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Determining chromosomal 
arms 1p/19q co‑deletion 
status in low graded glioma 
by cross correlation‑periodogram 
pattern analysis
Debanjali Bhattacharya1, Neelam Sinha1* & Jitender Saini2

Prediction of mutational status of different graded glioma is extremely crucial for its diagnosis and 
treatment planning. Currently FISH and the surgical biopsy techniques are the ‘gold standard’ in the 
field of diagnostics; the analyses of which helps to decide appropriate treatment regime. In this study 
we proposed a novel approach to analyze structural MRI image signature pattern for predicting 1p/19q 
co-deletion status non-invasively. A total of 159 patients with grade-II and grade-III glioma were 
included in the analysis. These patients earlier underwent biopsy; the report of which confirmed 57 
cases with no 1p/19q co-deletion and 102 cases with 1p/19q co-deletion. Tumor tissue heterogeneity 
was investigated by variance of cross correlation (VoCC). Significant differences in the pattern of VoCC 
between two classes was quantified using Lomb-Scargle (LS) periodogram. Energy and the cut-off 
frequency of LS power spectral density were derived and utilized as the features for classification. 
RUSBoost classifier was used that yield highest classification accuracy of 84% for G-II and 87% for G-III 
glioma respectively in classifying 1p/19q co-deleted and 1p/19q non-deleted glioma. In clinical practice 
the proposed technique can be utilized as a non-invasive pre-confirmatory test of glioma mutation, 
before wet-lab validation.

Low graded glioma (LGG) are the group of primary brain tumor that are produced from two different types of 
glial cells of brain called astrocytes and oligodendrocytes and are termed as astrocytomas and oligodendrogliomas 
respectively1. Compared to high-grade glioma (anaplastic astrocytoma, and oligodendroglioma, glioblastoma), 
LGG being less aggressive, if detected early can lead to better survival rates. However there are several factors 
that influence the glioma progression. In last few years deeper genetic analyses on large number of glioma 
samples have led to the discovery of the ’genetic risk factor’, which plays a key role in glioma prognosis1. Hence 
determining the mutational status is rapidly becoming an integral part of the routine pathological study of 
gliomas that provide both diagnostic and prognostic information. At present, the popular approaches for deter-
mining mutational status are DNA sequencing, immune-histochemical staining and FISH test2. But all of these 
techniques are invasive in nature. Thus the objective of our study is to explore a novel approach that would be 
able to predict mutational status across diverse glioma grades in a non-invasive manner. In this regard we have 
determined chromosomal arms 1p/19q co-deletion status in grade-II (G-II) and grade-III (G-III) glioma which 
is one of the most common cancer drivers in glioma and widely used as a strong prognostic biomarker in gene 
mutation study of glioma. The 1p/19q co-deletion stands for the combined loss of the short arm chromosome 1 
(i.e. 1p) and the long arm of chromosome 19 (i.e. 19q). Co-deletion of 1p/19q is observed to be associated with 
relatively improved survival rate in comparison to tumors with non-deletion, irrespective of tumor morphology 
or histologic grade. Several studies on glioma mutation have found that the 1p/19q co-deletion in LGG gives 
positive response towards treatment and is associated with progression-free survival. Hence the prediction of 
1p/19q status in LGG patients is extremely crucial for development of effective treatment strategies. Numerous 
imaging assays have been executed to determine the molecular characteristics and prognostic markers in LGG 
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using multi-modal medical images3–6. But many of these studies were not able to show satisfactory results in 
order to determine the 1p/19q co-deletion status in individual patients.

In the current study we have performed non-invasive determination of 1p/19q mutational status by assessing 
the volumetric tumor heterogeneity in mutated (1p/19q co-deleted) and wildtype (1p/19q non-deleted) gliomas 
from multi-contrast structural MRI (S-MRI) images. One of our previous works on glioma mutation7 showed 
that the inter-slice texture pattern of 86% of grade-III (G-III) gliomas and 90% of grade-II (G-II) gliomas that 
occurred due to mutation are homogeneous in nature; while it was found to be random and heterogeneous 
for most of the wildtype cases (70% of total cases). Thus the aim of the present study is to model the textural 
characteristics of glioma tissue using S-MRI images that would be able to differentiate between mutated and 
wildtype gliomas. To achieve this, we have proposed a new “Cross correlation-Periodogram Model” to determine 
the 1p/19q co-deletion status non-invasively. In clinical practice the proposed technique can be potentially used 
as a non-invasive pre-confirmatory test of glioma mutation which could serve as an alternative to surgical biopsy 
and histopathological analysis.

