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Abstract
Fast pyrolysis has been identified as one of the biorenewable conversion platforms that

could be a part of an alternative energy future, but it has not yet received the same attention

as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such

as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass

spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the inter-

mated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339

markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using

composite interval mapping with significance thresholds established by 1000 permutations

at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from

1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

Introduction
Corn cobs and stover have received attention for use as alternative energy platforms. It is esti-
mated that more than 280 million tons of these residues are produced each year in the United
States [1, 2]. Jansen and Lübberstedt [2] reviewed some of the current and projected uses for
maize cobs and concluded that dual purpose maize is feasible. While the grain fraction would
be used for other purposes, cobs would serve as a bioenergy feedstock. The use of cobs and sto-
ver as bioenergy feedstocks has raised concerns due to a potentially negative impact on soil
organic matter, and thus soil fertility [3, 4]. However, the fast pyrolysis platform offers a solu-
tion to this problem. Bio-char, the solid product of fast pyrolysis, can be applied to the soil in
order to return carbon and minerals [5].

While there have been several quantitative trait locus (QTL) mapping experiments com-
pleted in maize in regards to ethanol conversion [6, 7], thermochemical conversion (such as
fast pyrolysis) has yet to receive the same attention in this area, despite the potential to produce
a wider variety of products [8]. The optimal plant ideotype for ethanol conversion likely differs
from the ideotype for fast pyrolysis. Lignin has been shown to decrease the amount of ethanol
produced from biomass by limiting enzymatic activity necessary to convert cellulose into sug-
ars, and ultimately ethanol [9, 10]. Lignin’s role in bio-oil production is not as clear, as a higher
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lignin content increases bio-oil yield and confers a higher heating value, but also negatively
affects stability [11, 12]. It is this difference in lignin contributions that will likely require sepa-
rate breeding strategies for these two alternative energy platforms. In addition, there are efforts
towards converting hemicelluloses into ethanol in order to increase conversion efficiency [13].
However, pyrolysis of hemicelluloses creates a greater amount of char, acid, and gas than cellu-
lose, which do not contribute to higher bio-oil yield and quality [14, 15].

Water content for bio-oil can vary from 15–30% and heating values range from 16–19
Megajoules (MJ)/kg, while petroleum oils typically contain very little water (0.1%) and have a
higher heating value of 40 MJ/kg [16]. Petroleum oils are composed almost exclusively of
hydrocarbons. In contrast, bio-oil is a much more complex mixture that is composed of many
different types and sizes of compounds (of which most are decomposition products of cellu-
lose, hemicelluloses, or lignin), and its elemental composition mirrors that of the original bio-
mass, with a much higher oxygen content than petroleum oils (35–40% versus 1%,
respectively) [8]. By contrast, ethanol is a much less complex fuel, but requires engine modifi-
cation for higher concentrations and is incompatible with the current infrastructure in the
United States [17]. Because the various compounds in the bio-oil differ in their desirability and
value, it is reasonable to suggest that bio-oil quality could be significantly improved through
plant breeding. Bio-oil can also be refined or fractionated to provide high value chemicals and
products, as well as bio-precursors for multiple uses (like petroleum oils, but in contrast to eth-
anol). Given genetic variation for individual bio-oil compounds, it is conceivable to create crop
varieties to maximize yield of particular high value products.

Jeffrey et al. [18] demonstrated significant genetic variation for bio-oil compounds within
maize cobs and stover among isogenic brown midrib hybrids of maize. In this study, measure-
ments for 26 compounds were available. However, we focused on ten of those compounds for
QTL analysis. Two compounds each were chosen that derive from cellulose, hemicelluloses,
and the hydroxyphenyl, guaiacyl, and syringyl lignin subunits. Levoglucosan and hydroxyace-
taldehyde derive from cellulose [19–21], and levoglucosan has been identified as being a poten-
tially important economic compound due to its use in pharmaceuticals, surfactants, and
polymer manufacturing as well as a possible role in a hybrid thermochemical/biological pro-
cessing environment by being hydrolyzed to glucose, which can then be fermented to ethanol
[16, 22]. Hydroxyacetaldehyde has interest in the food flavoring industry as it is a component
in “liquid smoke.” Acetic acid derives from hemicelluloses [14], and is of interest because it can
be extracted for use as a chemical. However, the low pH of bio-oil (to which acetic acid contrib-
utes) can cause usage and storage issues [16]. Hydroxyacetone has been identified as a product
of hemicellulose [23] and cellulose pyrolysis [21, 24]. Phenolic compounds produced through
pyrolysis can be used in food flavoring agents and resins [16]. In addition, pyrolysis/gas chro-
matography-mass spectrometry (Py/GC-MS) has received attention as an analysis tool for
identifying cell wall fractions, especially in differentiating lignins [25–27]. We have chosen
phenol and 4-methylphenol for hydroxyphenyl, vanillin and 2-methoxyphenol for guaiacyl,
acetosyringone and 2,6-dimethoxyphenol for syringyl lignin subunits. 2,6-Dimethoxyphenol,
acetosyringone, and vanillin were all measured as part of a study that assessed variation among
nine maize inbred lines, plus one brown midrib3mutant, for pyrolysis of neutral detergent
fiber [25]. Phenol, 2,6-dimethoxyphenol, 2-methoxyphenol, and vanillin were evaluated to
determine cell wall lignin and polysaccharide differences amongst stover samples for ten com-
mercial maize hybrids grown in Italy [26].

