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HARDI‑ZOOMit protocol improves 
specificity to microstructural 
changes in presymptomatic 
myelopathy
René Labounek  1,2,3, Jan Valošek  1,2, Tomáš Horák4,5,6, Alena Svátková4,7,8, Petr Bednařík 
4,9, Lubomír Vojtíšek  4, Magda Horáková4,5,6, Igor Nestrašil3,10, Christophe Lenglet  10, 
Julien Cohen‑Adad  11, Josef Bednařík4,5,6 & Petr Hluštík2,12*

Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic 
degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. 
Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability 
to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-
comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, 
the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter 
structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 
87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared 
to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, 
HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-
RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel 
marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-
ZOOMit protocol detected larger number of crossing fibers (5–15% of voxels) with physiologically 
plausible orientations than DTI-RESOLVE protocol (0–8% of voxels). Crossings were detected in areas 
of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and 
practical tool for clinical quantitative spinal cord imaging.

After the Stejskal and Tanner 1965 experiment1, it took almost 3 decades until the diffusion magnetic reso-
nance imaging (dMRI) was first applied to human brain imaging, utilizing estimation of the diffusion tensor 
imaging (DTI) model2,3. Since 2000 DTI has been used in the spinal cord (SC) imaging4 and become consid-
ered for clinical applications5,6, such as SC injury7,8, multiple sclerosis4, amyotrophic lateral sclerosis (ALS)9, 
Walerian degeneration10, adrenoleukodystrophy11 and degenerative cervical myelopathy (DCM)12–18. Recently, 
DTI detected microstructural SC injury19, and microstructural abnormality in patients with non-myelopathic 
degenerative cervical cord compression (NMDCCC) prior to development of subsequently expected neurological 
myelopathic symptoms and signs, i.e. DCM manifestation20. NMDCCC is a condition that is more frequent than 
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previously estimated20,21. The SC compression at this stage may become an important target in the prediction 
and/or prevention of significant myelopathic clinical symptoms and signs mostly leading to disabling DCM22. 
The dMRI derived parameters (e.g. FA or MD) have distinguished healthy controls from patients with advanced 
DCM12–14, correlated with clinical disability in DCM patients23, and been able to detect signs of microstructural 
SC injury in NMDCCC patients in an exploratory study20. There is an urgent need to confirm the previous find-
ings but also to develop and validate a dMRI protocol that is fast, reliable, clinically feasible, and yet possesses 
the ability to detect microstructural cervical cord injury in the NMDCCC stage with high sensitivity (SE) and 
specificity (SP).

Clinical dMRI protocols for the SC aim to acquire high spatial resolution data with good quality (SNR) over a 
clinically acceptable time period. Spatial resolution is often less than 1.25× 1.25× 5mm3 and short single-shell 
diffusion weighted protocols with 20–30 directions are almost exclusively employed19. Within each voxel, DTI 
fits a seven (6 parameters for the tensor + 1 parameter for signal intensity without diffusion weighting) parameter 
single-compartment model corresponding to an ellipsoid tensor oriented in one dominant direction. For the SC 
tissue, this tensor characterizes the average fiber bundle orientation within the voxel3.

One major limitation of such data is the inability to model complex intra-voxel fiber configurations (e.g. 
crossing fibers) due to a low angular resolution24. Yet, crossing fibers are known to be present in several areas of 
the SC at the histological level, e.g., the dorsal horns and the anterior commissure, where nerve fibers are oriented 
transversally, in contrast to the longitudinal organization of most of SC pathways. In dMRI data, crossing fibers 
are defined as multiple fiber bundles with different orientations within a single voxel, and have already been 
detected in the SC in animal models25,26 or humans7,27,28. Importantly, in a human study of injured SC the analysis 
of crossing fibers provided an increased specificity for various sub-types of white matter pathology7. Unfortu-
nately, increasing angular resolution within current protocols would make them too long for clinical scanning.

The advanced clinical SC dMRI protocol should thus be fast, provide high angular resolution within accept-
able scanning time and be complemented with an advanced crossing fiber model. For the first requirement, we 
have employed a reduced field-of-view (FOV) EPI sequence, e.g. syngo ZOOMit (Siemens Medical, Erlangen, 
Germany), which decreases the acquisition time without compromising dMRI data quality29. To achieve high 
angular resolution, we have designed a novel two-shell HARDI-ZOOMit24,28,29 protocol (high angular resolution 
diffusion imaging) covering the C3–C7 SC levels. Finally, to permit crossing fiber modeling, we have utilized the 
three-compartment “Ball and Stick and Stick model” that fits eight parameters30 and better characterizes dMRI 
data than the single-compartment DTI model31.

We have compared our new HARDI-ZOOMit protocol and model to a current standard clinical RESOLVE 
(REadout Segmentation Of Long Variable Echo trains) sequence32 that is being used and considered to provide 
high signal-to-noise ratio (SNR)33 in the evaluation of SC.

Multiple microstructural parameters were compared within SC regions of interest (ROIs), not only with 
single-subject mean/median and SD of dMRI metrics, but also advanced metrics such as skewness, kurtosis and 
several novel heuristic parameters. The sets of significant dMRI parameters and protocols’ SEs/SPs were evaluated 
with Wilcoxon rank-sum tests, analyses of covariance (ANCOVA), step-wise linear regressions and K-means 
clusterings. Moreover, SNR, mutual information between dMRI metric maps and SC anatomy, off-resonance 
susceptibility artifact effect and test–retest reproducibility were evaluated for each investigated dMRI protocol.

Results
Subject characteristics.  The study sample consisted of a cohort of 33 NMDCCC patients (14 females, 
56.7± 6.4 year ), 13 age-comparable healthy controls (9 females, age 51.9± 9.4 year ), and seven young healthy 
volunteers (3 females, age 27.4± 1.7 year ; acquired twice for reproducibility evaluations). The radiological 
measurements, i.e. cross-sectional area (CSA) and compression ratio (CR), sub-divided the cohort of 33 NMD-
CCC patients to sub-group of 18 patients with mild NMDCCC (7 females, age 55.6± 6.1 year ) and sub-group 
of 15 patients with severe NMDCCC (7 females, 58.1± 6.8 year ). The neurological examination confirmed 
no DCM symptom presence for NMDCCC patients. A smaller proportion of NMDCCC cohort (13 out of 33 
patients) displayed clinical symptoms and/or signs of cervical monoradiculopathy (mostly a radicular pain, less 
frequently a motor deficit in a corresponding myotome). Two-sample t-test identified the probability of age dif-
ference between age-comparable healthy controls and NMDCCC patients at p = 0.052 , and mild NMDCCC 
patients at p = 0.195 , and severe NMDCCC patients at p = 0.056 . To avoid the potential age or radiculopathy 
effects post-hoc ANCOVA or Wilcoxon rank-sum tests were performed for each presented significant between-
group difference below.