Results
Dataset description.  Structural MRI images of glioma are acquired from “The Cancer Imaging Archive 
(TCIA)” online database8, available for public access. It contains 2 different contrasts, which are 1mm thick 
sliced T1 post contrast (T1C) and 3mm thick sliced T2-weighted images of G-II and G-III gliomas. A total of 
one hundred fifty nine (n=159, diagnosed between 01 October 2002 to 01 August 2011) LGG patients, diagnosed 
with pre-operative G-II and G-III glioma and having biopsy proven 1p/19q co-deletion and non-deletion were 
used in this study. The dataset consists of MRI brain images of 57 non-deleted (n=38 for G-II; n=19 for G-III) 
and 102 co-deleted (n=65 for G-II; n=36 for G-III) glioma subjects. The dataset also contains the ground truth 
of segmented glioma of 3 consecutive slices in each subject including the one with the biggest tumor diameter 
and ones just below and above it. Hence a total of 477 slices (3 slices per LGG subject) were incorporated in this 
study. All images were acquired at 1.5T or 3T on either Siemens Medical System (Malvern, PA, USA) or General 
Electric Medical System (Waukesha, WI, USA) scanner. Representative T2-W and T1C-W glioma MRI images 
having 1p/19q co-deletion and 1p/19q non-deletion are shown in Fig. 1. Glioma segmentation was performed 
using the ground truth provided by TCIA. The segmented glioma from whole MRI is shown in Fig. 2 along 

Figure 1.   Representative MRI images for four subjects are shown. Column-1 to column-3 are post contrast 
T1-W MRI; column-4 to column-6 are T2-W MRI. Row-1 and row-2 represent 1p/19q co-deleted G-II and 
G-III glioma respectively. Row-3 and row-4 represent 1p/19q non-deleted G-II and G-III glioma respectively.

Figure 2.   Glioma extraction from MRI using the ground truth. Here the abbreviations GT and SG represent 
the ground truth and segmented glioma respectively.
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with the ground truth image. The across-slice behaviour of 1p/19q co-deleted and 1p/19q non-deleted glioma is 
discussed in the subsequent subsections.

The entire code was executed in MATLAB, version R2018a, and run on a machine with Intel-R Core I3 4005U 
CPU 1.70 GHz processor with 4.0 GB RAM.

Consistency in variance of cross correlation pattern across slices for 1p/19q co‑deleted glioma 
cases.  The change in glioma heterogeneity across MRI slices are captured by computing variance of cross 
correlation (VoCC) of two consecutive slices. The VoCC of 3 successive glioma slices at different lags were plot-
ted for the two classes having (i) 1p/19q co-deletion and (ii) 1p/19q non-deletion and this is shown in Fig. 3. 
As seen from Fig. 3 in case of 1p/19q co-deleted subjects the derived VoCC metric showed consistency in the 
VoCC pattern between the two consecutive slices, while for the wild type cases a random pattern in VoCC was 
observed across slices. High variation in VoCC pattern for wildtype glioma cases indicate the change in across-
slice heterogeneity, whereas the similarity with relatively low variation in VoCC for mutated glioma cases indi-
cates homogeneity across glioma slices.