The intermated B73 x Mo17 (IBM) Syn4 population is an advanced intercross lines (AILs)
population that was developed in order to provide increased QTL resolution. The population
was developed through four generations of random mating after the creation of the F2
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generation and has an overall map distance almost four times greater than previously used
recombinant inbred lines (RILs) [28].

Our objectives were to (1) determine whether there is significant genetic variation for 10
pyrolysis compounds in the IBM Syn4 population and to calculate phenotypic correlations
among these compounds, (2) identify QTL for those 10 compounds, and (3) compare our
results with previous QTL studies on maize cell wall traits and discuss implications for breed-
ing dual purpose maize.

Materials and Methods

Plant Materials
Plant materials used in this study have been previously described by Lorenz et al. [6] and Jan-
sen et al. [29]. Briefly, Lorenz et al. [6] analyzed genetic variation and correlations for yield,
digestibility, and cell wall composition traits and found 24 QTL across five cell wall traits for
per se and testcross families in the IBM Syn4 population. Jansen et al. [29] analyzed variation
and correlations for grain and cob yield traits (cob length, weight, volume, density, diameter,
pith diameter, wooden part thickness) and found 57 QTL across eight traits.

Field trials were performed in 2006 and 2007 in Madison (43° 3'19.73"N, 89°31'56.42"W)
and Arlington (43°18'13.57"N 89°23'16.10"W), WI and were planted in a randomized complete
block design with two replications per location (i.e. one replication is one complete block). B73
(parent), Mo17 (parent), and 206 recombinant inbred lines (RILs) of the IBM Syn4 per se pop-
ulations were planted at a density of 79,040 plants per hectare in single row plots that were
6.08m long and 0.76m apart. Trials were planted in Plano silt loam soil on May 21, 2006 in
Madison and June 2, 2006 in Arlington. After most of the plots at a location reached physiolog-
ical maturity, all plots at that location were harvested. In 2006, all ears were harvested by hand
125 days after planting in Madison and 114 days after planting in Arlington. Cobs were then
shelled and dried in a forced-air dryer for one week at 55°C. Cobs were ground in a hammer
mill to pass a 1mm screen. Ground cobs were further ground in a ball mill (Spex SamplePrep
200 Geno/Grinder, Metuchen, NJ, United States) to reduce particle size. Each parent (B73 and
Mo17) was planted in two plots per block. Phenotypic data for the parents were not used in
QTL analysis, but included for comparison to each other and the RILs.

In this study, we used cob materials from 2006: one field replication from Madison and two
field replications from Arlington, WI. 184 RILs from the IBM Syn4 per se population were phe-
notyped for 26 bio-oil compounds through pyrolysis/gas chromatography-mass spectrometry
(Py/GC-MS). Field permits were not required, as trials were performed on University of Wis-
consin-Madison field plots dedicated to experimentation. Field trials did not involve endan-
gered or protected species.

Py/GC-MS
The method and instruments used are the same described by Jeffrey et al. [18]. Briefly, each
500 μg ground cob sample was pyrolyzed at 500°C using a double shot pyrolyzer. Helium gas
carried pyrolysis vapors directly into a gas chromatograph (GC), which used a 14% cyanopro-
pyl polysiloxane capillary column to separate the compounds. A single quadropole mass spec-
trometer (MS) operating at a mass to charge ratio (m/z) of 40 to 650 was used to detect
compounds. Peak areas were acquired from the total ion current (TIC) chromatogram using
proprietary software (Agilent Technologies, Santa Clara, CA, United States). Areas from each
of the 26 compounds were divided by the total area in the TIC chromatogram (and multiplied
by 100) to obtain an area % value for each compound.
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Statistical Analyses
Least square means (lsmeans) were calculated for each RIL over all 3 environments in SAS
PROC GLM (SAS Institute, 2004), using RIL and environment (three environments: the two
replications from Arlington were considered as distinct environments) as fixed effects. Least
square means for each RIL were used as phenotypic data for correlation and QTL analysis. Phe-
notypic correlations were calculated as Pearson product-moment coefficients using SAS PROC
CORR. Coefficients of variation (CV) were calculated by dividing square root of the mean
square error by mean (multiplied by 100). Phenotypic data for B73 and Mo17 were compared
against each other using SAS PROC GLM, with genotype and environment as fixed effects.

Heritabilities were calculated according to Holland et al. [30] on an entry mean basis using
SAS PROCMIXED by fitting lines, locations, lines x locations (G x E), and field replications as
random effects.