Acquisition protocols.  A visualization of acquired MRI data with segmented and labeled white (WM) and 
gray (GM) matter in T∗

2 -w axial space (i.e. T2TRA space) is presented in Fig. 1a–e. T∗
2 -w axial scans provided a 

superior WM/GM contrast that was ideally suited for WM/GM segmentation (Fig. 1b). Both HARDI-ZOOMit 
protocols, interpolated and non-interpolated (Fig. 1c,e), were about 3 min 30 s faster when compared to the 
DTI-RESOLVE non-interpolated protocol (Fig.  1d). In comparison to DTI-RESOLVE protocol with b-value 
650 s mm−2 ( SNR 5.1± 1.3 ), HARDI-ZOOMit protocols generated diffusion weighted images with higher 
SNR level for b-value 550 s mm−2 (interpolated 6.2± 1.2 , non-interpolated 5.7± 1.1 ), and with lower SNR for 
b-value 1000 s mm−2 (interpolated 4.5± 0.9 , non-interpolated 4.7± 0.9 ), as anticipated. Full visualization of 
SNR results is shown in Fig. 1f. NMDCCC leads to a decrease in SNR for all protocols (Fig. 1f). A loss of SNR 
was also observed in both HARDI-ZOOMit protocols in the lower part of C7 vertebral level (Fig. 1c,e) and 
may be caused by the increased susceptibility artifact originating from the lungs. The used spherical two-shell 
HARDI acquisition scheme is shown in Fig. 4a.
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Figure 1.   Raw anatomical MRI data, white and gray matter segmentation, and vertebral level labeling in a single-
subject (a–e). Coronal (left), sagittal (middle) and axial (right) images with corresponding cervical (C) vertebral 
levels are shown; anatomical orientation: S superior, I inferior, R right, L left, A anterior, P posterior, as included in 
(a); anatomical plane order and direction orientation is the same in all other panels. (a), T2w sagittal sequence (b), 
T
∗
2w axial sequence with WM/GM segmentation and vertebral level labeling overlay (c). Diffusion non-weighted (i.e. 

b0 scan in the first row of images) and weighted (i.e. DWI scan in the second row of images) images for the HARDI-
ZOOMit protocol with Fourier domain interpolation during image reconstruction. Variable b (i.e. b-value) represents 
a magnitude of applied gradient waveform in the direction of a gradient vector g. Yellow arrows indicate areas of signal 
loss, green arrows the nerve roots in b0 scan. (d) b0 and DWI scans for the non-interpolated DTI-RESOLVE protocol. 
Order of b0 and DWI scans and diffusion variable description same as in (c). Yellow arrows indicate locations of ghost 
artifacts, green arrows the nerve roots in b0 scan. (e) b0 (left) and DWI (right) scans for the non-interpolated HARDI-
ZOOMit protocol. Diffusion variable description same as in (c). Yellow arrow indicate areas of signal loss, green arrows 
the nerve roots in b0 scan. (f) Estimation of signal-to-noise ratio (SNR) in spinal cord DWI scans of investigated 
protocols.
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Diffusion MRI microstructural metrics.  For dMRI analysis, the region of interest (ROI) was reduced 
to the C3–C6 vertebral levels due to the presence of artifacts at C7 level as described above. Clinical relevance 
should not be affected much since the expected C7 SC compression in DCM34 is presented only in 8–11% of 
cases in the used Caucasian middle-Europe population21,35. If the NMDCCC causes more extensive changes 
even above the affected C7 segment, C3–C6 ROI might still work fine. Diffusion MRI maps characterizing 
the SC microstructure, warped into T2TRA space, are shown in Fig. 2a–c. As expected, fractional anisotropy 
(FA) and partial volume of the primary fiber bundle direction ( f1 ) were lower in GM and higher in the WM 
corresponding to lateral corticospinal tracts and dorsal columns (i.e. gracile and cuneate fasciculi) for both 
HARDI-ZOOMit protocols (Fig. 2a,c). In contrast, GM/WM difference was more difficult to identify in the DTI-
RESOLVE Non-Interp FA and f1 maps (Fig. 2b). Single-subject mean/median values of FA and f1 were higher 
in the HARDI-ZOOMit protocols than in the DTI-RESOLVE protocol for both WM (Fig. 3, Supplementary 
Figs. S1, S2) and GM (Supplementary Figs. S1–S3) structures.

Mean diffusivity maps (i.e. MD from the DTI model and d from the Ball and Stick and Stick model) displayed 
higher values at the edge of SC over all protocols (Fig. 2a–c). The spatial definition of the WM/GM boundary was 
clearer in HARDI-ZOOMit protocols than DTI-RESOLVE protocol (Fig. 2a,c). Over all dMRI protocols, DTI 
estimated lower MD values than Ball and Stick and Stick model for d (Figs. 2a–c, 3, Supplementary Figs. S3–S5). 
HARDI-ZOOMit protocols increased the mutual information (i.e. a usable similarity measure of degree of joint 
entropy in two multi-modal images with a non-linear contrast transform function, Eq. (7); see more informa-
tion in Methods) between dMRI metric maps and semi-binarized images (i.e. background = 0 , WM = 2 and 
GM = 1 ) of WM/GM structures (Fig. 2d).

Most distributions of dMRI parameters estimated from WM revealed narrow confidence intervals for each 
group of subjects (Fig. 3). These distributions also showed distinct properties between patients and healthy 
controls in the HARDI-ZOOMit protocol (Fig. 3). DTI-RESOLVE non-interpolated (possibly due to lower 
angular resolution) has higher inter-subject variance in confidence intervals for f1 (Fig. 3). Results from GM 
demonstrated higher between-group overlap (Supplementary Fig. S3), except MD and d estimated from DTI-
RESOLVE showing distinct properties between patients and healthy controls (Supplementary Fig. S3).

HARDI acquisition protocols enable to model and visualize multiple fiber bundles within single voxel, i.e., 
intra-voxel crossing fiber conformations24,36. All protocols identified 2nd fiber bundle directions as the 2nd signifi-
cant fully anisotropic Stick30 compartment (i.e. f2 > 0.05 ) especially near to the dorsal horns. HARDI-ZOOMit 
protocols estimated a higher number of crossing fiber configurations compared to DTI-RESOLVE protocol 
(Fig. 4b), likely due to the higher angular resolution afforded by HARDI-ZOOMit protocols. Crossing fibers were 
particularly detected in areas of dorsal horns and anterior white commissure (Fig. 4c). Apart from our own pre-
liminary data28, this presents one of the first visualizations of crossing fibers from contiguous SC human in-vivo 
dMRI data (Fig. 4c). However, the amount of detected crossings (Fig. 4b,c) is possibly still underestimated25–27. 
Still, the intra-voxel modelling of crossings yielded better local underlying microstructural decomposition pro-
viding maps more close to WM/GM structures (e.g. f1 vs FA and d vs MD in Fig. 2d) and higher separation of 
f1-based dMRI metrics in comparison to complementary FA-based metrics (Table 1). Significant local partial 
volumes f2 (i.e. f2 > 0.05 ) of the 2nd crossing fiber bundles possibly filter out from f1 maps a variability portion 
which makes local FA values falsely lower and appearing as flatter tensor of the underlying microstructure for 
the major fiber bundle than the ground truth is.

Descriptive statistics parameters.  For each subject and each dMRI metric, mean, median, standard 
deviation, skewness and kurtosis of the metric were evaluated within WM and GM, along with differences 
between means or medians in the WM and GM (e.g. mean(MD)WM −mean(MD)GM ). Four different dMRI 
metrics (i.e. FA, f1 , MD and d) were analyzed and yielded 48 descriptive statistics parameters for each dMRI 
protocol. Findings for all parameters are presented in Supplementary Figs. S1, S2, S4, S5. Nineteen of the 48 
parameters demonstrated significant differences ( pFWE < 0.05) between age-comparable control (C) group and 
mild (M) or severe (S) compression non-myelopathic patients (Fig.  5; Table  1). Seventeen of the 19 param-
eters demonstrated significant differences for the HARDI-ZOOMit Interp protocol. The HARDI-ZOOMit Non-
Interp protocol showed similar results (Fig. 5, Supplementary Figs. S1, S2, S4, S5), but with fewer significant 
findings likely due to the lower number of subjects scanned with this protocol. Eight of the 19 parameters were 
significantly different between controls and patients for the DTI-RESOLVE Non-Interp protocol (Fig. 5, Supple-
mentary Figs. S1, S2, S4, S5). The DTI-RESOLVE only detected differences in the GM of NMDCCC patients and 
in differences between WM and GM values of the patients. Between-group differences were more robust in the 
HARDI-ZOOMit Interp protocol, when compared to the DTI-RESOLVE Non-Interp protocol, i.e. more signifi-
cant observations with lower p values for the HARDI-ZOOMit (Fig. 5; Table 1, Supplementary Figs. S1, S2, S4, 
S5). We anticipated that the Ball and Stick and Stick model (providing local crossing models with relatively few 
parameters) might enhance the clinical benefit of the proposed HARDI-ZOOMit protocol. This assumption has 
been partly validated as the f1 metric demonstrated lower p values (Wilcoxon rank-sum tests) than FA (Table 1). 
This is in line with previous observations of improved clinical correlation for generalized fractional anisotropy 
(GFA)36 estimated from Q-Ball imaging, in contrast to the DTI FA7.