Lomb‑Scargle power spectral density reveals static periodicity across volumetric glioma slices 
having 1p/19q co‑deletion.  The noted difference in VoCC (Fig. 3) was analyzed using the periodogram 
spectral analysis where the energy and the cut-off frequency of Lomb-Scargle power spectral density (LSPSD) 
estimate were used as features for classification. The LSPSD estimate of VoCC for one glioma subject with 1p/19q 
co-deletion and non-deletion is shown in Fig. 4. For 1p/19q co-deleted glioma cases the observed similarity in 
LSPSD across consecutive slices reveals the presence of static periodicity. However for 1p/19q non-deleted cases 
we did not find any static periodic pattern across slices. Thus, unlike 1p/19q co-deleted glioma subjects in case 
of 1p/19q non-deleted subjects the inner product of two LSPSD estimate could not show any dominant periodic 
component in the glioma volume. This characteristic, seen in wildtype cases, in turn lowers the cut-off frequency 
values and maximize the difference in energy across consecutive MR slices. It has to be noted that the first peak 
of periodogram that was observed in both classes, appeared due to the in general low frequency pattern of MRI. 
Hence the first peak was excluded from the analysis.

RUSBoost classification: 1p/19q co‑deleted Vs. 1p/19q non‑deleted glioma.  We trained the 
dataset with different classification algorithms including classical machine learning models- for example, sup-
port vector machine (SVM), Naive Bayes, logistic regression, as well as ensemble models like LogitBoost and 
RUSBoost (Fig. 5). In our study the data imbalance problem was handled using RUSBoost classifier9 where the 
average training accuracy of 99% was obtained. The training accuracy obtained using traditional SVM, Naive 
Bayes, Logistic regression, RUSBoost and Logit-Boost is tabulated in Table 1. K-fold cross validation (k=10) was 
performed that yield 87% accuracy in classifying 1p/19q co-deleted and non-deleted G-III glioma. However the 
accuracy was reduced to 84% for G-II glioma cases. The performance measures like precision, recall, F-score and 
accuracy, obtained from RUSBoost classifier were reported in Table 2. It was found that the current approach 
improves the classification performance when it was compared with the result of our prior publication that uti-

Figure 3.   Changes in variance of cross correlation (VoCC) curves across consecutive MRI slices (VoCC 
between slice-1 and slice-2 was shown by thick ’Blue’ curve, whereas VoCC between slice-2 and slice-3 was 
shown by dotted ’Red’ curve) of LGG are plotted with 1p/19q co-deletion (Top row) and 1p/19q non-deletion 
(Bottom row). Column 1 and column 2 plots the same for G-II glioma with T1-W and T2-W MRI respectively 
and column 3 and column 4 plots the same for G-III glioma with T1-W and T2-W MRI respectively. As seen 
from the graph, the pattern of VoCC changes drastically across slices for wildtype cases whereas the across-slice 
VoCC pattern is similar for glioma that occurred due to mutation.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23866  | https://doi.org/10.1038/s41598-021-03078-1

www.nature.com/scientificreports/

Figure 4.   LSPSD estimation of VoCC for one representative glioma subject having 1p/19q co-deletion 
(top row) and one representative glioma subject having 1p/19q non-deletion (bottom row) are showed. The 
’Green’ curve shows the LS periodogram of VoCC between slice-1 and slice-2. The ’Red’ curve shows the LS 
periodogram of VoCC between slice-2 and slice-3. The inner product of two periodogram (shown in ’Blue’) 
reveals the difference in volumetric periodicity of two classes.

Figure 5.   Illustration of receiver operating characteristics (ROC) curve for different classifiers. The best training 
accuracy was obtained using RUSBoost with AUC of 0.98 (G-II) and 1 (G-III).

Table 1.   Training accuracy using different classifiers.

Classifiers

Training accuracy

G-II G-III

Logistic regression 58% 66.67%

SVM 53% 66.52%

Naive Bayes 60% 62.87%

Logit boost 96.38% 91.52%

RUSboost 100% 98.5%
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lizes frequency space texture measures to quantify texture pattern in 1p/19q co-deleted and non-deleted glioma 
subjects7.