QTL Analysis
Genotypic data for 1339 markers were obtained for 184 RILs fromMaizeGDB.org (IBM302
map provided by the Maize Mapping Project, http://www.maizegdb.org/qtl-data.php, verified
3-7-2013). This map provides a length of 6242.7centimorgans (cM), which conveys an average
distance between markers of 4.66cM. This map does not convey cM in the traditional defini-
tion, thus we will refer to positions on the map in IBM centimorgans (IcM) [31].

Composite interval mapping (CIM) was performed usingWinQTL Cartographer version 2.5
[32]. Ten cofactors were identified using forward and backward regression (Zmapmodel 6) with a
10cMwindow size, 1.0cMwalk speed, and a 0.10 probability for inclusion/exclusion. An empirical
threshold value for determining significant QTL for all traits was determined using 1000 permuta-
tions at α = 0.05. For each trait, all significant QTL were fitted in a multiple interval mapping (MIM)
model to determine whether those QTL remained significant. In addition, additive model effects,
individual QTL R2 effects, and sum of R2 effects over all QTL of a trait were calculated usingMIM.

Results

Trait Means, Variances, and Heritabilities
Means, standard errors, heritabilities, and other summary statistics for the ten compounds are
shown in Table 1. Line and environment effects were significant (p< 0.001) for all ten

Table 1. Compound Summary Statistics.

Trait # N Mean RMSE CV B73 Mo17 Min Max H2

Levoglucosan 1 541 1.15 0.31 26.71 1.44 0.88 0.53 2.13 0.69

Hydroxyacetaldehyde 2 541 0.77 0.10 12.55 0.86 0.76 0.50 0.91 0.33

Acetic acid 3 541 8.58 0.80 9.31 8.26 9.29 5.90 10.42 0.48

Hydroxyacetone 4 541 4.60 0.46 9.89 4.37 4.91 3.50 6.07 0.67

Phenol 5 541 0.73 0.08 11.56 0.71 0.81 0.46 1.00 0.62

4-Methylphenol 6 541 0.267 0.03 12.15 0.26 0.29 0.18 0.33 0.24

Vanillin 7 541 0.59 0.07 12.42 0.66 0.54 0.32 0.86 0.66

2-Methoxyphenol 8 541 1.20 0.12 9.75 1.31 1.21 0.82 1.73 0.79

Acetosyringone 9 539 0.10 0.02 19.78 0.14 0.08 0.05 0.22 0.84

2,6-Dimethoxyphenol 10 541 0.77 0.10 13.11 0.74 0.66 0.34 1.24 0.83

Values are given, by compound, for mean, square root of the mean square error (RMSE), coefficient of variation (CV), B73 and Mo17 lsmeans, minimum

line lsmean, maximum line lsmean, and entry mean heritability (H2).

doi:10.1371/journal.pone.0145845.t001
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compounds. For each compound, the RIL with the minimum area % value for that compound
was lower than the mean of both B73 and Mo17. Also for each compound, the RIL with the
maximum area % value for that compound was higher than the mean of both B73 and Mo17.
The mean of neither B73 nor Mo17 ranked overly high or low within individual compounds,
as the highest rank achieved (out of 186) was 42 and the lowest was 164. B73 had a significantly
(p< 0.05) higher mean than Mo17 for levoglucosan, hydroxyacetaldehyde, vanillin, and aceto-
syringone. Mo17 had a significantly (p< 0.05) higher mean than B73 for acetic acid and phe-
nol, while the other four compounds showed no evidence to reject the hypothesis that B73 and
Mo17 have equal means. Coefficients of variation for the data ranged from 9.31% (acetic acid)
to 26.71% (levoglucosan). Heritabilities (entry mean basis) ranged from 0.24 for 4-methylphe-
nol to 0.84 for acetosyringone (Table 1). The majority of heritabilities (7 out of 10) were high
and had values that met or exceeded 0.62.

Trait Correlations
Overall, loose trait correlations were found (Table 2), with the closest positive correlation
being 0.80 (between vanillin and 2-methoxyphenol) and the most negative correlation being
-0.56 (between levoglucosan and hydroxyacetone). Compounds derived from the same cell
wall component had generally closer trait correlations than compounds derived from differ-
ent cell wall components. The loosest of these correlations was between cellulose derived
compounds levoglucosan and hydroxyacetaldehyde at 0.39. The correlation between hemi-
cellulose derived compounds acetic acid and hydroxyacetone was 0.71. The correlation
between hydroxyphenyl derived compounds phenol and 4-methylphenol was 0.73. The clos-
est of these correlations (and amongst all correlations) was between guaiacyl derived com-
pounds vanillin and 2-methoxyphenol at 0.80. The correlations between syringyl derived
compounds acetosyringone and 2,6-dimethoxyphenol was 0.56. The only compounds that
had a correlation greater than 0.60 with other compounds not derived from the same cell
wall component were between both of the guaiacyl derived compounds and both of the syrin-
gyl derived compounds: vanillin had a correlation of 0.60 with both of the syringyl derived
compounds and 2-methoxyphenol had a correlation of 0.66 with acetosyringone and 0.67
with 2,6-dimethpxyphenol.

