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Abstract: The rapid, accurate, and real-time estimation of crop coefficients at the farm scale is one of
the key prerequisites in precision agricultural water management. This study aimed to map the maize
crop coefficient (Kc) with improved accuracy under different levels of deficit irrigation. The proposed
method for estimating the Kc is based on multispectral images of high spatial resolution taken using
an unmanned aerial vehicle (UAV). The analysis was performed on five experimental plots using Kc

values measured from the daily soil water balance in Ordos, Inner Mongolia, China. To accurately
estimate the Kc, the fraction of vegetation cover (fc) derived from the normalized difference vegetation
index (NDVI) was used to compare with field measurements, and the stress coefficients (Ks) calculated
from two vegetation index (VI) regression models were compared. The results showed that the NDVI
values under different levels of deficit irrigation had no significant difference in the reproductive stage
but changed significantly in the maturation stage, with a decrease of 0.09 with 72% water applied
difference. The fc calculated from the NDVI had a high correlation with field measurement data,
with a coefficient of determination (R2) of 0.93. The ratios of transformed chlorophyll absorption
in reflectance index (TCARI) to renormalized difference vegetation index (RDVI) and TCARI to
soil-adjusted vegetation index (SAVI) were used, respectively, to establish two types of Ks regression
models to retrieve Kc. Compared to the TCARI/SAVI model, the TCARI/RDVI model under different
levels of deficit irrigation had better correlation with Kc, with R2 and root-mean-square error (RMSE)
values ranging from 0.68 to 0.80 and from 0.140 to 0.232, respectively. Compared to Kc calculated from
on-site measurements, the Kc values retrieved from the VI regression models established in this study
had greater ability to assess the field variability of soil and crops. Overall, use of the UAV-measured
multispectral vegetation index approach could improve water management at the farm scale.

Keywords: crop coefficient (Kc); vegetation indices; deficit irrigation; regression model; soil water
balance; stress coefficient

1. Introduction

Water scarcity is a major factor limiting irrigated agriculture, especially in arid and semi-arid areas
of the world. Due to global climate changes and the imbalance between water supply and demand,
it is particularly necessary to improve crop water use [1]. Therefore, the regulated deficit irrigation
(RDI) strategy for reducing water consumption is widely used in current agriculture [2]. In this context,
how to accurately estimate and monitor crop water requirements is not only the key for optimizing

Sensors 2019, 19, 5250; doi:10.3390/s19235250 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9316-9670
http://www.mdpi.com/1424-8220/19/23/5250?type=check_update&version=1
http://dx.doi.org/10.3390/s19235250
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5250 2 of 17

irrigation scheduling and improving water use efficiency, but also essential research for enhancing
food production and SAVIng regional water resources [3,4].

A common indicator of crop water requirements is the crop coefficient (Kc), which was presented
in FAO 56 [5] and is used to estimate crop evapotranspiration (ETc) by multiplying the reference crop
evapotranspiration (ET0) [6]. The Kc primarily depends on meteorological information, crop-specific
coefficients, the lengths of crop growth stages, and plant-available soil water [7]. It can be estimated
using single and dual Kc approaches. The single approach is the averaging of Kc trends that incorporate
plant transpiration (Kcb) and soil evaporation (Ke). Compared to the single approach, the dual
approach improves the estimation accuracy of ET by considering the plant transpiration and soil
evaporation separately, i.e., Kc = Kcb + Ke [8]. However, in practical crop conditions, the Kc needs to be
appropriately adjusted by using a stress coefficient (Ks) for nonstandard conditions, especially water
stress conditions [6]. The dual approach has been appropriately used for crops at a field or regional
scale [9–13].