Post-hoc ANCOVA test utilizing age as a confounding variable identified 14 of 17 variables to still demon-
strate significant differences between age-comparable controls and NMDCCC patients for the HARDI-ZOOMit 
protocol (Table 2). Skewness of f1 from WM, median of MD from WM and skewness of d from WM disappeared 
from the original list. For the DTI-RESOLVE protocol the number of variables increased from 8 to 9 (Table 2), 
again all are GM related or diffusivity gradient related as in the previous results. ANCOVA observations mostly 
overlap with the Wilcoxon rank-sum test observations (Fig. 5; Table 1).
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Figure 2.   Diffusion MRI metrics and their correspondence to WM/GM structures in a single-subject (a–c) 
and across all participants (d). FA (DTI model fractional anisotropy), f1 (Ball and Stick and Stick model partial 
volume of the 1st principal diffusion direction), MD (DTI model mean diffusivity) and d (Ball and Stick and 
Stick model intra-voxel mean diffusivity) maps are shown for four representative axial slices and one coronal 
slice for the HARDI-ZOOMit interpolated protocol (a), the DTI-RESOLVE non-interpolated protocol (b) and 
the HARDI-ZOOMit non-interpolated protocol (c). All FA and f1 maps use a “hot” colormap (i.e. red–orange–
yellow–white colorbar on the top left panel). All MD and d maps are a “blue–yellow” colormap (i.e. lightblue–
blue–gray–red–orange–yellow colorbar on the top right panel). All direction orientations of the axial (first 
four rows of images) or coronal slices (last row of slices) are the same as shown for the T2w sagittal sequence in 
Fig. 1a. (d) Distributions of mutual information between dMRI metrics and semi-threshold (i.e. background 
= 0, WM = 2 and GM = 1) WM/GM structure images demonstrate (in comparison to the DTI-RESOLVE 
protocol) increased mutual entropy level for both HARDI-ZOOMit protocols in all dMRI metrics. Ball and Stick 
and Stick model diffusivity map (d) has larger mutual entropy with WM/GM structures than DTI model MD 
map. Both diffusivity maps have larger mutual entropy with WM/GM structures than FA or f1 maps. They still 
contain some information about WM/GM structures, while mutual information coefficients are > 0.
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For any investigated protocol or variable demonstrating significant differences between age-comparable 
healthy controls and mild or severe NMDCCC patients, post-hoc Wilcoxon rank-sum tests demonstrated no 
significant differences (i.e. each p > 0.05 ) in descriptive statistics dMRI parameters of NMDCCC patients with 
or without radiculopathy.

Novel heuristic parameters.  Since the distributions in Fig. 3 demonstrated several dMRI metric intervals 
with disjunctive probability density functions (g), five heuristic parameters (H) of dMRI metrics (Eqs. 1–5) are 
proposed:

(1)HFA =

∫ 0.67

0.47
g(FA)dFA

(2)Hf1 =

∫ 0.55

0.30
g(f1)df1

(3)HMD =

∫ 1.26

0.84
g(MD)dMD

Figure 3.   Group-averaged distributions of dMRI microstructural parameters from C3–C6 white matter. The 
confidence intervals (i.e. corresponding transparent colors) show Q1–Q3 quartiles. The intervals are narrow and 
distinct for most distributions, except f1 for non-interpolated HARDI-ZOOMit protocol with lower number 
of participants, and except f1 for non-interpolated DTI-RESOLVE protocol where precise f1 and f2 volume 
estimations might fail because of the protocol’s lower angular resolution. Trends in distributions are similar for 
both HARDI-ZOOMit protocols.
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(4)HdWM =

∫ 2.20

1.70
g(d)dd

Table 1.   dMRI metrics with significant differences between age-comparable healthy controls and NMDCCC 
patients with mild or severe compression. List of parameters with their corresponding labels as used in Fig. 6 
along with statistics and Wilcoxon rank-sum test p values for HARDI-ZOOMit Interp and DTI-RESOLVE 
Non-Interp protocols. Significant p values ( pFWE < 0.05 ≈ 8.33E−3 ) are highlighted in bold.

Parameter Shortcut

HARDI-ZOOMit Interp. DTI-RESOLVE non-Interp.

Control Mild Comp. patients Severe Comp. patients Control Mild Comp. patients Severe Comp. patients

Median Median diff % p value Median diff % p value Median Median diff % p value Median diff % p value

FA_WM_
STD FAwS 0.1422 0.1286 − 9.60 6.10E−3 0.1356 − 4.65 5.30E−2 0.1266 0.1239 − 2.11 4.12E−1 0.1325 4.72 1.00E+1

FA_WM_
kurtosis FAwK 2.4934 2.8241 13.26 5.35E−4 2.6698 7.07 1.66E−2 2.7666 2.8592 3.35 8.89E−1 2.7658 − 0.03 5.19E−1

f1_WM_
STD f1wS 0.1512 0.1323 − 12.55 6.10E−3 0.1397 − 7.61 1.29E−2 0.1398 0.1318 − 5.71 2.54E−1 0.1304 − 6.75 2.49E−1

f1_WM_
skewness f1wSK − 0.1315 − 0.0805 − 38.82 6.74E−1 0.0313 − 123 6.57E−3 − 0.0685 − 0.0078 − 88.68 5.89E−1 0.1390 − 303 1.67E−1

f1_WM_
kurtosis f1wK 2.4683 2.7209 10.23 1.82E−4 2.7330 10.72 3.20E−3 2.6254 2.6115 − 0.53 6.74E−1 2.7310 4.02 8.90E−1

MD_WM_
median MDwM 1.0509 0.9951 − 5.31 5.40E−3 1.0578 0.65 4.61E−1 1.1614 1.1860 2.12 5.62E−1 1.2524 7.83 1.29E−2

MD_WM_
mean MDwm 1.1545 1.0576 − 8.39 2.51E−3 1.1005 − 4.68 1.97E−1 1.2414 1.2345 − 0.56 7.64E−1 1.3230 6.58 2.40E−2

MD_WM_
STD MDwS 0.3561 0.2621 − 26.39 1.10E−3 0.2863 − 19.60 2.28E−4 0.3069 0.2708 − 11.76 3.56E−2 0.3150 2.64 9.63E−1

d_WM_
STD dwS 0.4893 0.4325 − 11.62 4.77E−3 0.4545 − 7.11 2.69E−1 0.3727 0.3544 − 4.89 1.93E−1 0.4238 13.72 7.12E−1

d_WM_
skewness dwSK 1.1506 1.1119 − 3.36 9.20E−1 0.9342 − 18.80 6.57E−3 0.1457 0.2125 45.86 4.35E−1 0.2112 44.99 3.57E−1

MD_GM_
median MDgm 0.8300 0.8406 1.28 2.38E−1 0.8933 7.64 4.95E−3 1.0577 1.1145 5.37 4.75E−2 1.1772 11.29 4.95E−3

MD_GM_
mean MDgm 0.8573 0.8633 0.70 4.35E−1 0.9048 5.53 1.46E−2 1.0657 1.1255 5.61 2.63E−2 1.1975 12.37 2.03E−3

MD_GM_
skewness MDgSK 1.6110 1.4599 − 9.38 6.17E−1 1.2434 − 22.81 5.89E−2 0.0600 0.5163 760 7.76E−3 0.6187 931 1.07E−3

d_GM_
median dgM 1.4979 1.5211 1.55 5.22E−2 1.6111 7.56 6.57E−3 1.9277 1.9717 2.29 2.63E−2 2.0262 5.11 1.26E−3

d_GM_
mean dgm 1.5401 1.5595 1.26 3.92E−2 1.6498 7.13 2.75E−3 1.8827 1.9816 5.26 1.54E−2 2.0449 8.62 5.50E−4