Table 2. Phenotypic Correlations Among Compounds.

Trait 1 2 3 4 5 6 7 8 9 10

1 0.39** 0.30** -0.56** -0.39** -0.14** 0.39** 0.11** 0.27** 0.01

2 0.21** 0.23** -0.21** -0.06 -0.03 -0.14** -0.05 -0.14**

3 0.71** 0.27** 0.35** -0.45** -0.31** -0.31** -0.27**

4 0.45** 0.34** -0.30** -0.04 -0.11* 0.04

5 0.73** 0.28** 0.45** 0.14** 0.42**

6 0.06 0.18** -0.02 0.17**

7 0.80** 0.60** 0.60**

8 0.66** 0.67**

9 0.56**

10

(1) levoglucosan, (2) hydroxyacetaldehyde, (3) acetic acid, (4) hydroxyacetone, (5) phenol, (6) 4-methylphenol, (7) vanillin, (8) 2-methoxyphenol, (9)

acetosyringone, (10) 2,6-dimethoxyphenol.

* indicates a p-value < 0.05

** indicates a p-value < 0.01

doi:10.1371/journal.pone.0145845.t002
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QTL Analysis
QTL analysis resulted in the identification of 50 QTL across eight maize chromosomes, as no
QTL for these traits were found on chromosomes 9 or 10 (Table 3, Figs 1 and 2). All 50 QTL
remained significant when fitting them in a MIMmodel, although the position of the QTL
sometimes shifted slightly. The amount of phenotypic variation explained by individual QTL
ranged from 3.0% to 7.4% (with an average of 4.1%) under the CIM model and ranged from
1.7% to 5.8% (with an average of 3.6%) under the MIMmodel. The average 1-LOD support
interval spanned 12.31IcM.

The 50 QTL were spread across 15 different (greater than 10IcM separating QTL positions)
chromosome regions, with 6 regions containing 4 or more QTL (Fig 1). The first region was
located on chromosome 2 (with QTL positions spanning 44.8IcM to 47.3cM) with QTL for
five compounds: phenol, 4-methylphenol, 2-methoxyphenol, acetosyringone, and
2,6-dimethoxyphenol. The region with the most QTL (9) was located on chromosome 4
around position 560.9IcM, with acetic acid being the only compound without a QTL in this
region. Chromosome 2 around position 298.7IcM contained QTL for eight compounds, with
only levoglucosan and acetosyringone not having QTL in this region. QTL for six compounds
were found around position 413.1IcM on chromosome 6, with QTL for hydroxyacetaldehyde,
acetic acid, phenol, vanillin, 2-methoxyphenol, and acetosyringone. The two remaining regions
contained four QTL each and were located on chromosome 6 around position 484.4IcM and
on chromosome 3 around 158.7IcM. The region on chromosome 3 had QTL for levoglucosan,
hydroxyacetaldehyde, 4-methylphenol, and vanillin, while the region on chromosome 6 shared
QTL for acetic acid, phenol, 2-methoxyphenol, and acetosyringone.

Five QTL were found for levoglucosan that accounted for 18.5% of the phenotypic variation
(17.4% under the MIMmodel): on chromosome 1 at position 892.8IcM, chromosome 3 at
157.9IcM, chromosome 4 at 560.9IcM, chromosome 5 at 192.3IcM, and chromosome 7 at
206.5IcM. Four of these QTL mapped to the same region as the other cellulose derived com-
pound (hydroxyacetaldehyde) and were located on chromosomes 1, 3, 4, and 5, respectively.
The other two QTL found for hydroxyacetaldehyde were on chromosome 2 at 298.3IcM and
on chromosome 6 at 412.3IcM. Together these six QTL accounted for 21.6% of the phenotypic
variation (19.8% under the MIMmodel).

Five QTL were found for acetic acid that accounted for 23.2% of the phenotypic variation
(17.0% under the MIMmodel): on chromosomes 2 (299.4IcM), 5 (267.3IcM), 6 (414.3 and
484.5IcM), and 7 (288.9IcM). One of those QTL locations was also found for the other hemi-
cellulose derived compound (hydroxyacetone) on chromosome 2. The second QTL for hydro-
xyacetone was identified on chromosome 4 at 557.1IcM, and the two QTL together accounted
for 9.0% of the phenotypic variation (9.3% under the MIMmodel).