To date, several methods have been presented to monitor Kc, such as soil water balance, eddy
covariance, Bowen ratio, lysimeter, and remote sensing [14–18]. In situ measurements are likely to be
time-consuming and costly, and make it hard to consider the spatial variability of crops and soil [19].
Therefore, remote sensing of Kc has become increasingly recommended in irrigation management. One
of the most common approaches is to estimate the real-time Kcb and Kc through empirical equations
of vegetation indices (VIs) such as the normalized difference vegetation index (NDVI) derived from
multispectral images [20–23]. Such empirical equations rely on the close relationship between the VIs
and various actual plant growth parameters, e.g., leaf area index [24,25], fraction of ground covered by
plants [26,27], and biomass [24,28]. However, Pereira et al. [7] noted that NDVI-based methods can not
accurately observe a decrease in Kc and Kcb when crops are under water stress. Zhang and Zhou [29]
proposed that crop water status can be accurately monitored using the VIs which are not only sensitive
to water information but also contain vegetation growth status. Consequently, partial VIs such as
the reflectance index (TCARI), optimization of soil-adjusted vegetation index (OSAVI), soil-adjusted
vegetation index (SAVI), and renormalized difference vegetation index (RDVI) can effectively monitor
crop water status [30]. For example, Haboudane et al. [31] utilized TCARI/OSAVI to predict maize
water status in Canada and reported a high correlation between TCARI/OSAVI and chlorophyll content.
Zhang et al. [19] evaluated maize water stress and its spatial variability by multispectral remote sensing.
The results showed that two regression models based on TCARI/RDVI and TCARI/SAVI were able to
monitor the crop water stress index (CWSI) with respective coefficients of determination (R2) of 0.81
and 0.80 under different levels of deficit irrigation.

Unmanned aerial vehicles (UAVs) in remote sensing have exponentially increased in applications
of precision agriculture over the past decade [32]. Compared to conventional data acquisition methods
for remote sensing, such as satellites and spectrometers [33,34], UAVs offer many obvious advantages
to support water resource management and planning [35,36]. One of the most common advantages is
that UAVs can provide high-quality data at the required scale and time, while conventional methods
have not been applied in practice at the farm scale due to their coarse spatial resolution, infrequent
coverage, and high cost [37,38]. Additionally, UAVs can be used to obtain low-cost data as frequently
as necessitated by the monitoring task because of their ease of operation and deployment, their high
flexibility, and the decreasing cost of the platform [39]. Thus, UAV-based monitoring has become
increasingly pervasive in supporting the real-time control of irrigation systems.

In recent works, the abovementioned Ks has usually been calculated using the FAO-56 soil water
depletion method proposed by Allen et al. [5]. For example, Pôças et al. [6] estimated the actual Kc for
maize, barley, and olive based on VIs and a soil water balance model under water stress conditions.
The results showed that the Ks computed using the soil water balance model could accurately exhibit
reductions in Kc due to water stress. Another method to determine Ks is based on indications of the
infrared canopy temperature, such as the CWSI. Kullberg et al. [40] compared the performance of
several canopy temperature methods converted into Ks. The results showed that the CWSI based
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on infrared thermal radiometry (IRT) had the best accuracy compared to other methods, and it is
typically considered to be scalable to Ks. Bellvert et al. [41] stated that mapping CWSI from UAV
thermal imagery has the limitation of inevitable mixed temperatures coming from both the soil and
leaves due to bigger pixels and full cover. Considering the relationship between VIs and the CWSI
discussed above, VIs have been found to have a comparable ability to monitor Kc under water stress
conditions. However, research using VIs derived from a UAV multispectral remote sensing system is
still relatively rare in Kc estimation at the farm scale under different levels of water stress.

Therefore, in this study, we established a Kc empirical model based on UAV multispectral remote
sensing to represent the crop evapotranspiration of summer maize under different levels of deficit
irrigation. The main objectives were as follows:

(1) To explore the differences in Kc with regard to the soil water balance in response to water stress
treatments at different growth stages;

(2) To establish Kc regression models based on UAV multispectral VIs that are sensitive to maize
water stress and compare them with measured crop coefficients;

(3) To obtain Kc maps derived from the Kc regression model with high spatial–temporal resolution
at the farm scale.