MD_
WM-GM_
median

MDwgM 0.2122 0.1470 − 30.71 8.04E−5 0.1711 − 19.35 1.88E−2 0.1185 0.0913 − 23.00 9.82E−3 0.1032 − 12.94 2.14E−1

MD_
WM-GM_
mean

MDwgm 0.2803 0.1906 − 32.00 6.80E−5 0.1990 − 29.00 1.90E−4 0.1676 0.1172 − 30.09 1.27E−3 0.1244 − 25.82 3.41E−2

d_
WM-GM_
median

dwgM 0.5129 0.4339 − 15.41 1.32E−4 0.4122 − 19.63 1.48E−3 0.3864 0.3446 − 10.82 4.32E−2 0.2546 − 34.11 4.29E−3

d_
WG-GM_
mean

dwgm 0.5676 0.4580 − 19.31 2.41E−5 0.4321 − 23.87 2.28E−4 0.3823 0.3340 − 12.64 5.72E−2 0.2373 − 37.92 3.71E−3

FA_WM_
heuristic FAwH 0.4729 0.5076 7.36 2.63E−2 0.5349 13.13 6.52E−4 0.5467 0.5569 1.87 6.74E−1 0.5412 − 1.00 6.45E−1

f1_WM_
heuristic f1wH 0.5362 0.5819 8.52 4.21E−3 0.5897 9.98 4.29E−3 0.5789 0.5941 2.64 7.64E−1 0.5505 − 4.90 4.07E−1

MD_WM_
heuristic MDwH 0.5683 0.6706 17.99 7.18E−4 0.6403 12.67 3.20E−3 0.5432 0.5755 5.94 4.84E−1 0.4757 − 12.42 6.54E−2

d_WM_
heuristic dwH 0.5002 0.5513 10.21 6.10E−3 0.5023 0.43 9.27E−1 0.3799 0.3538 − 6.86 4.12E−1 0.3411 − 10.22 3.11E−1

MD_GM_
heuristic MDgH 0.4956 0.5400 8.96 1.05E−1 0.5892 18.90 1.48E−3 0.7732 0.7345 − 5.00 4.59E−1 0.6435 − 16.78 4.95E−3

d_GM_
heuristic dgH 0.4872 0.4550 − 6.60 9.66E−2 0.3537 − 27.41 5.71E−3 0.0774 0.0533 − 31.08 5.22E−2 0.0527 − 31.82 1.53E−1
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(5)HdGM =

∫ 1.48

1.00
g(d)dd

Figure 4.   HARDI acquisition scheme and detected crossing fibers. (a) The graph visualizes 63 unique MR field 
gradient directions uniformly sampled over two spherical shells of the q-space. Caruyer et al.57 sampler was used 
to design the HARDI acquisition scheme. (b) Voxels with significant 2nd fiber orientations (i.e. crossing fibers) 
were detected for all dMRI protocols. No significant difference in voxel numbers was found between groups. (c) 
As shown for results of HARDI-ZOOMit Interp protocol in native diffusion space, detected crossing fibers are 
mostly located near the dorsal horns and in the anterior white commissure. Visualizations are shown for three 
representative participants with four selected C3–C6 axial slices. Orientations are the same over all presented 
slices with A anterior, P posterior, Lleft, R right directions. The orientation of detected fiber bundles are 
visualized as RGB (red–green–blue) color-coded lines (i.e. red—right–left direction, green—anterior–posterior 
direction, blue—superior–inferior direction). The blue dot in the middle of each SC voxel demonstrates an axial 
projection of the intra-voxel primary fiber bundle with a major superior–inferior direction. In voxels where 
projections of two lines are present, crossing fibers were detected.
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All WM-based heuristic parameters (Eqs. 1–4) demonstrated significant clinical differences between control 
and patient groups (Fig. 5; Table 1) and HMD or HdGM in GM (Eqs. 3, 5; Fig. 5; Table 1) for the HARDI-ZOOMit 
Interp protocol. HMD measured in GM was significant for the DTI-RESOLVE Non-Interp protocol (Eq. 3; Fig. 5; 

Figure 5.   Diffusion MRI metrics with significant between-group differences ( pFWE < 0.05) for age-comparable 
controls and mild (M) or severe (S) compression non-myelopathic patient groups. “Reproducibility” refers to 
a group of young healthy subjects measured twice during separate acquisition sessions. For clarity, graphs are 
not shown for the diffusion metrics for which control-patient between-group differences were not statistically 
significant.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17529  | https://doi.org/10.1038/s41598-020-70297-3

www.nature.com/scientificreports/

Table 1). All estimated values of proposed heuristic parameters are shown in Supplementary Fig. S6. Post-hoc 
ANCOVA with age as a confounding variable rejected the HdWM measured in WM to demonstrate significant 
differences for the HARDI-ZOOMit protocol (Table 2). For the DTI-RESOLVE protocol, original HMD GM 
significance disappeared, but HdGM appeared significant (Table 2). Same as for the descriptive statistics param-
eters, the post-hoc Wilcoxon rank-sum tests demonstrated no significant differences in heuristic dMRI metrics 
of NMDCCC patients with or without radiculopathy.

Step‑wise linear regression and K‑means clustering.  Descriptive statistics and our heuristic approach 
identified 25 parameters with significant discrimination power between age-comparable controls and mild or 
severe NMDCCC patients with Wilcoxon rank-sum tests (Fig. 5; Table 1). Cross-subject cross-correlation matri-
ces demonstrate high similarity between several pairs of dMRI metrics (Fig. 6a). Step-wise linear regression 
( Y = β0 + Xβ + ǫ ) identified a minimal linear mixture model maximizing separation between age-comparable 
healthy controls and all NMDCCC patients for each investigated dMRI protocol. Full visualization of the best 
model fits is shown in Supplementary Fig. S7 for each protocol. In descending order using Pearson correlation 
coefficient (r) between class signal ( Y ) and predicted signal ( Yp = Xβ):

HARDI-ZOOMit Non-Interp protocol demonstrated four significant variables, i.e. skewness value of d in WM 
(dwSK), white–gray matter gradient of d median values (dwgM), white–gray matter gradient of d mean values 
(dwgm) and heuristic parameter of f1 in WM (f1wH). The model fit efficiency metrics were as follows: r = 0.892 , 
RMSE = 0.252 , model F value F = 10.74 , model p value p = 8.56E−4 , model explained variance of R2 = 79.6%.

HARDI-ZOOMit Interp protocol demonstrated two significant variables (dwgm; and kurtosis of f1 in WM—
f1wK), with efficiency metrics: r = 0.733 , RMSE = 0.317 , F = 25.01 , p = 6.23E−8 , R2 = 53.8% . There is an 
overlap with the HARDI-ZOOMit Non-Interp protocol, i.e. the dwgm variable.

DTI-RESOLVE Non-Interp protocol demonstrated three significant variables (skewness of MD in GM—
MDgSK; mean value of d in GM—dgm; and white–gray matter gradient of MD mean values—MDwgm), with 
efficiency metrics: r = 0.670 , RMSE = 0.350 , F = 11.39 , p = 1.35E−5 , R2 = 44.9%.

Table 2.   Post-hoc ANCOVA of dMRI metrics with significant differences between age-comparable healthy 
controls and NMDCCC patients. List of parameters with their corresponding labels as used in Fig. 6 along 
with ANCOVA test p values for HARDI-ZOOMit Interp and DTI-RESOLVE Non-Interp protocols. Age was 
the confounding variable. Significant p values ( p < 0.05) are highlighted in bold. C age-comparable healthy 
controls, M mild NMDCCC patients, S severe NMDCCC patients.

Parameters Shortcut

HARDI-ZOOMit Interp. DTI-RESOLVE non-Interp.