Discussions
In this study, we proposed a novel methodology to determine the 1p/19q co-deletion status from T1C and T2-W 
S-MRI using cross correlation-periodogram model. Since it is evident that glioma, results due to mutation has 
better clinical outcome than those that occurred not due to mutation10, detecting the mutational status in glioma 
is extremely essential for the treatment prognosis. Although FISH test is the current gold standard for detecting 
chromosomal abnormalities, it suffers from some of its crucial limitations that prevent its application from regular 
use in diagnostics11,12. Alternatively, there are several imaging studies that have shown their potential to predict 
the same from conventional MRI and other advanced imaging modalities such as DWI, PWI, PET etc. For exam-
ple in the paper of Iwadate et al13 the authors concluded that 11C–methionine PET might aid in discriminating 
tumors with and without 1p/19q co-deletion preoperatively. Brown et al.14 has shown textural measurements 
that can be helpful in discriminating tumors with and without mutation. Fellah et al.5 presented multi-parametric 
MRI to identify the mutational status, however the result showed no marked differences between tumors with and 
without 1p/19q co-deletion. Jansen et al.6 also derived several biomarkers using PET images to predict 1p/19q 
mutational status. But none of these biomarkers reliably could detect the same in individual study subjects.

Contrary to the studies reported in literature3–6,12–14, in this paper we have presented a different processing 
methodology that could assess the change in volumetric tumor heterogeneity by means of cross correlation-
periodogram model in order to determine the presence of mutation non-invasively using S-MRI images. The 
consistency in VoCC pattern across slices clearly reveals the across-slice homogeneity for 1p/19q co-deleted 
glioma cases. On the other hand the randomness in VoCC pattern across slices reveals across-slice heteroge-
neity for 1p/19q non-deleted glioma cases. LSPSD estimate was computed on obtained VoCC to get suitable 
features for classification. The LSPSD estimate reveals static periodic pattern across volumetric glioma slices 
for majority of gliomas, occurred due to 1p/19q co-deletion. However it was observed that the periodic nature 
changes across slices in case of 1p/19q non-deleted glioma subjects. This is captured by extracting three differ-
ent LSPSD features which are (i) difference energy between two periodograms, (ii) total volumetric energy and 
(iii) cut-off frequency of LSPSD. To overcome the limitations of imbalanced dataset RUSBoost classification was 
performed on extracted features. As seen from the results (Table 2), our proposed method was able to classify 
T1-W 1p/19q co-deleted and non-deleted glioma with 87% (G-III) and 84% (G-II) accuracy. The misclassification 
rate was higher in classifying the test data with 1p/19q co-deletion as compared to 1p/19q non-deletion. This 
may occur due to the error in FISH test. As reported in literature, the reliability of FISH test is 95% and 87.5% 
for the prediction of 1p and 19q deletions, respectively2. The second reason of misclassification might be due to 
the skewness of the dataset. In the dataset considered here, 64.44% of the instances belong to one class (1p/19q 
co-deletion) that lead to lower specificity when using RUSboost classifier as it gives more weights to minority 
class (1p/19q non-deletion) than majority class. However while comparing our approach with state-of-the-art 
studies it is seen that the current study outperforms the result reported by Z Akkus et. al12 that used same TCIA 
database and multiscale CNN approach. The classification accuracy obtained from their study was 75.6% (T2-
W) and 63.3% (T1C) using no data augmentation. The obtained results outperformed another study reported 
in literature5 where the authors predicted the 1p/19q mutational status with 40% and 48% misclassification rates 
using multimodal MRI images and conventional MRI respectively. The result of our proposed methodology is 
comparable with the result reported by Tamim Niazi et al.15, where 82.43% classification accuracy was obtianed 
in determining 1p/19q co-deletion status. In this paper the authors used Radiomics features for the same TCIA 
LGG subjects. The result of the current study is also comparable with the result of our previously published work 
that utilized source distribution of VoCC to classify glioma sub-types16.

The availability of limited data size was one limitation of the current study. Also it was found that the het-
erogeneity increases with increase in glioma grades which might lead to some misclassifications between low-
graded wildtype and high-graded mutant subjects. Hence we suggest future additional investigations such that 
the current findings can be well-validated for a large pool of patients.

Table 2.   Performance measures using RUSboost classifier on test data using LSPSD.