Six QTL were found for phenol that accounted for 24.8% of the phenotypic variation (19.4%
under the MIMmodel): chromosome 2 at 46.3IcM and 299.4IcM, chromosome 3 at 406.5IcM,
chromosome 4 at 560.9IcM, and chromosome 6 at 414.3IcM and 477.9IcM. For the other
hydroxyphenyl derived compound, 4-methylphenol, four QTL mapped to the same region as
those for phenol: both QTL on chromosome 2, chromosome 3 at 407.0IcM, and on chromo-
some 4. The other two QTL found for 4-methylphenol were found on chromosome 3 at
156.9IcM and 438.9IcM. The six QTL for 4-methylphenol accounted for 23.3% of the pheno-
typic variation (16.9% under the MIM model).

Five QTL were found for 2-methoxyphenol that accounted for 18.1% of the phenotypic vari-
ation (18.7% under the MIMmodel): chromosome 2 at 46.3IcM and 300.4IcM, chromosome 4
at 560.9IcM, and chromosome 6 at 413.3IcM and 477.9IcM. Three of those QTL were also
found in similar regions in the other guaiacyl derived compound, vanillin: chromosome 2 at

Genetic and QTL Analysis for Bio-Oil Compounds in Maize Cobs

PLOS ONE | DOI:10.1371/journal.pone.0145845 January 8, 2016 6 / 15



Table 3. QTL Positions and Effects.