C vs M+S C vs M+S

FA_WM_STD FAwS 8.43E−3 3.27E−1

FA_WM_kurtosis FAwK 1.99E−3 6.32E−1

f1_WM_STD f1wS 1.93E−3 2.21E−1

f1_WM_skewness f1wSK 7.84E−2 9.62E−1

f1_WM_kurtosis f1wK 9.46E−5 8.46E−1

MD_WM_median MDwM 6.64E−1 7.65E−2

MD_WM_mean MDwm 3.44E−2 9.25E−2

MD_WM_STD MDwS 4.09E−3 2.53E−1

d_WM_STD dwS 3.00E−2 1.87E−1

d_WM_skewness dwSK 8.28E−2 2.09E−1

MD_GM_median MDgM 3.25E−2 1.48E−2

MD_GM_mean MDgm 5.60E−2 5.29E−3

MD_GM_skewness MDgSK 2.46E−1 6.44E−4

d_GM_median dgM 4.79E−3 3.66E−4

d_GM_mean dgm 5.94E−3 1.49E−4

MD_WM-GM_median MDwgM 2.07E−4 2.47E−2

MD_WM-GM_mean MDwgm 3.48E−7 1.12E−3

d_WM-GM_median dwgM 2.98E−5 2.26E−3

d_WG-GM_mean dwgm 4.11E−7 1.64E−3

FA_WM_heuristic FAwH 1.77E−3 8.87E−1

f1_WM_heuristic f1wH 1.35E−3 8.49E−1

MD_WM_heuristic MDwH 1.05E−3 5.21E−1

d_WM_heuristic dwH 3.27E−1 1.61E−1

MD_GM_heuristic MDgH 7.70E−3 6.79E−2

d_GM_heuristic dgH 3.70E−3 2.24E−2
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Although significant relationship between age and dMRI metrics was previously observed in a healthy aging 
population37 or in patients with degenerative cervical cord compression16, none of the models identified age 
variable as the model-significant variable in the present data, suggesting that the age-effect in the dataset is low.

Only regression-identified significant variables were used in the following K-means clustering using two 
classes (Fig. 6b). In sensitivity (SE) and specificity (SP) descending order, HARDI-ZOOMit Non-Interp protocol 
demonstrated SE = 90.91%, SP = 100.00%; HARDI-ZOOMit Interp protocol SE = 87.88%, SP = 92.31%; and DTI-
RESOLVE Non-Interp protocol SE = 87.88%, SP = 76.92%. K-means approach wrongly classified some outlying 
NMDCCC patients as healthy controls (Fig. 6b). While the used K-means clustering algorithm estimates and 
finds a linear hyper-plane separating clusters in the data, more advanced algorithms estimating non-linear hyper-
planes38 may likely improve the sensitivity for each protocol. We have not implemented such methods here, as 
they require additional datasets for training and the sample sizes of our datasets (46 or 16 data acquisitions) are 

Figure 6.   Cross-correlations of clinically significant diffusion MRI metrics and estimated susceptibility 
distortion parameters (a), K-means clustering of diffusion MRI metrics identified using step-wise linear 
regression (b) and reproducibility of diffusion MRI metrics over investigated protocols (c). Parameter names 
consists of 3 parts: (1) FA/f1/MD/d name of the diffusion MRI metric; (2) w/g/wg C3–C6 white matter, gray 
matter, white matter–gray matter difference respectively; (3) M median, m mean, S standard deviation, SK 
skewness, K kurtosis, H heuristic parameter. (a) The last six variables in matrices starting with letter S (e.g. 
S36M) represent measures of susceptibility artifact effects from three different ROIs (i.e. 36—C3–C6, 3—C3, 
56—C5–C6).
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rather limited to consider such approach. Using the full dataset for the classifier training (Fig. 6b) might also led 
to the classifier overfitting in all used protocols.

Level of susceptibility artifacts in dMRI protocols.  SC compression can increase local susceptibility 
off-resonance effects impacting the estimation of dMRI metrics. The level of the effects was evaluated in three 
different ROIs, i.e. C3–C6 (full FOV), C3 (area without compression) and C5–C6 (area with definite compres-
sion). These effects were not significantly different across groups in any ROI (Supplementary Fig. S8). HARDI-
ZOOMit protocols were affected by off-resonance effects (group averages of single-subject median effects 
were 16± 8Hz at C3–C6, 14± 7Hz at C3, and 21± 13Hz at C5–C6 for Interp protocol, 5± 3Hz at C3–C6, 
6± 4Hz at C3, and 6± 4Hz at C5–C6 for Non-Interp protocol) although to a lesser degree than the DTI-
RESOLVE Non-Interp protocol ( 20± 11Hz at C3–C6, 23± 16Hz at C3, and 22± 15Hz at C5–C6). Off-reso-
nance effects of HARDI-ZOOMit Interp protocol were not correlated with dMRI derived parameters (Fig. 6a) 
with |r| = 0.09± 0.07 , pr ≈ 0.49 , neither DTI-RESOLVE Non-Interp ( |r| = 0.15± 0.11 , pr ≈ 0.27 ) and nei-
ther HARDI-ZOOMit Non-Interp ( |r| = 0.16± 0.12 , pr ≈ 0.48 ). Still, the lowest cross-correlation effects are 
observed for the HARDI-ZOOMit Interp protocol (Fig. 6a).

Reproducibility in young healthy subjects.  Coefficients of variation (CV) for mean/median WM/
GM dMRI metrics, and absolute or normalized mean differences in 25 significant dMRI metrics are shown in 
Fig. 6c. CV revealed a large difference between both HARDI-ZOOMit protocols and DTI-RESOLVE ( p = 0.007 
for both), and no difference between HARDI-ZOOMit protocols, whereas the evaluation of normalized differ-
ences proved to be significant between all protocols ( p < 0.0001 between HARDI-ZOOMit vs. DTI-RESOLVE; 
p = 0.002 between HARDI-ZOOMit protocols). The reproducibility of HARDI-ZOOMit protocols in compari-
son to the DTI-RESOLVE Non-Interp protocol was either comparable or higher as shown in Fig. 6c.

HARDI‑ZOOMit protocol and data analysis innovations.  Our proposed HARDI-ZOOMit protocols 
yielded a larger amount of significant metrics with higher specificity when compared to the DTI-RESOLVE 
Non-Interp protocol (Figs. 3, 5, 6b; Tables 1, 2). The increased mutual information between microstructural 
maps and WM/GM structures (Fig. 2d) and better separation ability of primary and secondary fiber bundles 
(Fig. 4b) can be the improving key aspects.

In comparison to the previously used DTI-RESOLVE Non-Interp protocol, the proposed HARDI-ZOOMit 
protocol includes several modifications which possibly underlie the higher specificity of the protocol for the 
targeted clinical application. These include multi-shell gradient waveform sampling (enabling better separation 
of different microstructural compartments31) over spherical q-space, and higher maximal b-value ( 1000 s mm−2 
vs 650 s mm−2 ) increasing the diffusion weighting effects3 while retaining sufficient SNR (Fig. 1f). The fact that 
HARDI-ZOOMit protocols yielded higher group mean/median FA and f1 values than the DTI-RESOLVE Non-
Interp protocol (Fig. 3, Supplementary Figs. S1, S2) supports the hypothesis that the data are less noisy, consistent 
with the fact that the cervical SC largely consists of fiber bundles oriented in the superior–inferior direction with 
high level of diffusion anisotropy expected.

We proposed the use of skewness, kurtosis and heuristic parameters extracted from subject’s cervical dMRI 
maps as robust statistic parameters in SC injury revealing significant differences between controls and patients 
(Figs. 5, 6b; Tables 1, 2). Also, while using the subtraction between WM and GM mean/median dMRI metrics, 
we have demonstrated the most significant inter-group differences (Figs. 5, 6b; Tables 1, 2). The subtraction 
method is comparable to a simple gradient approximation of dMRI metrics between WM and GM, and is a novel 
clinically feasible over all tested protocols for MD and d metrics.

Since we used the contiguous C3–C6 ROI space (i.e. data at all spinal levels), the obtained results have higher 
statistical power than previous studies in NMDCCC typically analyzing dMRI from several separate slices, 
mostly focused on the maximum compression level and compared to non-compressed levels20,35. Our approach 
addresses the issue of different ROI selection across subjects determined by the presence of SC compression at 
different segments but also the issue of physiologic dMRI metrics variation in different SC segments39. Moreover, 
the current approach minimizes artifact effects (Fig. 6a) potentially emphasized (Fig. 1f) in areas with the most 
severe compression.