Grade LGG Status Precision Recall F-score AUC​

G-III (T1-W)
1p/19q co-deleted 0.85 0.9 0.89 87%

1p/19q non-deleted 0.90 0.85 0.83

G-III (T2-W)
1p/19q co-deleted 0.85 0.9 0.89 87%

1p/19q non-deleted 0.90 0.85 0.83

G-II (T1-W)
1p/19q co-deleted 0.88 0.79 0.89 84%

1p/19q non-deleted 0.79 0.88 0.79

G-II (T2-W)
1p/19q co-deleted 0.83 0.84 0.87 84%

1p/19q non-deleted 0.84 0.83 0.78
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Conclusion
In this study, we present a new non-invasive method to estimate the 1p/19q chromosomal arm co-deletion 
status by quantifying textural characteristics using cross-correlation-periodogram model across selected MRI 
glioma slices. The proposed method provides promising results in classifying glioma with and without 1p/19q 
co-deletion. Robust classification of mutated and wildtype glioma based on the glioma texture, of course, require 
future validation, but these preliminary results point towards the promise of a future prognostic and predictive 
non-invasive MRI marker of glioma mutation for computer aided early diagnosis of brain tumor.

Proposed Methodology
In our study the detection of 1p/19q co-deletion status is determined by the analyzing S-MRI images of consid-
ered glioma subjects as discussed in Sect. 2.1 and described in the subsequent subsections.

Glioma segmentation and data normalization.  The glioma portion was extracted from MRI using the 
ground truth provided in TCIA database. Here the ground truth images was utilized as a mask to segment the 
whole glioma. Post segmentation, each glioma image was normalized by z-scores using Eq. 1 in order to balance 
the intensity.

where, µ and σ denotes the mean and standard deviation of the image X(i, j) respectively.

Detection of tumor tissue heterogeneity across slices by VoCC.  The change in tumor heterogene-
ity across slices was investigated by means of cross correlation (CC) that evaluate whether two successive slices, 
(here, glioma ROI) of MRI image volume exhibit common features, and therefore are correlated. Hence CC 
analysis is likely to reveal if the differences in molecular characteristics of glioma lead to differences in structural 
layout across slices.

Given two successive glioma slices X and Y, the 2D cross correlation function is defined as

where, −(M − 1) ≤ i ≤ (M − 1) and −(N − 1) ≤ j ≤ (N − 1)

In order to assess the change in tumor volume heterogeneity between two successive slices, we have proposed 
a new function “Variance of CC” (VoCC) that examines the change in CC for different values of lag. The VoCC 
was derived as:

where,

Since VoCC quantifies the change in uniformity of the intensity values across successive slices, this measure is 
relevant in examining the volumetric behaviour (across-slice behaviour) between mutant and wildtype glioma. 
One application of the proposed VoCC was reported in our previous publication16 where the source distribution 
of VoCC was computed in order to check if the significant differences exist between two glioma classes.

Feature extraction.  Examining the presence of 3D periodicity in 1p/19q co‑deleted and non‑deleted glio-
ma.  It was observed that the obtained VoCC for the two classes showed marked visible differences between the 
two glioma classes, with and without 1p/19q co-deletion. The essence of these visible differences were captured 
by extracting suitable features that would be useful for classification between mutant and wildtype glioma. As 
discussed before, in our prior work16 the source distribution of VoCC showed significant differences between 
two glioma sub-types. In the current study the applicability of VoCC to assess glioma heterogeneity is further 
investigated by determining its volumetric periodicity. In this papet the power spectral density (PSD) estimate 
of the VoCC corresponding the two classes was computed using Lomb-Scargle power spectral density (LSPSD) 
estimate in order to illustrate the differences in spectral signature of two classes. Lomb (1976) and Scargle 
(1982) postulated the Lomb-Scargle periodogram; an algorithm that helps in detection and characterization of 
periodicity17,18. There are few works reported in literature that utilized LS periodogram in order to find periodic 
patterns in the field of genetics and biological rhythmic process19–22.