2. Materials and Methods

2.1. Study Area

The study was carried out on an experimental farm located in Zhaojun Town, southwest Inner
Mongolia, China (40◦26′0.29′′ N, 109◦36′25.99′′ E). The experimental area is approximately 1.13 ha at
1010 m altitude above the sea level. The climate is semi-arid, and the soil type is loamy sand with 80.7%
sand, 13.7% powder, and 5.6% clay. The average field capacity (0–90 cm soil depth) is 0.169 m3

·m−3,
and the average soil bulk density is 1.56 g·cm−3. The soil pH, C content, and organic matter are 9.27,
27.35 g/Kg, and 47.17 g/Kg, respectively. Maize (Junkai 918) was sowed on 20 May 2017 (day of year
(DOY) 140), with a 0.58 m planting distance and 0.25 m plant spacing, and the row direction was from
east to west. The maize emerged on 1 June, headed on 20 July, and was harvested on 7 September
(silage), giving a 110-day lifespan [19].

2.2. Experimental Design

There were five different levels of deficit irrigation treatments for which we divided the study
field into treatment (TR) regions (Figure 1b). In order to effectively collect data and control irrigation
water, a 12 × 12 m2 experimental plot was chosen in each treatment region. The five treatments
were full irrigation (TR1), slight water stress (TR5), moderate water stress (TR2 and TR3), and severe
water stress (TR4). TR1 represented the total crop water requirement of fully watered maize during
the whole growth period. The different levels of deficit irrigation were designed according to the
percentages of applied water depth of TR1 during the late vegetation, reproductive, and maturation
stages. For example, during the maturation stage, 52% of the applied water depth at TR1 was applied
to TR2 (Table 1).

A central pivot sprinkler system (Valmont Industries, Inc., Omaha, NE, USA) was used for
irrigation, and different irrigation amounts were processed in each treatment region by adjusting
the speed of the sprinkler system. The test for water application uniformity of the central pivot
irrigation system was carried out in accordance with the standards ANSI/ASAE S436.1 and ISO 11545.
The uniformity coefficient for the first span (research area) of the R3000 sprinklers was calculated using
the modified formula by Heermann and Hein [42], and the values were 82.7% and 88.3% under 20% and
40% of full walking speed, respectively. The amount of water applied to each treatment was measured
and recorded using a MIK-2000H flow meter (Meacon Automation Technology co., Ltd., Hangzhou,
China). Due to the influence of rainfall, the actual applied water depth (irrigation and rainfall amount)
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for each growth stage in each treatment region is shown in Table 1. In order to eliminate the stress of
nutrients and weeds, fertilizer and herbicide were applied according to planting experience.
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Figure 1. Location and region division of the research field: (a) location of the research field in China; (b)
aerial view of the research field indicating treatment region division, the locations of the sampling plots,
and time domain reflectometry (TDR) probes. The aerial image was taken on day of year (DOY) 185.

Table 1. Experimental treatments and total applied water depth (percentage of full irrigation treatment in
parentheses) that includes the amount of irrigation and precipitation in the late vegetative, reproductive,
and maturation stages in 2017 (taken from Zhang et al. [19]).

Treatment
Applied Water Depth/mm

Late Vegetative
(06.20–07.28)

Reproductive
(07.29–08.20)

Maturation
(08.21–09.07) Total

TR 1 188 (100%) 132 (100%) 82 (100%) 402
TR 2 158 (84%) 128 (97%) 43 (52%) 329
TR 3 158 (84%) 125 (95%) 43 (52%) 326
TR 4 158 (84%) 91 (69%) 23 (28%) 272
TR 5 158 (84%) 124 (94%) 82 (100%) 365

In order to obtain daily data on the soil water content, each of the five experimental plots was
installed with a monitoring station with a time domain reflectometry (TDR) probe (TDR 315L, Acclima,
Inc., Boise, ID, USA). The distribution of voltage pulses was done around a coaxial cable of length
3 m, and this cable was connected to a TDR 315L probe (0.15 m in length). Access tubes were installed
vertically up to 90 cm into the soil in the middle of each plot, and the probe was inserted into the soil to
access the tubes at different depths (30, 60, 90 cm) for the measurement of the daily volumetric soil
water content (SWC) during the study period.