Limitations and future work.  Although C3–C6 WM or GM ROIs are quite large and coarse, it is feasible 
to proceed to finer analysis of tract-specific dMRI metrics utilizing a template and tract-specific atlas co-regis-
tration37,40. Tract-specific changes within our studied group of patients might be investigated, as demonstrated 
in the case of DCM41–43 or ALS44 patients.

A HARDI-RESOLVE dMRI protocol with exactly the same gradient waveform samplings, same b-values, and 
same spatial resolution should be used for the optimal protocol comparison. Such protocol might increase the 
percentage of observed crossings (Fig. 4b), increase FA and f1 group medians (Supplementary Figs. S1, S2), and 
even increase the protocol’s sensitivity or specificity to the presymptomatic myelopathy detection. However, the 
acquisition time of HARDI-RESOLVE protocol would significantly increase in comparison to the original 16 
min for the DTI-RESOLVE protocol or 12.5 min for the introduced HARDI-ZOOMit protocols.

Further HARDI-ZOOMit protocol optimization or further increase in the protocol’s angular resolution may 
yield dMRI protocol visualizing SC crossing fibers in-vivo in clinically applicable acquisition time.

Diffusion weighted MR signal loss in areas close to the lungs (i.e. lower part of C7 and T1 acquired here; 
Fig. 1c,e) crucially limits the usability of the proposed HARDI-ZOOMit protocol for other regions apart from 
the cervical spine and SC. Suppression of the lung-induced artifacts will be the topic of future research that 
might extend the usability of the protocol to broader clinical applications imaging beyond cervical SC segments.
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We showed that the proposed protocol was able to distinguish age-comparable healthy controls and presymp-
tomatic patients with microstructural myelopathy. Changes in dMRI parameters for DCM patients with advanced 
clinical symptoms have been already reported12–18. Extending the dataset with groups of symptomatic DCM 
patients spanning from mild to severe cervical SC compressions to delineate the disease progression in all DCM 
stages will be addressed in upcoming research. Also, step-wise multiple linear regression was used in a relatively 
simple context, dividing four different groups into two classes (controls or patients). More advanced classifica-
tion, e.g. patients with mild or severe SC compressions, has not been applied, and should be carried out in the 
future, along with exploration of the 25 parameters that rendered significant between-group differences (Fig. 5; 
Table 1). Our results might be influenced by the gender-related difference in the control group (i.e. 9 females 
and 4 males). However, since the control group results overlapped with the young healthy participant group (i.e. 
reproducibility group, Fig. 3), we have assumed that gender effect was minimal. Similarly as we assumed it for 
the age-effect, which we have also confirmed with the ANCOVA test (Table 2). In contrast to the DTI-RESOLVE 
protocol, the presented HARDI-ZOOMit protocol has not demonstrated so many significant changes for MD or 
d in the GM (Fig. 5; Tables 1, 2). If these findings are confirmed, the clinical DTI-RESOLVE protocol provides 
additional information about the GM microstructural changes.

Discussion
Using an optimized HARDI-ZOOMit dMRI protocol and a “high SNR” DTI-RESOLVE protocol33, we demon-
strated a global difference of diffusion MRI metrics over contiguous C3–C6 levels between healthy controls and 
NMDCCC patients underlying presymptomatic microstructural myelopathy. The practical impact of detecting 
subclinical microstructural SC injury in NMDCCC using fast, reliable and clinically feasible dMRI protocol 
is significant. First, in addition to other quantitative MRI methods (i.e. magnetization transfer imaging and 
T∗
2-weighted imaging), it verifies and quantifies microstructural SC involvement in subjects with compressed 

spinal cord due to degenerative cervical stenosis19. Such knowledge opens the door for more accurate definition 
of the myelopathy diagnosis which is currently equivocal and often based on clinical symptoms, which appear 
relatively late. DCM is already symptomatic and clinical deficits may often be irreversible. Second, the time 
course and reversibility of microstructural dMRI-detected SC changes in the compressed SC and their correla-
tion with similar “functional” and possibly “biochemical” changes detected in NMDCCC using evoked potentials 
and magnetic resonance spectroscopycite45,46 may further describe the DCM pathophysiology and lead to the 
optimization of the DCM diagnosis. Finally, these changes may help to identify NMDCCC subjects with higher 
risk of developing DCM (i.e., “presymptomatic myelopathy”), in addition to already demonstrated predictors35,45.

The DTI-RESOLVE Non-Interp scans were occasionally contaminated by insufficient fat suppression or 
aliasing artifacts (e.g. in the upper parts of the FOV with voxels originating from areas outside the FOV, from 
subjects’ chin or adipose tissue in particular). While the artifacts were mostly present on the outside of the SC 
ROI, their effect on the dMRI metrics should be minimal. It is also important to note that the performance of 
HARDI-ZOOMit protocol remains limited for the SC imaging at and below C7 vertebra.

Major fiber tracts in the cervical SC are highly organized along the SC longitudinal axis resulting in relatively 
high FA or f1 values. Our finding of higher FA and f1 mean/median value estimates with HARDI-ZOOMit 
protocols suggests that the HARDI-ZOOMit data are less noisy than DTI-RESOLVE protocol data. Higher sta-
tistical power of between-group differences for f1 derived statistical parameters (compared to complementary 
FA parameters) demonstrated the efficiency of the multi-shell data acquisition and additive multi-compartment 
microstructural models (estimating local fiber crossings) and the potential applicability in the clinical quantitative 
diagnostic imaging. Further clinical HARDI protocol optimization utilizing other shells with b > 1000 s mm−2 , 
sufficient SNR and sufficient acquisition time would permit using other advanced microstructural models such as 
NODDI (neurite orientation dispersion and density imaging)47–50, MIX (microstructure imaging of crossing)51, 
CHARMED (composite hindered and restricted model of diffusion)52, AxCaliber53, ActiveAx54 or direct multi-
shell multi-tissue constrained spherical deconvolution55, etc. Default implementations of such methods expect 
high b-values or even variable diffusion δ/� times within the same shell. Although low b-value single-shell SC 
implementation exists for NODDI56, it remained beyond the focus of our already quite extensive analysis. The 
current data sets and pipeline codes were made publicly available, so, researchers may investigate and compare 
other diffusion models.

Methods
Participants.  All participants signed an informed consent enabling the experimentation with human sub-
jects and were enrolled in the study that was approved by the Masaryk University (Brno, Czech Republic) ethics 
committee and by the University Hospital Brno (Brno, Czech Republic) ethics committee, both in concordance 
with the Declaration of Helsinki. NMDCCC patients were identified in an extensive sample of the Caucasian 
population of the South Moravia region, through an epidemiological study assessing the prevalence of degenera-
tive cervical cord compression21. All participants underwent MRI examination of the cervical spine on a 1.5 T 
MR Philips Achieva scanner with a standard 16-channel head and neck coil. The standardized imaging protocol 
included conventional pulse sequences in sagittal-T1 , T2 and short-tau inversion recovery (STIR), and axial 
planes (gradient-echo T2 ) for the purpose of morphological evaluation. The clinical status of patients/healthy 
controls was blinded to two neuroradiologists who evaluated and agreed on the assessment of the compression 
in the majority of cases. Where disagreement existed—seldom—the final decision was based on a consensus. The 
imaging criterion for cervical cord compression, dividing groups at healthy controls and NMDCCC patients, 
was defined as a change in SC contour or shape at the level of an intervertebral disc on axial or sagittal MRI scan 
compared to that at midpoint level of neighboring vertebrae. NMDCCC patients were then clinically examined 



14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17529  | https://doi.org/10.1038/s41598-020-70297-3

www.nature.com/scientificreports/

by two certified neurologists (experienced in degenerative cervical myelopathy diagnosis) who excluded the 
presence of any clinical myelopathic signs or symptoms35.

