.3)c 1.1 (1.2)b

Spine flexion (°) 3.4 (3.4)a 3.4 (2.6)a −1.4 (2.9)
Pelvic tilt + spine flexion (°) 4.1 (2.6)a 4.6 (3.2)a −0.3 (2.6)

aDifferent than 0 (p < 0.05).
bDifferent than 0 (p � 0.052).
cDifferent than asymptomatic walking (p � 0.075).
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recent standing radiographic study also showed that patients
with LSS with mild to moderate spinopelvic deformity [defined
as 10° or more difference between pelvic incidence (PI) and
lumbar lordosis (LL) angles, also called PI-LL mismatch]
chose a trunk-flexed strategy, but patients with moderate to
severe deformity adopted a more upright posture (Buckland
et al., 2016). Finally, while adopting a trunk-flexed posture
strategy might be temporarily effective in reducing symptoms
in some patients, walking with this position is posturally unstable
and energy inefficient, as it demands compensatory motions
and higher muscular activity to maintain dynamic balance
(Saha et al., 2007; Saha et al., 2008). This may soon lead to

general or local muscular fatigue, forcing patients to stop or limit
their walking.

Our results suggest an increase in lumbar spinal compressive
loading when the neurogenic claudication symptoms were
provoked. Loads on the spine cannot be measured directly,
although musculoskeletal modeling can be used to estimate
spinal loading given appropriate measurements of body
motion. This is the first study to estimate the magnitude of
lumbar spine loading during walking in asymptomatic and
symptomatic states in patients with LSS. The increased lumbar
compressive loading may be partially explained by the observed
changes in the overall trunk kinematics in symptomatic state,
though these changes were not statistically significant. However,
other possible changes in spine and lower extremity kinematics
and kinetics could also lead to increased loading, such as
increased non-sagittal motions, increased dynamic variability
of trunk motion (or sway), or increased ground reaction
forces. Future analyses are needed to explore these possibilities
to identify the mechanisms by which spine loading is increased in
these patients.

While compelling research supports the link between higher
spine loading and increased risk of spinal tissue injury and back
pain (van Dieën et al., 2009), it is also plausible that increased
spine loading may aggravate symptoms and decrease walking
capacity in patients with LSS by reducing the size of the spinal
canal and dural sac cross-section and diameter or increasing
epidural pressure. This assumption can be supported by imaging
studies that reported a reduction of the dural sac cross-sectional
area in weight-bearing standing position compared to supine
position, which was associated with increased severity of
symptoms and decreased walking capacity in patients with LSS
(Kanno et al., 2012; Lau et al., 2017). In addition, loading and
unloading the spine through a weight vest or vertical traction

FIGURE 2 | Example data from a participant with symptomatic lumbar spinal stenosis showing sagittal plane pelvic, spinal, and hip kinematics during a single gait
cycle in three independent trials, as evaluated by optical motion capture and inverse kinematics analysis.

FIGURE 3 | Mean (SD) of peak lumbar loads for asymptomatic and
symptomatic standing and walking.
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harness in LSS patients while walking on a treadmill resulted in
shorter and longer time for appearance of symptoms and total
walking time, respectively (Oğuz et al., 2007). Our results show
that spine loading increases by an average of 48 N with
symptoms, while Oğuz et al. (2007) reported that wearing a
weighted vest of 10 kg, or approximately 98 N, reduced total
walking time in LSS patients by about 25%. Thus, the increased
loading seen here with symptoms is of a magnitude that is likely
to significantly impact walking performance in this population.

Physical therapy plays a central role in treatment of LSS
symptoms with generally low effectiveness, though the
evidence is limited and not consistent (Ammendolia et al.,
2013; Schneider et al., 2019). In addition, the current
therapeutic exercises do not specifically target underlying
biomechanical and neuromuscular factors behind symptom
provocation or mobility limitation. Decompression surgery
with or without fusion can directly address the underlying
pathology of nerve compression, and once the pressure on the
nerves is released, tolerance for walking reliably improves (Katz
and Harris, 2008; Weinstein et al., 2010; Fritsch et al., 2017).
However, approximately one third of the patients are not satisfied
with the postoperative outcomes, mainly in terms of residual pain
and poor function (Weinstein et al., 2010; Rainville et al., 2012;
Fritsch et al., 2017). Therefore, future biomechanical studies are
required to assess how gait and posture change with surgical or
rehabilitative treatments and whether these changes can
contribute to the post-treatment improvement in patient
outcomes and walking capacity (Toosizadeh et al., 2015; Goto
et al., 2017; Wang et al., 2021).

We acknowledge the small sample size as a limitation of this
study that may limit generalizability of the findings. However, the
repeated-measure nature of the analyses reduces the impact of the
small sample size, and the evaluation of walking biomechanics
before and after provocation of symptoms is a novel aspect and
strength of this study. While evaluation of spine loading is
another strength of this study, the use of musculoskeletal
models has a number of associated limitations. Spine loading
estimates are not very sensitive to cost function in a standard
optimization approach (Arjmand and Shirazi-Adl, 2006), as used
here, but a limitation of standard optimization is that it does not

accurately predict antagonistic muscle activations, which occur in
a variety of trunk loading conditions (Granata and Marras, 1995;
Granata et al., 2005) and could play an important role in patients
with LSS. Electromyography-assisted or double-linear
optimization approaches could be used in future studies to
address this limitation and improve predictions of spine
loading during walking (Li and Chow, 2020). Overall,
additional studies are needed to alleviate these shortcomings
and to determine the effects of rehabilitation and surgical
treatments on spine loading and postural outcomes.

CONCLUSION

In patients with LSS, spinal flexion was not increased after
provocation of symptoms, which does not support the
hypothesis and commonly held assumption that patients adopt
flexed spine postures to increase spinal canal diameter and
decompress the nerves, thereby relieving or delaying
symptoms. A biomechanical analysis showed that spine
loading increased in the symptomatic state, supporting the
idea that spine loading, symptoms, and walking limitations are
all interconnected. Additional studies of walking and spine
biomechanics in this population are needed to better
understand this issue (Suda et al., 2002; Comer et al., 2010).
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