2.3. Meteorological Data

The weather data were recorded by an automated weather station located at a farm adjacent to the
research field. The daily and hourly measured weather variables included rainfall, air temperature and
relative humidity, net solar radiation, and wind speed (2 m above the reference grass surface). The main
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mean meteorological data during the study period, including the late vegetative stage (06.26–07.28),
reproductive stage (07.29–08.20), and maturation stage (08.21–29), are shown in Table 2.

Table 2. The main mean meteorological data during the study period, including the late vegetative
stage, reproductive stage, and maturation stage in 2017.

Parameter Late Vegetative
(06.26–07.28)

Reproductive
(07.29–08.20)

Maturation
(08.21–29)

Mean air temp./◦C 24.33 22.11 17.21
Max air temp./◦C 37.30 31.31 25.46
Min air temp./◦C 11.70 13.61 9.24

Min relative humidity/% 19.41 29.78 33.23
Mean net solar radiation/MJ·m−2

·day−1 13.08 10.98 3.00
Mean wind speed/m·s−1 0.66 0.47 0.28

Rainfall/mm 2.8 38.8 2.8

2.4. Crop Coverage Measurement

A DJI Phantom 4 Pro with an 84◦ field of view lens, an f/2.8 aperture, and a resolution of 4864 ×
3648 pixels was used to obtain crop coverage (fc). The flights were conducted every 3 to 7 days between
11:00 and 13:00 local time, at 50 m altitude, and with a ground sample distance of 1.4 cm. The overlap
of imagery to the front and side was 80%. The mosaic RGB images were acquired using Pix4DMapper
software (Lausanne, Switzerland). The RGB images of each sampling plot were classified into soil and
vegetation using supervised classification aided by ENVI 5.3 software. The fc value was derived as the
percentage detected as vegetation.

2.5. Soil Water Balance

The daily crop evapotranspiration (ETc) was obtained using the soil water balance equation with
soil water content measured by TDR [5,43–45] (Equation (1)):

ETc = P + I ± ∆SM−Dp −RO + CR (1)

where ETc represents crop evapotranspiration; P represents the precipitation; I represents the irrigation;
∆SM represents the change in water content between two successive days, calculated by TDR; DP
represents deep percolation; RO represents surface runoff; and CR represents capillary rise from the
deep water table, which can be ignored due to the shallow to deep water table depth (3–55 m) and
also due to no contribution from groundwater with capillary rise into the root zone [46]. All terms
in the soil water balance are in millimeters. An example of the results of the changing curve of the
average SWC (volumetric) at the depths of 30, 60, and 90 cm at TR1 during the study period is shown
in Figure 2.
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Figure 2. The changing curve of the average soil water content (SWC, volumetric) at the depths of 30,
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2.6. UAV Multispectral Imagery Acquisition

A multispectral camera (RedEdge, MicaSense, Inc., Seattle, WA, USA) was installed on a UAV
platform (a six-rotor unmanned aircraft S900, manufactured by DJI). The S900 six-rotor UAV has the
advantages of stable flight and takeoff, strong wind resistance, and low cost. The maximum take-off

weight is 6 kg, the maximum payload is 2 kg, the maximum wind speed it can withstand is 5 m/s, and
its flight time is 18 min. The RedEdge multispectral camera consists of five bands in the VIS–NIR
spectral range at 475, 560, 668, 717, 840 nm, respectively; a 5.5 mm fixed lens; image resolution of
1280 × 960 pixels; and angle of view of 47.2◦ (H). The flight control board used was a Pixhawk autopilot
(CUAV, Guangzhou, China), and the ground control station software Mission Planner was used to
conduct the flight planning.

UAV multispectral data from fourteen flights were acquired at a 70 m flight height with 4.7 cm
spatial resolution during the study period (2017.06.26~08.29) between 11:00 and 13:00 local time.
The heading and side overlap and speed of the UAV were 80% and 5 m/s, respectively. The mosaic
multispectral images were acquired using the photogrammetric software Pix4DMapper (Lausanne,
Switzerland). In order to calibrate the multispectral images, a diffuse reflector (reflectivity 58%, size
3 × 3 m, Group VIII, Seattle, WA, USA) was used during the data collection. The measured image
radiances were later converted to reflectance values to obtain spectral reflectance images.