Chromosome Position (IcM) Bin Marker 1-LOD Interval LOD R2 α R2
MIM αMIM

Levoglucosan

1 892.8 1.1 umc1111 890.3–902.2 3.38 3.8 -0.13 4.4 -0.13

3 157.9 3.03–3.04 umc1012 152.9–163.7 3.56 4.3 -0.13 3.6 -0.12

4 560.9 4.08–4.09 umc1854 554.2–562.9 2.65 3.0 0.11 2.1 0.09

5 192.3 5.02–5.03 bnl7.56 188.6–195.3 3.65 4.2 -0.13 3.4 -0.12

7 206.5 7.02 umc2092 200.9–210.5 2.84 3.2 0.12 3.9 0.13

Hydroxyacetaldehyde

1 892.8 1.1 umc1111 880.4–910.2 3.18 3.7 -0.08 3.2 -0.07

2 298.3 2.04 umc1454 291.5–306.3 2.89 3.5 -0.08 3.9 -0.07

3 156.9 3.03–3.04 umc1012 151.5–162.7 2.51 3.1 -0.07 3.2 -0.07

4 557.1 4.08–4.09 umc1854 554.2–561.9 3.33 3.8 0.08 3.2 0.07

5 192.3 5.02–5.03 bnl7.56 187.6–203.4 2.99 3.5 -0.07 2.7 -0.07

6 412.3 6.06 phi070 403.8–422.3 2.92 4.0 0.08 3.6 0.07

Acetic Acid

2 299.4 2.04 umc1454 292.5–315.8 3.26 3.8 -0.87 5.7 -1.07

5 267.3 5.03 bnl4.36 263.2–272.3 2.84 3.4 -0.81 2.6 -0.69

6 414.3 6.06 phi070 408.3–423.3 3.02 4.6 0.94 4.0 0.95

6 484.5 6.07 umc2059 475.9–489.8 3.03 4.0 -0.90 2.3 -0.87

7 288.9 7.02–7.03 npi394 281.6–295.9 4.40 7.4 1.32 2.4 0.70

Hydroxyacetone

2 299.3 2.04 umc1454 293.5–304.1 4.26 5.4 -0.55 5.4 -0.53

4 557.1 4.08–4.09 umc1854 553.2–562.9 3.05 3.6 0.46 3.9 0.45

Phenol

2 46.3 2.01–2.02 umc53a 42.8–51.0 3.42 4.1 -0.08 3.1 -0.07

2 299.4 2.04 umc1454 294.3–304.2 3.79 4.4 -0.08 5.0 -0.09

3 406.5 3.06 mmp5 396.6–409.9 3.33 4.3 -0.08 1.7 -0.05

4 560.9 4.08–4.09 umc1854 555.2–562.9 2.99 3.5 0.07 3.6 0.07

6 414.3 6.06 phi070 408.3–424.3 2.79 4.3 0.08 3.6 0.08

6 477.9 6.07 mmp105 473.2–485.5 3.72 4.2 -0.08 2.4 -0.07

4-Methylphenol

2 45.8 2.01–2.02 umc53a 41.6–50.3 3.59 4.6 -0.04 2.7 -0.02

2 299.4 2.04 umc1454 292.5–315.8 3.34 4.0 -0.03 4.1 -0.03

3 156.9 3.03–3.04 umc1012 151.5–164.9 2.77 3.4 -0.03 2.8 -0.02

3 406.5 3.06 mmp5 398.6–409.9 3.12 4.2 -0.03 2.6 -0.03

3 438.9 3.06 php15033 433.7–447.1 2.56 3.2 0.03 1.8 0.02

4 560.9 4.08–4.09 umc1854 555.2–562.9 3.23 3.9 0.03 2.9 0.02

Vanillin

2 297.3 2.04 umc1454 291.5–306.0 3.64 4.6 -0.07 3.5 -0.05

3 155.9 3.03–3.04 umc1012 152.2–160.9 3.50 4.5 -0.07 4.2 -0.06

4 557.1 4.08–4.09 umc1854 554.2–562.9 3.63 4.2 0.06 3.7 0.06

6 414.3 6.06 phi070 408.3–424.3 2.66 3.9 0.06 3.5 0.06

2-Methoxyphenol

2 46.3 2.01–2.02 umc53a 40.6–52.0 2.82 3.5 -0.11 4.3 -0.12

2 300.4 2.04 umc1454 291.5–306.3 2.60 3.1 -0.11 4.1 -0.13

4 560.9 4.08–4.09 umc1854 554.2–562.9 3.32 3.7 0.12 4.4 0.13

6 413.3 6.06 phi070 408.3–422.3 3.09 4.6 0.13 3.9 0.13

6 477.9 6.07 mmp105 471.2–489.8 2.80 3.2 -0.11 2.0 -0.10

(Continued)
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297.3IcM, chromosome 4 at 557.1IcM, and chromosome 6 at 414.3IcM. One other QTL was
found for vanillin on chromosome 3 at 155.9IcM and the four QTL accounted for 17.2% of the
phenotypic variation (14.9% under the MIMmodel).

The most QTL we found for a compound (7) were for acetosyringone and accounted for
29.8% of the phenotypic variance (28.2% under the MIMmodel). These occurred on chromo-
some 2 at position 47.3IcM, chromosome 4 at 558.1IcM, chromosome 5 at 267.3IcM, chromo-
some 6 at 118.4IcM and 411.3IcM and 477.9IcM, and chromosome 8 at 502.9IcM. Two of
these QTL were found in similar regions for the other syringyl derived compound,
2,6-dimethoxyphenol: chromosome 2 at 44.8IcM and chromosome 4 at 560.9IcM. Two other
QTL were found for 2,6-dimethoxyphenol: chromosome 2 at 297.3IcM and chromosome 5 at
192.3IcM. These four QTL accounted for 19.7% of the phenotypic variation (17.4% under the
MIMmodel).

Discussion
Due to exclusively finding QTL with minor genetic effects, we conclude that compounds result-
ing from pyrolysis can be considered as quantitative traits in the IBM Syn4 population. Jansen
et al. [29] found an average of four QTL per cob yield or cob quality trait with an average
explained phenotypic variance of 6.5% in the IBM Syn4 population, while Lorenz et al. [6]
found an average of 2.4 QTL per cell wall trait with an average explained phenotypic variance
of 9.4%. We found an average of five QTL per trait with an average explained phenotypic vari-
ance of 4.1%. By assuming absence of dominance and gene interaction effects, we can estimate
the amount of heritability explained by the QTL we found, by dividing total R2 by heritability
for each trait, R2/h2. Explained heritability ranged from 13.5% to 95.5% under the CIM model
with an average of 39.8%, and from 13.9% to 69.3% with an average of 33.6% under the MIM
model. On average, 60.2% of heritability went unexplained.

Heritability is measured as a proportion of variance explained by genetic effects in relation
to overall phenotypic variance. Sources of genetic variance include additive, dominance, and

Table 3. (Continued)

Chromosome Position (IcM) Bin Marker 1-LOD Interval LOD R2 α R2
MIM αMIM

Acetosyringone

2 47.3 2.01–2.02 umc53a 42.8–53.0 4.56 5.3 -0.01 5.4 -0.01

4 558.1 4.08–4.09 umc1854 554.2–562.9 3.82 4.3 0.01 5.3 0.01

5 267.3 5.03 bnl4.36 263.2–272.3 4.09 4.5 -0.01 4.0 -0.01

6 118.4 6.01–6.02 mmp117 113.3–122.1 3.48 3.8 -0.01 3.2 -0.01

6 411.3 6.06 phi070 408.3–418.3 4.67 5.8 0.01 4.6 0.01

6 477.9 6.07 mmp105 468.1–486.5 2.74 3.0 -0.01 1.8 -0.01

8 502.9 8.07–8.08 umc1673 500.7–507.9 2.87 3.1 -0.01 3.9 -0.01

2,6-Dimethoxyphenol

2 44.8 2.01–2.02 umc53a 42.6–49.3 4.55 5.7 -0.13 4.1 -0.08

2 297.3 2.04 umc1454 282.3–304.2 3.12 3.6 -0.08 4.9 -0.09

4 560.9 4.08–4.09 umc1854 555.2–562.9 5.65 6.2 0.11 5.8 0.10

5 192.3 5.02–5.03 bnl7.56 186.8–203.4 3.79 4.2 -0.08 2.6 -0.07

The number of QTL for each compound, chromosome number, chromosome position, bin, closest marker, Logarithm of the odds (LOD) score, 1-LOD

support interval, phenotypic variance explained under the CIM model (R2), additive effect for the B73 allele under the CIM model (α), phenotypic variance

explained under the MIM model (R2
MIM), and additive effect for the B73 allele under the MIM model (αMIM) are shown. Data reported in Table 3 reflects

values for lsmeans of combined environment.