The LS periodogram was formulated as below:

(1)z =
X(i, j)− µ

σ

(2)C(i, j) =

M−1∑

m=0

N−1∑

n=0

X(m, n)Y(m− i, n− j)

(3)σ
2
CC =

∑2M−1
i=1 (C(i, j)− C(•, j))2

2M − 2

C(•, j) =
1

2M − 1

2M−1∑

i=1

C(i, j)

(4)PLS(f ) = 0.5

∑
n σ

2
CCCos(2π f [tn − τ ])2

∑
n σ

2
CCCos

2(2π f [tn − τ ])
+ 0.5

∑
n σ

2
CCSin(2π f [tn − τ ])2

∑
n σ

2
CCSin

2(2π f [tn − τ ])
)
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where, σ 2
CC is VoCC which is a function of ’t’, given by Equation 3, τ is the time delay and is specified for each 

frequency ’f ’ to ensure time shift invariance: τ = 1
4π f tan

−1
∑

n Sin(4π tn)∑
n Cos(4π tn)

Volumetric 3D periodicity of each LGG subject was measured by taking the inner product of periodogram 
of VoCC between two successive slices. If the VoCC plots of successive slices exhibit different pattern, The inner 
product of the respective periodogram will exhibit the following nature: 

(a)	 The inner product of two corresponding spectrum will be significantly different compared to the input 
spectrum unequal no. of peaks.

(b)	 Corresponding peaks of two periodogram may not occur at similar location.
(c)	 There is large difference in corresponding peak amplitude of two spectrum.

As a result the corresponding peaks of two VoCC may not coincide at similar location. Also there will be large 
difference in corresponding peak amplitude of two periodogram. This will result a nearly flat spectrum with 
reduced oscillation.

Conversely, dominant peak will be visible in both the spectrum at same location when VoCC across slices 
exhibits similar pattern. There will be equal number of peaks and corresponding peaks of two periodogram will 
occur at similar location. The corresponding peak amplitude of two spectrum will also be nearly equal. As a 
result, the inner product of respective periodogram will also show a similar profile as the input spectrum with 
comparatively more oscillations.

The above concept of determining the change in 3D periodicity across MR slices was executed for each LGG 
subject to predict the presence of 1p/19q co-deletion. We hypothesize, the change in periodic pattern across slices 
is negligible for cases with 1p/19q co-deletion. The change in volumetric periodicity is quantified by extracting 
suitable spectral features for classification. The extracted spectral features include: 

	 (i)	 Difference energy between two periodograms,
	 (ii)	 Total volumetric energy: It is defined as the total energy of the inner product of two peridograms.
	 (iii)	 Cut-off frequency of 3D LSPSD: It is defined as the frequency at which the amplitude of LSPSD estimate 

is nearly equal to zero.

RUSBoost Classification.  The dataset considered in our study is poorly balanced with a ratio of 2:1 
(mutated:wildtype). In such cases constructing an effective classification model is a challenging task. When 
examples of a specific class greatly outnumber the examples of another class (data imbalance), the performance 
of traditional machine learning classification models drop significantly. These algorithms tend to only predict 
the majority class (negative class) data where the minority class (positive class) are treated as noise and are often 
ignored. Thus, there is a high probability of misclassification of the positive class by classifying all instances as 
negative class. Two most commonly used techniques in order to improve this class imbalance problem are data 
sampling and boosting9. The class distribution is balanced by sampling technique that either removes samples 
from the majority class (under-sampling) or add samples to the minority class (oversampling). Alternatively, 
boosting is an advance data sampling technique that can improve the performance of any weak classification 
model by iteratively building an ensemble models. In each iteration step, the weights of the sample which were 
incorrectly classified during the current iteration are modified. Such technique is very effective when dealing 
with class imbalance problem where the higher weights are given to the minority class examples which are likely 
to be misclassified in subsequent iterations. RUSBoost is one example of hybrid sampling/boosting algorithm 
that incorporates random undersampling (RUS)- a technique that removes data samples randomly from the 
majority class9.