2.7. The Vegetation Index Approach for Crop Coefficient Estimation

In the present study, the calculation of Kc was made based on the dual crop coefficient approach.
This approach divides the total crop coefficient into crop transpiration (Kcb) and soil evaporation (Ke)
fractions [47,48]. The Kc can be calculated as follows:

Kc = Kcb + Ke (2)

where Kcb values were estimated based on NDVI measurements developed in a modified approach
by Er-Raki et al. [49], who used 1.07 as the Kcb,max value for durum wheat in a semi-arid climate in
Morocco. In our study, we used 1.15 in Equation (3) as the Kcb,max value for maize according to Allen
et al. [5]. In addition, Ke values were calculated from the fraction of vegetation cover (fc), which is
strongly related to the NDVI [50]. Therefore, Kcb and Ke in the NDVI approach were derived as [5,51]
follows:

Kcb = 1.15 ∗ (1− (NDVImax −NDVI)/(NDVImax −NDVImin)) (3)
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Ke = 0.9 ∗ (1− fc) (4)

fc = 1.19 ∗ (NDVI −NDVImin) (5)

where NDVImax and NDVImin are the maximal and minimal measured NDVI values during the growing
period. We took values of 0.88 for NDVImax and 0.14 for NDVImin according to the UAV map. The value
0.9 in Equation (4) was determined according to FAO 56 [5] based on the observed frequency of
irrigation and rainfall. The value 1.19 in Equation (5) was determined according to González-Piqueras
et al. [51], based on the fc being less than 80% for maize.

However, the above formulas represent potential crop evapotranspiration conditions. When
water stress occurs, the stress coefficient Ks should be considered. Ks (0 ≤ Ks ≤ 1) is defined as the ratio
of actual evapotranspiration (ETa) to potential evapotranspiration (ETp), proposed by Allen et al. [5].
The Ks can be calculated as follows:

Ks = ETa/ETp = Kc act/Kc. (6)

Based on the principle of energy balance, Jackson et al. [52] derived a calculation model for the
crop water stress index (CWSI) depending on the canopy temperature. The model establishes the
relationship between Ks and CWSI as

CWSI = 1− ETa/ETp = 1−Ks. (7)

Additionally, CWSI can be estimated by two VI regression models proposed by Zhang et al. [19]
under different levels of deficit irrigation.

CWSI-1 =


0 (TCARI/RDVI ≤ 0.195)

2.41 ∗ (TCARI/RDVI) − 0.47 (0.195 < TCARI/RDVI < 0.609)
1 (0.609 ≤ TCARI/RDVI)

(8)

CWSI-2 =


0 (TCARI/SAVI ≤ 0.182)

2.46 ∗ (TCARI/SAVI) − 0.45 (0.182 < TCARI/SAVI < 0.589)
1 (0.589 ≤ TCARI/SAVI)

(9)

Therefore, in relation to Ks and actual Kc (Kc act), Ks and Kc act are derived as follows:

Kc act = Ks ∗Kc = (1−CWSI) ∗ (Kcb + Ke). (10)

Combining all the above formulas, two different models for Kc estimation can be finally obtained
as follows.

Kc-1 =



1.15 ∗ (1− (NDVImax −NDVI)/(NDVImax −NDVImin))

+ 0.9 ∗ (1− 1.19 ∗ (NDVI −NDVImin)) (TCARI/RDVI ≤ 0.195)
(1.47− 2.41 ∗ (TCARI/RDVI)) ∗ (1.15 ∗ (1− (NDVImax −NDVI)/(NDVImax −NDVImin))

+ 0.9 ∗ (1− 1.19 ∗ (NDVI −NDVImin))) (0.195 < TCARI/RDVI < 0.609)
0 (0.609 ≤ TCARI/RDVI)

(11)

Kc−2 =



1.15 ∗ (1− (NDVImax −NDVI)/(NDVImax −NDVImin))