doi:10.1371/journal.pone.0145845.t003

Genetic and QTL Analysis for Bio-Oil Compounds in Maize Cobs

PLOS ONE | DOI:10.1371/journal.pone.0145845 January 8, 2016 8 / 15



Genetic and QTL Analysis for Bio-Oil Compounds in Maize Cobs

PLOS ONE | DOI:10.1371/journal.pone.0145845 January 8, 2016 9 / 15



epistatic effects. Phenotypic variance includes all genetic variance plus environmental variance,
genotype x environment interaction variance, and twice the covariance between genotype and
environment. Most analyses, including ours, ignore epistasis because it is too complex to
model and estimate for a large number of genes or QTL. However, this can lead to an overesti-
mation of heritability, and therefore, an underestimation of explained heritability [33]. In addi-
tion, statistical power of QTL detection and a large number of QTL with very small effects will
cause QTL to be missed [33, 34]. Because we found no QTL with explained phenotypic vari-
ance greater than 7.4%, it is likely that bio-oil compounds are affected by a large number of
QTL with small effects.

We found the closest correlations among compounds derived from the same cell wall poly-
mers. Consistent with these findings, QTL co-located for these compounds. Different com-
pounds with close correlations, such as the guaiacyl and syringyl derived compounds, also
shared several QTL. Of the six distinct chromosomal regions that contained QTL for guaiacyl
derived compounds, five also had QTL for a syringyl derived compound. While this could be
due to either pleiotropy or close linkage of QTL, it is notable that we found 50 QTL in only 15
different regions. In consequence, we identified a limited number of regions with co-locating
QTL.

For lignin related compounds, there are six regions with co-locating QTL. On chromosome
2, five QTL for lignin derived compounds were located between 44.8 and 47.3IcM. All five of
these QTL had higher area % values for the Mo17 allele. Five additional QTL for lignin derived
compounds were found on chromosome 2 between 297.3 and 300.4IcM. The favorable allele
for maximizing lignin derived compounds was contributed by Mo17 for all five. QTL for
hydroxyacetaldehyde, hydroxyacetone, and acetic acid were found in this region as well, with
the trait increasing allele also coming fromMo17. Increased acetic acid content is likely to be
undesirable as the low pH of bio-oil can cause usage and storage issues [16]. If the eight QTL in
this region are due to pleiotropy, one would have to weigh the costs and benefits of these con-
trasting compounds to determine whether the B73 or Mo17 allele is preferable. In case of
closely linked QTL, it would be possible to separate these QTL spanning a 3IcM region [35].

While no QTL mapping studies have been previously performed for pyrolysis related traits,
it is reasonable to compare our results to QTL studies for cell wall traits, ethanol conversion, or
forage and digestibility traits, since all of these traits relate to cell wall composition.

Barrière et al. [36] found 80 QTL in total for cell wall digestibility and composition traits in
a population of 242 RILs derived from the cross of F838 and F286. Five different regions from
their study overlap with QTL found in our study. They found QTL for esterified ferulic acids
and vanillin on chromosome 2 near marker bnlg1018, which maps closely (294.2IcM) to QTL
that we found for eight compounds (297.3IcM–300.4IcM), including the guaiacyl derived van-
illin and 2-methoxyphenol. In this region, we also found QTL for the hemicelluloses derived
compounds acetic acid and hydroxyacetone. Ferulic and diferulic acids form ester and ether
bonds that link lignins to arabinoxylans, which are found in hemicelluloses [37, 38]. In particu-
lar, ferulic acids are linked through an ether bond with coniferyl alcohol [39], which gives rise
to guaiacyl units. Based on a candidate gene list compiled by Truntzler et al. [40], there are
three candidate genes whose closest marker is located near this region. 4-coumarate; coenzyme
A ligase (4CL) was identified as a likely candidate gene and its closest marker is positioned
close to 316IcM in our map. Cell wall invertase and pectin methyl esterase were identified as

Fig 1. Chromosomemap. Chromosomes 9 and 10 are not pictured, as we found no QTL on these chromosomes. Chromosome number is indicated at the
top of each chromosome. QTL positions and candidate gene positions from Truntzler et al. [39] are indicated on the right side of each chromosome. QTL
indicated as groups contained 4 or more individual QTL in the same region. Individual QTL contained within groups are shown in Fig 2. QTL names in bold
italics indicate a higher area % value for the B73 allele, with regularly formatted text indicating a higher area % for the Mo17 allele.

doi:10.1371/journal.pone.0145845.g001
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“medium evidence” candidate genes, whose closest markers were positioned in our map at
320.7IcM and 295.1IcM, respectively.