Let ’n’ examples in dataset ’V’ are represented by tuple (xk , yk) where xk is a point in feature space ’X’, and yk 
be the class label in a set of class label ’Y’. The algorithm begins with initializing the weight of each example to 
1/n where ’n’ is the number of training examples. If the total number of iterations are denoted by ’P’ (represents 
the number of classifiers in the ensemble model), then P weak hypothesis Ht are iteratively trained (t = 1 to P) 
using some classification algorithm ’WeakLearn’ as follows: First, RUS removes majority class examples until 
both the minority and majority class examples are balanced (1:1). This will result a new training dataset V ′

t having 
a new weight distribution W ′

t . In the next step, V ′

t and W ′

t are passed to ’WeakLearn’ (base learner) in order to 
create the weak hypothesis Ht . Based on actual training dataset ’V’ and weight distribution ’ Wt ’, the pseudo-loss 
δt is calculated. After this, the distribution of weights for the next iteration Wt+1 is updated using weight update 
parameter at followed by normalization. Finally, after ’P’ iterations the study hypothesis �(x) is returned as a 
weighted vote of the each weak hypothesis.

Data availability
The dataset analysed during the current study are available in The Cancer Imaging Archive (TCIA) repository. 
The dataset can be downloaded from this link: https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​LGG-​1p19q​
Delet​ion#​bef9e​2ed4c​354a9​2bae9​ff35e​8449e​31

Received: 18 May 2021; Accepted: 26 November 2021

References
	 1.	 Kleihues, P. S. B. & Burger, P. C. The new who classification of brain tumours. Brain Pathol. 3(3), 255–268 (1993).

https://wiki.cancerimagingarchive.net/display/Public/LGG-1p19qDeletion#bef9e2ed4c354a92bae9ff35e8449e31
https://wiki.cancerimagingarchive.net/display/Public/LGG-1p19qDeletion#bef9e2ed4c354a92bae9ff35e8449e31


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23866  | https://doi.org/10.1038/s41598-021-03078-1

www.nature.com/scientificreports/

	 2.	 Scheie, D. A. P. Fluorescence in situ hybridization (fish) on touch preparations: a reliable method for detecting loss of heterozygosity 
at 1p and 19q in oligodendroglial tumors. Am. J. Surg. Pathol. 30(7), 828–837 (2006).

	 3.	 Latysheva, A. & B. P., Emblem KE. Dynamic susceptibility contrast and diffusion mr imaging identify oligodendroglioma as defined 
by the 2016 who classification for brain tumors: histogram analysis approach. Neuroradiology (2019).

	 4.	 Kebir Sied, L. L. Hybrid 11c-met pet/mri combined with machine learning in glioma diagnosis according to the revised glioma 
who classification 2016. Clin. Nucl. Med. 44(3), 214–220 (2019).

	 5.	 Fellah, S. & C, D. Multimodal mr imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial 
tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis?. Am. J. Neuroradiol. 34(7), 1326–1333 (2013).

	 6.	 Nathalie L. Jansen, N. G. & Schwartz, Christoph. Prediction of oligodendroglial histology and loh 1p/19q using dynamic fet-pet 
imaging in intracranial who grade ii and iii gliomas. Neuro. Oncology 14(12), 1473–1480 (2012).

	 7.	 Debanjali Bhattacharya, J. S., Neelam Sinha. Radial cumulative frequency distribution: A new imaging signature to predict chromo-
somal arms 1p/19q co-deletion status in low graded glioma. In: Computer Vision and Image Processing, CVIP 2020, Communications 
in Computer and Information Science (CCIS), Springer 44–55 (2021).

	 8.	 Erickson, A., Bradley. https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​public/​lgg1p​19qde​letion#​bef9e​2ed4c​354a9​2bae9​ff35e​8449e​
31 (2017).

	 9.	 Seiffert, C. & M, T. Rusboost- a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. 40, 1–5 (2010).
	10.	 Deng, Lei, L, Y., B, X. X. & Xiong, Pengju. Association between idh1/2 mutations and brain glioma grade. Oncol. Lett. 16(4), 

54055409 (2018).
	11.	 Eastmond, D. A. M. & Rupa, D. S. Advantages and limitations of using fluorescence in situ hybridization for the detection of ane-

uploidy in interphase human cells. Mutat. Res. 348(4), 153–162 (1995).
	12.	 Akkus, Z., S, J., A, J. P. & Ali, Issa. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from mr images using 

machine intelligence. J. Digit. Imaging 30, 469–476 (2017).
	13.	 Iwadate, Y., T, M., U, Y., Shinozaki, N. & S, N. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11c-methio-

nine positron emission tomography. J. Neurol. Neurosurg. Psychiatry 87(9), 1016–1021 (2016).
	14.	 Brown, R. & M, Z. The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin. 