In addition to the assessment of cervical cord compression, the following conventional MRI parameters were 
also measured to quantify the severity of compression: cross-sectional area (CSA) of the SC and compression 
ratio (CR) calculated as anteroposterior/laterolateral SC diameter. Severe SC compressions were defined as both 
CSA ≤ 70mm2 and CR ≤ 0.4 . These thresholds proved to increase the risk of development of symptomatic DCM 
in a previous study35.

Several young healthy volunteers were investigated twice with an inter-scan interval (> 1 day) to evaluate 
test–retest reliability of used imaging methods, i.e., reproducibility. Young healthy volunteers passed neither 
radiological nor neurological evaluation. The inter-scan interval ranged from 0 to 29 weeks (mean ± standard 
deviation 7± 11 weeks).

MRI acquisition.  High-resolution sagittal T2-weighted ( T2w ) and axial T∗
2-weighted ( T∗

2w ) anatomical 
scans were acquired followed by two independent axial dMRI acquisition protocols (i.e. HARDI-ZOOMit Interp 
and DTI-RESOLVE Non-Interp) in randomized order to disperse the effect of motion artifacts uniformly over 
sessions. In a subset of study participants, the HARDI-ZOOMit Non-Interp protocol was also acquired. All 
imaging was performed on a 3T scanner (Magnetom Prisma; Siemens Healthcare, Erlangen, Germany) using the 
standard 64-channel head/neck and the 32-channel spine coils. All axial sequences were pulse triggered increas-
ing the expected data acquisition time (TA) about 10–15% for each sequence.

T2-weighted sagittal images were acquired to cover the whole cervical SC with 30 contiguous slices using 
a turbo spin-echo sequence with TR = 8640ms (repetition time), TE = 98ms (echo time), 4 averages, 
GRAPPA = 2 , field of view (FOV) 250× 250mm2 , matrix size 896× 896 voxels, slice thickness 1.3mm, voxel 
size 0.28× 1.30× 0.28mm3 . The acquisition time (TA) was 8min 49s.

T∗
2-weighted axial images were acquired to cover the C3–C7 levels with 42 contiguous slices using a MEDIC 

(multi-echo data image combination) sequence with TR = 778ms , TE = 17ms (4 echoes), 2 averages, FOV 
180× 180mm2 , matrix size 512× 512 voxels after interpolation in Fourier domain, slice thickness 2.5 mm, voxel 
size 0.70× 0.70× 2.50mm3 (re-sampled to 0.35× 0.35× 2.50mm3 within MR scanner image reconstruction), 
TA would be 7 min 51 s, if pulse trigger was not used.

HARDI-ZOOMit interpolated dMRI protocol was acquired to cover the C3–C7 levels with 35 contiguous 
axial slices with TR = 6700ms , TE = 73ms , FOV = 44× 129mm2 , matrix size 68× 200 voxels, slice thickness 
3mm, voxel size 1.30× 1.30× 3.00mm3 re-sampled to 0.65× 0.65× 3.00mm3 after interpolation in Fourier 
domain. Sixty-three diffusion weighted images (42 gradient directions with b-value = 1000 s mm−2 and 21 direc-
tions with b = 550 s mm−2 ) and 7 images ( b0 ) with b = 0 s mm−2 were collected with anterior-posterior (AP) 
phase encoding. Five additional b0 images were acquired using posterior–anterior (PA) phase encoding. A total 
expected TA without pulse trigger would be 12 min 46 s. The 63 gradient directions were uniformly sampled 
over two spherical shells (see Fig. 4a) with Caruyer et al.’s57 sampler.

HARDI-ZOOMit non-interpolated dMRI protocol was acquired with the same protocol without the interpola-
tion in Fourier domain and with the same acquisition time. The matrix size decreased at 34× 100 voxels and 
voxel size stayed 1.30× 1.30× 3.00mm3.

DTI-RESOLVE dMRI protocol consisted of two identical sessions with opposite phase encodings (AP, PA). 
For each encoding, 30 diffusion weighted images with b = 650 s mm−2 and 5 b0 images were collected. The 
acquired data cover C3–C7 levels with 30 contiguous axial slices with TR = 4500ms , TE1 = 50ms , TE2 = 77ms , 
FOV = 73× 165mm2 , matrix size 66× 118 voxels, slice thickness 3.30 mm, voxel size 1.10× 1.10× 3.30mm3 . 
TA without pulse trigger would be 16 min 16 s.

All MRI acquisition protocol files (i.e. .pdf file with MRI parameters, .exar1 file for an easy upload into the 
Siemens MR console and .dvs file with HARDI sampling) are stored under the URL link listed in the Data avail-
ability section.

dMRI protocol’s SNR estimation.  For each data acquisition and each dMRI protocol separately, DWI 
and b0 scans were separated and extracted. Without any data preprocessing, mean DWI and mean b0 images were 
estimated. SC was segmented with sct_deepseg_sc58 algorithm from the mean DWI image. If the protocol 
consisted of more than one q-space shells, DWI data were separated at each single-shell. The first four and last 
four slices were excluded from estimation of the mean intensity ( ISC ) of DWI signal inside SC of each shell. Air 
area was located in mean b0 image of each participant with thresholding of the superior half of the FOV. Noise 
standard deviation ( σair ) was estimated from segmented air area. The SNR was estimated with Eq. (6) optimized 
or estimation from two different ROIs59. SNR group medians, means and STDs evaluated the level of the noise 
of each shell and each protocol.

Data processing pipeline.  The acquired data were processed with Spinal Cord Toolbox  3.2.3 (SCT)60, 
ANTs 2.1.0 (Advanced Normalization Tools)61 and and FSL 5.0.10 (FMRIB Software Library)62 software librar-
ies implemented all together within in-house made bash scripts that also include some in-house routines pro-
grammed in MATLAB (MathWorks, Natick, USA).

Areas outside the body were removed from sagittal and axial anatomical scans with low intensity thresholding 
and both scans were bias-field corrected63. Since the axial T∗

2 data were acquired with inter-leaved data collection 

(6)SNR =
ISC

√

2
4−π

σair
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process, the data were corrected slice-by-slice with in-house implemented algorithm utilizing affine registeration64 
and additive fusion64 of even and odd slices. Sagittal scan was re-sampled at voxel size 0.28× 0.35× 0.28mm3 
resolution and cropped to cover only a cervical area (i.e. T2SAG space). SC was initially segmented from T2SAG 
scan with a sct_deepseg_sc58 algorithm implemented in SCT60, z-axis slice number containing C2/C3 disc 
was manually marked, and sct_label_vertebrae65 library automatically labeled individual vertebral 
levels. The bias-field corrected T2SAG image was co-registered with fixed axial image (i.e. T2TRA space), using 
sct_register_multimodal60 script utilizing series of ANTs61 registration algorithms (initially optimized 
for brain image registrations)66. Segmented SC and its labels were warped from sagittal T2SAG space into co-
registered T2TRA space. The 2nd iteration of SC segmentation58 and labelling65 was performed in the T2TRA 
space, following with GM segmentation utilized with sct_deepseg_gm67 library. WM area was obtained by 
subtraction of the SC and GM masks. All segmented masks and vertebral labelings in T2TRA space were then 
visually inspected and corrected if necessary.

dMRI data of each protocol were processed separately, utilizing the same pipeline, as follows: Susceptibil-
ity, motion and eddy currents artifacts were minimized from the entire FOV with FSL62 topup68 and eddy69 
functions. From the preprocessed dMRI data, DTI3 and ball and stick30 models were estimated with dtifit 
and bedpostx functions, both implemented in FSL62. From DTI estimates, fractional anisotropy (FA)3 and 
mean diffusivity (MD)3 maps were derived for each subject. For the ball and stick models, two crossing fiber 
bundles with their partial volume fractions ( f1, f2)30 were expected as a maximal occurring number (i.e. Ball and 
Stick and Stick model), and single mean diffusivity values (d)30 without any variance were estimated per each 
voxel. Single-subject FA and f1 maps are complementary, similarly to MD and d maps. From eddy output (4D 
image), DWIs, b0 images and their mean versions were extracted and separated by sct_dmri_separate_
b0_and_dwi60 function. SC in diffusion space was segmented from the “DWI_mean” image again with the 
sct_deepseg_sc58 function. Utilizing the sct_register_multimodal60 command, a single-subject 
“ b0_mean” image was co-registered into T2TRA space with fixed T∗

2 -w axial image, while segmented masks of SC 
from DWI_mean and bias-field corrected T∗

2 -w axial images were used to define the regions of interest (ROIs). 
Estimated warping field was then used for geometrical transformations of all dMRI metrics (i.e. FA, MD, f1 , d, 
etc.) from diffusion space of each protocol into a T2TRA space. In this space, two different ROIs were defined 
(using segmented masks and labels), i.e. C3–C6 WM area and C3–C6 GM area. SC at level C3-6 was analyzed 
as C3–C6 area is the most often affected by SC compression35. Diffusion MRI-derived quantitative parameters 
from the C3–C6 area were compared over 4 different groups of subjects and over three different acquired dMRI 
protocols, as described in following section.