+ 0.9 ∗ (1− 1.19 ∗ (NDVI −NDVImin)) (TCARI/SAVI ≤ 0.182)
(1.45− 2.46 ∗ (TCARI/SAVI)) ∗ (1.15 ∗ (1− (NDVImax −NDVI)/(NDVImax −NDVImin))

+ 0.9 ∗ (1− 1.19 ∗ (NDVI −NDVImin))) (0.182 < TCARI/SAVI < 0.589)
0 (0.589 ≤ TCARI/SAVI)

(12)
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2.8. Vegetation Index Calculations

To establish a regression model between UAV-measured multispectral VIs and Kc, NDVI,
TCARI/RDVI, and TCARI/SAVI were used in this study. Their calculation formulas are as follows:

NDVI =
ρnir − ρred

ρnir + ρred
(13)

RDVI =
ρnir − ρred
√
ρnir + ρred

(14)

SAVI =
(1 + 0.5) ∗ (ρnir − ρred)

ρnir − ρred + 0.5
(15)

TCARI = 3
[
(ρrededge − ρred) − 0.2(ρrededge − ρgreen) ∗ (ρrededge/ρred)

]
(16)

where ρnir, ρred, ρrededge, and ρgreen are the reflectance values of ground objects in the near-infrared,
red, red-edge, and green bands. For statistical analysis, the R programming language (R-3.4.3,
https://www.r-project.org/) and the lm() function were used. The coefficient of determination (R2) and
root-mean-square error (RMSE) were used as evaluating indicators.

3. Results

3.1. NDVI and the Fraction of Vegetation Cover of Maize

It was observed that the NDVI values under different levels of deficit irrigation did not significant
differ in the reproductive stage but changed significantly in the maturation stage, with a decrease of
0.09 in TR4 compared to TR1. The results of fc calculated from the NDVI (fc NDVI; Equation (5)) were
compared with fc based on field measurement (f c field) for the maize (Figure 3b). Both fc values showed
good agreement for all treatments, with an R2 value of 0.93 and regression coefficient b close to 1.0.
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Figure 3. (a) Measured normalized difference vegetation index (NDVI) values under different levels of
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The green dotted line is the boundary between the late vegetation and reproductive stages. The gray
dotted line is the boundary between the reproductive and maturation stages. (b) Relationship between
the fraction of vegetation cover (fc) calculated from NDVI values and fc based on field measurements
derived from the sampling plots.

3.2. The Kc of Maize

Finally, the Kc values were obtained by using the soil water balance model in the sampling plots.
Figure 4 depicts the daily changes in Kc for each deficit irrigation treatment during 2017.06.26~2017.08.29.
Kc increased after irrigation/rainfall, reaching a maximum around DOY 205, and then slowly decreased,
responding well to irrigation/rainfall events. The Kc values for the different levels of deficit irrigation
treatments in the late vegetative, reproductive, and maturation stages had a clear numerical gradient.
For example, the average Kc values in the late vegetative stage were low, while the average Kc values
in the reproductive stage were maintained at a high level, and the average Kc values in the maturation
stage slowly decreased. In addition, the Kc values for the different levels of deficit irrigation treatments
were significantly different. For example, compared with TR1 in the reproductive and maturation
stages, the Kc value was significantly decreased for TR4 in the reproductive and maturation stages.
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boundary between the late vegetation and reproductive stages. The gray dotted line is the boundary
between the reproductive and maturation stages.

3.3. Estimation of Kc Using Two Different Methods

The results of Kc estimated using the model in Equation (11) (Kc-1) were compared with those
from the model in Equation (12) (Kc-2) for the maize under different treatments (Table 3). The Kc values
derived via the two different methods showed a good fit, and their coefficients of determination R2

varied from 0.68 to 0.80. The RMSE values were small, within the range of 0.140 to 0.322, indicating
adequate stability and fairly tight dispersion in the datasets. However, when the water stress was
more serious, both the R2 and RMSE were decreased. For example, for Kc-1 with 32% water applied
difference between TR1 and TR4, the R2 and RMSE values were 0.80 and 0.140 and 0.68 and 0.232,
respectively. Compared with the Kc-2 values, the Kc-1 values had better performance as determined
by the R2 and lower RMSE in all treatments. Therefore, the Kc-1 model was chosen to establish the
relationship between the VIs and Kc.