Cancer Res. 14(8), 2357–2362 (2008).
	15.	 Saima Rathore, N. T. Imaging signature of 1p/19q co-deletion status derived via machine learning in lower grade glioma. Radiomics 

and Radiogenomics in Neuro-oncology: First International Workshop, RNO-AI 2019, Held in Conjunction with MICCAI-2019, LNCS 
11991 61–69 (2020).

	16.	 Debanjali Bhattacharya, J. S., Neelam Sinha. Detection of chromosomal arms 1p/19q codeletion in low graded glioma using prob-
ability distribution of mri volume heterogeneity. In Proc. IEEE Region 10 Conference- TENCON 2019 2695–2699 (2019).

	17.	 Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447–462 (1976).
	18.	 Scargle, J. D. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. Part 1(263), 835–853 (1982).
	19.	 Ruf, T. The lomb-scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. 

Biol. Rhythm. Res. 30(2), 178–201 (1999).
	20.	 Van Dongen, O. E. V. J., H.P & EW, K. A procedure of multiple periods searching in unequally spaced time-series with lomb-scargle 

method. Biol. Rhythm Res. 149–177 (1999).
	21.	 Bohn, H. S. H. M. K. F. A. & U, L. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism 

under thermoperiodic perturbations. Biol. Chem. 384, 721–728 (2003).
	22.	 Chen, J. E. G. & AR, M. Detecting periodic pattern in unevenly spaced gene expression time series using lomb scargle peri-

odograms. Bioinformatics 22(3), 310–316 (2006).

Acknowledgements
We would like to acknowledge the support from Visvesvaraya PhD scheme for Electronics and IT, Ministry of 
Electronics and Information Technology (MEITY), Government of India, for providing with the necessary fel-
lowship to pursue research at IIIT, Bangalore.

Author contributions
All authors contributed to the study conception and design. Data collection and analysis were performed by 
Debanjali Bhattacharya, research scholar of International Institute of Information Technology, Bangalore. Prob-
lem statement of the research was formulated by Dr. Jitender Saini, Professor, Neuroimaging and interventional 
radiology, National Institute for Mental Health and Neurosciences (NIMHANS), Bengaluru. The research was 
performed by Debanjali Bhattacharya under the guidance of Dr. Neelam Sinha, Associate Professor, International 
Institute of Information Technology, Bangalore. The draft of the manuscript was written by Debanjali Bhattacharya  
and Dr. Neelam Sinha. All authors reviewed and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://wiki.cancerimagingarchive.net/display/public/lgg1p19qdeletion#bef9e2ed4c354a92bae9ff35e8449e31
https://wiki.cancerimagingarchive.net/display/public/lgg1p19qdeletion#bef9e2ed4c354a92bae9ff35e8449e31
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23866  | https://doi.org/10.1038/s41598-021-03078-1

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Determining chromosomal arms 1p19q co-deletion status in low graded glioma by cross correlation-periodogram pattern analysis
	Results
	Dataset description. 
	Consistency in variance of cross correlation pattern across slices for 1p19q co-deleted glioma cases. 
	Lomb-Scargle power spectral density reveals static periodicity across volumetric glioma slices having 1p19q co-deletion. 
	RUSBoost classification: 1p19q co-deleted Vs. 1p19q non-deleted glioma. 

	Discussions
	Conclusion
	Proposed Methodology
	Glioma segmentation and data normalization. 
	Detection of tumor tissue heterogeneity across slices by VoCC. 
	Feature extraction. 
	Examining the presence of 3D periodicity in 1p19q co-deleted and non-deleted glioma. 

	RUSBoost Classification. 

	References
	Acknowledgements