Mutual information between dMRI metrics and WM/GM structures.  Mutual information is a 
similarity criterion detecting increased magnitude for similar images with both linear or non-linear contrast 
transform functions64. Considering a non-linear transform function between microstructural maps and WM/
GM structures, non-normalized mutual information (I, Eq. 7)64 was estimated between each dMRI metric map 
(a, i.e. FA, f1 , MD or d) and semi-binarized T∗

2 w axial image (b, background = 0; GM = 1; and WM = 2) inside 
C3–C6 SC area for each subject and protocol. Variable Ea represent the entropy of image a, Eb entropy of image 
b, and Eab the joint entropy between images a and b64. Function s(a) is the histogram of image a with intensity 
indexes from 1 to q. Function u(b) is the histogram of image b with intensity indexes from 1 to r. Function 
v(a, b) is the joint histogram64 between images a and b. Similarity criterion distributions were visualized for each 
dMRI metric and protocol, and values of distributions’ group-averaged quartiles and medians were used for the 
description and evaluation of the rate of mutual entropy64 between dMRI metric maps and WM/GM structures 
over protocols.

Quantitative measurements from ROIs, group‑level and inter‑protocol comparisons.  ROIs 
were characterized with several parameters of descriptive statistics usually estimated for random variables (i.e. 
estimated dMRI metrics: FA, MD, f1 and d maps). They were the first four moments (i.e. mean, standard devia-
tion - STD, skewness and kurtosis) of Gaussian probability density function (p.d.f.) and median. For each dMRI 
protocol separately, Wilcoxon rank-sum test was used to investigate whether a group median of some dMRI 
parameter differed, especially between some group of patients and group of age-comparable controls. Critical p 
value was set to p < 0.00833 ≈ pFWE < 0.05 , since there are six possible different comparisons over four groups 
of subjects for one dMRI protocol and 0.05/6 = 8.33E−3 (FWE—family wise error correction for multiple com-
parisons).

Because the Gaussian approximation often does not provide a good fit to the measured data especially for 
random variables with non-symmetric p.d.f.s, we have fitted smooth p.d.f.s directly from a histogram of each 
ROI with a “normal” kernel (as implemented in MATLAB with fitdist function). Mean p.d.f.s with Q1–Q3 
confidence intervals (Q—quartile) were derived for each group of subjects and each protocol. Heuristic param-
eters (H) which may clinically differentiate controls and non-myelopathic patients were proposed as Eq. (8). 
Values x1 and x2 are marginal values of a dMRI metric (x), where confidence intervals are disjunctive for derived 
smooth p.d.f.s (g).

(7)

I = Ea + Eb − Eab = −

q
∑

l=1

s(al) log(s(al))−

r
∑

m=1

u(bm) log(u(bm))+

q
∑

l=1

r
∑

m=1

v(al , bm) log(v(al , bm))
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Wilcoxon rank-sum test was used for testing differences between groups of subjects in the same way as for 
descriptive statistics parameters.

To minimize age-effect in the comparison results, post-hoc ANCOVA (analysis of covariance) was used as an 
additional between-group difference test where age was used as a confounding variable. One tested group were 
age-comparable healthy controls, second group were all NMDCCC patients. If test’s p < 0.05 , the between-group 
difference was considered to be significant.

To evaluate the effect of radiculopathy, post-hoc Wilcoxon rank-sum tests investigated the differences in 
statistical or heuristic dMRI metrics of NMDCCC patients with or without radiculopathy. Significance level 
was set at p < 0.05.

Diffusion MRI metric redundancy, uniqueness, sensitivity and specificity.  Cross-subject Pear-
son correlation coefficients (r) evaluated level of linear dependence between dMRI metrics demonstrating sig-
nificant between-group differences. Step-wise linear regression ( Y = β0 + Xβ + ǫ ) was used to identify unique 
dMRI metrics that maximize differences between age-comparable healthy control (C) and NMDCCC patient 
(M, i.e. mild compression and S, i.e. severe compression) groups. Y is a vector equal to 0.5 for positions of C 
subjects and −0.5 to positions of M or S subjects. Significant variables (i.e. dMRI metrics) in model matrix X 
were added based on their variable p values ( < 0.05 ) quantifying belonging to the final model fit. Because of 
an age effect concerns, we have also added the age variable as the tested parameter (i.e. potential significant 
compartment of the final matrix X ). Set of significant variables in model matrix X was used as an input feature 
into automatic K-means clustering at 2 classes. Sensitivity (SE) and specificity (SP) of each dMRI protocol was 
evaluated by comparison of the K-means classification with control-patient classification done by radiologist 
and neurologist experts.

Level of off‑resonance effects in dMRI data.  Single-subject mean, median, and STD of absolute off-
resonance effects (i.e. field coefficient output of the topup68 function) were estimated for each data acquisition 
from three different SC ROIs (C3–C6 characterizing our dMRI analysis ROI, C3 characterizing area without 
probable compression, and C5–C6 characterizing area with possible compression in patients) defined by seg-
mented and labeled SC of T∗

2w axial scan. Differences over subject groups were tested again using Wilcoxon 
rank-sum test. Cross-subject Pearson correlation coefficients (r) evaluated cross-correlations with dMRI derived 
parameters observing significant differences between control and patient groups to test whether the observed 
difference is/is not caused by different level of off-resonance effects.

Test–retest reliability of dMRI protocols.  Test–retest reliability (i.e. reproducibility) was tested in a 
group of seven young healthy volunteers who were scanned twice with time interval between session ranging 
from 0 to 29 weeks (mean ± standard deviation 7 ± 11 weeks). The minimum distance was 1 day. Mean coef-
ficients of variation (CV, the ratio of standard deviation to the mean of repeated measures) were calculated for 
parameters expressing single-subject WM/GM dMRI metric mean or median. Absolute differences between 
consecutive measurements in seven subjects were calculated for all dMRI parameters where significant dif-
ferences between controls and a patient group were observed. For a comprehensive comparison of protocols, 
a min–max normalization to range 0–1 was employed on each variable difference through all three protocols. 
Means of normalized differences were calculated for each variable per protocol. Three different protocols were 
then compared by CVs and means of normalized differences using series of Wilcoxon signed ranks tests with 
Bonferroni correction for multiple testing. Statistical testing was performed in SPSS version 23 (IBM, Armonk, 
New York).

Data availability
Acquired MRI data reported in the manuscript, a table with basic participants’ demographics, and “HARDI-
ZOOMit.pdf” and “HARDI-ZOOMit.exar1” files with used MRI protocol parameters are available at the URL: 
https​://hdl.handl​e.net/20.500.12618​/0000-5c13d​342-4798-41d9-8d2a-bf750​ab79f​db.

Code availability
All in-house implemented codes and scripts with the installation manual are available at the URL: https​://githu​
b.com/renel​aboun​ek/sc-dmri-myelo​pathy​.
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