Table 3. Coefficient of determination (R2) and root-mean-square error (RMSE) values from two different
predictions of Kc. Values were calculated using Equation (11) (Kc-1) and Equation (12) (Kc-2).

Treatment
Kc-1 Kc-2

R2 (n = 14) RMSE R2 (n = 14) RMSE

TR 1 0.80 *** 0.140 0.79 *** 0.177
TR 2 0.78 *** 0.150 0.79 *** 0.221
TR 3 0.71 *** 0.174 0.72 *** 0.223
TR 4 0.68 *** 0.232 0.73 *** 0.322
TR 5 0.70 *** 0.180 0.70 *** 0.241

*** p < 0.001.

3.4. Crop Coefficient Maps Based on UAV Multispectral Remote Sensing Imagery

Equation (11) was used to retrieve maize crop coefficient maps (Figure 5) based on UAV
multispectral remote sensing imagery for DOY 179, 215, 231, and 240. The Kc values of maize under
each irrigation treatment showed no significant differences at DOY 179 and DOY 215. In addition, the
Kc status of maize under each irrigation treatment showed spatial variations at DOY 231 and DOY 240.
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4. Discussion

UAV multispectral technology has been widely used in precision agriculture, but there are also
some challenges that need to be solved in the rapid, accurate, and economical estimation of crop
coefficients [32,53,54]. Previous studies have observed a high correlation between crop coefficients
and VIs obtained from multispectral images, especially NDVI [23,55–57]. For example, Mutiibwa and
Irmak [58] qualified the effectiveness of using AVHRR-NDVI data to estimate Kc based on a regression
model for the U.S. High Plains and showed a good prediction accuracy with an R2 value of 0.72 and an
RMSE of 0.12. In another study, Kamble et al. [59] derived Kc values from MODIS-NDVI data using a
simple linear regression model, resulting in an R2 of 0.91 and an RMSE of 0.16.

Previous studies have also reported NDVI-based Kc being successfully applied in many crops, such
as maize [60–63], wheat [15,64], olive orchards [63,65], barley [63,66], sunflower [64], etc. For example,
Pôças et al. [64] proposed a combined approach based on NDVI for maize, barley, and olive orchards
and showed adequate results for supporting irrigation management. Calera et al. [33] and Cuesta
et al. [66] validated NDVI-based Kc values based on a regression model in Castilla La Mancha regions
for barley and sunflower irrigated using sprinklers.

However, most studies have established the relationship between Kc and VIs for nonstressed
conditions or for conditions of a dry soil surface, which cannot appropriately depict the actual
conditions of crop management [6]. Crop coefficients derived from VIs often do not consider the
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abovementioned Ks, which should be used to obtain the actual Kc under water or salinity stress [7,21].
Stagakis et al. [67] found that most optical indices such as NDVI are suitable for tracking the effects of
long-term water stress on crops, while they are not useful as indicators to detect and monitor early
water stress conditions. In this work, we also found that the NDVI values under different levels of
deficit irrigation did not significantly differ in the reproductive stage, but they changed significantly in
the maturation stage, with a decrease of 0.09 in TR4 compared to TR1 (Figure 3a). This is because crops
may prevent damage through photo-protection strategies to reduce the leaf absorbance and reflectance
changes during short-term water stress [68]. Moreover, crops consume extra energy by reducing
chlorophyll b and interconverting xanthophyll cycle pigments [69]. Therefore, previous studies found
that VIs are prone to reflecting the chlorophyll and xanthophyll content, which are commonly used
to monitor crop water stress status. For instance, Baluja et al. [70] assessed vineyard water status by
TCARI/OSAVI with R2 values of 0.58 and 0.84 (n = 10) when compared to stem water potential and
stomatal conductance, respectively. Here, the CWSI based on regression models was used to obtain Ks

from UAV multispectral orthomosaic images, and two CWSI estimation methods were derived from
TCARI/RDVI and TCARI/SAVI. These two indices were designed to detect crop water stress status
in a more robust and adequate manner. In a relevant study by Zhang et al. [19], TCARI/RDVI and
TCARI/SAVI were used to evaluate the water stress status of maize under different levels of deficit
irrigation, with respective R2 values of 0.81 and 0.80 at the late reproductive and maturation stages.

The fc calculated by NDVI and the fc based on field measurement were compared. It was
clear that the fc calculated by NDVI had a high correlation (R2 = 0.93) with the field measurement.
Previous studies have shown that the relationship between fc and NDVI shows good agreement [49,51].
Considering the relationship between fc and Ke, we established the Ke regression model. Finally,
we obtained two different models for Kc estimation. Both approaches to Kc in all growth periods agreed
with the measured Kc data, with R2 and RMSE values varying from 0.68 to 0.80 and from 0.140 to 0.322,
respectively (Table 3). Compared to TCARI/SAVI, TCARI/RDVI can more accurately characterize maize
conditions in each irrigation treatment, with smaller estimated deviations. These results are likely
due to the lower sensitivity of TCARI/SAVI to the influence of different water treatments. Therefore,
we chose TCARI/RDVI to establish models between VIs and Kc. When the water stress conditions were
more serious, the Kc model based on TCARI/RDVI was less accurate. For example, the R2 and RMSE
values of the Kc model in TR1 were 080 and 0.140, while the R2 and RMSE values of the Kc model in
TR4 were 0.68 and 0.232, with 32% water applied difference. The reason for this phenomenon may be
that optical VIs do not allow the precise detection of serious water stress [65]. Similar phenomena
were also found by Zhang and Zhou [29], Espinoza et al. [71], and Zulini et al. [72].

The relationship between the measured Kc and predicted Kc based on vegetation indices under
different water treatments was compared in three different growth stages. There was a rapidly
decreasing trend in the slopes of the linear regression models between the measured Kc and the
predicted Kc throughout the growth phase (Figure 6), indicating that the correlation of the measured
Kc with the predicted Kc obtained from vegetation indices in the late vegetative stage was higher than
those in the two other growth stages. It could be also observed that when water stress was more
serious in the maturation stage, a higher slope value was found, such as −0.17 in TR4. The results
showed that UAV multispectral VIs could distinguish different levels of deficit irrigation treatments.
Overall, multispectral VIs (NDVI and TCARI/RDVI) could be used to monitor the Kc of field maize
during the whole growth period and under different water treatments.
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From the Kc maps retrieved by TCARI/RDVI and NDVI, we found that the Kc values of maize in
each irrigation treatment did not significantly differ at DOY 179 and DOY 215. The retrieved Kc values
reflected an initial nonstress situation and water supply conditions during the late vegetative stage,
respectively. However, the Kc status of maize in each irrigation treatment showed spatial variations
at DOY 231 and DOY 240. Compared to the Kc values calculated from on-site measurements, the Kc

values based on the VI regression models could better reflect the management conditions of maize at
the field scale. These results indicated that the average Kc based on VIs was more reasonable due to it
considering the entire treatment region.
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5. Conclusions

Information obtained from the remote sensing of UAV multispectral images can be applied to
irrigation water management in farm-scale areas. In the present study, the main objective was to test
the suitability of estimating the Kc based on VIs compared to on-site measured values for maize under
different levels of deficit irrigation treatments at the farm scale. Our results confirmed that fc values
derived from the NDVI equation had a good correlation with fc values based on field observations, with
R2 = 0.93. Compared to that using TCARI/SAVI, the Ks retrieved using TCARI/RDVI better reflected
the actual Kc, with R2 = 0.68–0.80 and RMSE = 0.140–0.232. In summary, this study demonstrated
that UAV-based multispectral images can be used to map the maize crop coefficient Kc and monitor
irrigation requirements at the farm scale with a high temporal and spatial representation. Nevertheless,
further studies are desirable to better test the methodology for other crops, and multispectral images
can be combined with data from other sensors mounted on UAVs to provide more information about
water status, particularly thermal cameras.
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