On chromosome 3, Barrière et al. [36] found QTL for p-coumaric acid (PCA), syringalde-
hyde, and diferulic acids. The closest marker to these QTL was umc1425, located at 165IcM in
our map, which is close to four QTL identified in our study (155.9IcM-157.9IcM. We found a
QTL for vanillin in this region, which agrees with the finding of a QTL for diferulic acids, due
to their relationship with guaiacyl units. A “medium evidence” candidate gene [40], a putative
glycosyltransferase (quasimodo), was located near a marker positioned at 163.5IcM on our
chromosome 3 map. QTL for acid detergent lignin/neutral detergent fiber (ADL/NDF), vanil-
lin, and syringaldehyde were found on chromosome 7 by Barrière et al. [36], with the closest
marker being bnlg1808 (which is positioned at 286.3IcM on our map). We found a QTL for
acetic acid in this region (288.9IcM), which has been shown to be a major product of hemicel-
lulose pyrolysis and a minor product of cellulose pyrolysis [14, 21]. While we did not find any
QTL for lignin derived compounds in this region, a connection can still be made, since a higher
portion of cellulose and/or hemicelluloses might lead to a different ADL/NDF ratio. The final
region in common between these studies occurred on chromosome 8, with Barrière et al. [36]
finding QTL for in vitro neutral detergent fiber digestibility (IVNDFD), ADL/NDF, klason lig-
nin/NDF, PCA, and syringaldehyde. The closest marker (bnlg1065) to these QTL was a proxi-
mal flanking marker to all of the QTL, whose distance ranged from 9-31cM (on their map)
distal of the marker. In our map, this marker is positioned at 460.8IcM. We found a QTL for
acetosyringone close to this region (502.9IcM), which agrees with QTL for all five of the traits
found by Barrière et al. [36].

We found QTL in several other regions where Truntzler et al. [40] identified candidate
genes. On chromosome 1, we found QTL for the cellulose derived compounds levoglucosan
and hydroxyacetaldehyde at 892.8IcM. Truntzler et al. [40] identified an endo-1,3–1,4-β-D-
glucanase and an exoglucanase as medium evidence candidate genes in this region (near
bnlg1268 and bnlg1671a, respectively), which map near our QTL (898.7IcM and 913.4IcM,
respectively). The region with the most (nine) QTL in our study was located on chromosome 4
that is close to a high evidence candidate gene, caffeoyl-CoA 3-O-methyltransferase 4
(CCoAOMT), which is found around 550-551IcM in our map. CCoAOMT is thought to be
involved in guaiacyl unit synthesis [41]. Another high evidence candidate gene, a peroxidase
located near marker umc2296 (267.5IcM) on chromosome 5, mapped very closely to QTL for
acetic acid and acetosyringone (267.3IcM). Peroxidases are involved in the polymerization of
lignin [41], which could explain why we found a QTL for acetosyringone in this region.

Truntzler et al. [40] performed a QTL meta-analysis across 11 different studies for four
digestibility traits and 22 cell wall composition traits in maize. The resulting composite map
contained several meta-QTL in common with QTL from our study. A digestibility trait meta-
QTL located on chromosome 2 was located in the same bin (2.04) as QTL for seven traits,
including five lignin derived compounds. Meta-QTL for digestibility and cell wall traits on
chromosome 3 in bins 3.04 and 3.06 are in common with all seven of our QTL located on chro-
mosome 3, of which five are lignin derived compounds.

Lorenzana et al. [7] used an IBM Syn4 testcross population to map cell wall composition
and ethanol traits in maize stover: klason lignin, glucose, xylose, arabinose, uronic acids, galac-
tose, mannose, p-coumarate esters, ferulate esters, and glucose release. There are a number of

Fig 2. Expanded chromosomemap.Close up view of QTL Groups A through G. Group name from Fig 1 is
shown at the top of the chromosome with the chromosome number indicated in parentheses. QTL names in
bold italics indicate a higher area % value for the B73 allele, with regularly formatted text indicating a higher
area % for the Mo17 allele.

doi:10.1371/journal.pone.0145845.g002
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regions found in this study for cell wall and ethanol traits that overlapped with regions in our
study. Lorenzana et al. [7] found a QTL for PCA on chromosome 2 at 302.5IcM. In that same
area, we found QTL for eight of our traits with the most interesting being2,6-dimethoxyphenol
(297.3IcM), as this compound derives from syringyl (S) lignin units after the pyrolysis process,
and PCA can be an indicator of S units as it is esterified to side chains of syringyl alcohol [41,
42]. Lorenzana et al. [7] also found QTL for PCA on chromosomes 5 (195.6IcM) and 7
(212.0IcM), where we found QTL for several traits. We found a QTL for the syringyl derived
compound 2,6-dimethoxyphenol on chromosome 5 at 192.3IcM. QTL for glucose, mannose,
and galactose were found around 204-211IcM by Lorenzana et al. [7] that were near a QTL for
the cellulose derived compound levoglucosan (206.5IcM). They also found a QTL for arabinose
on chromosome 7 located at 298.9IcM that mapped near our QTL for the hemicellulose
derived compound acetic acid (288.9IcM). The final region in common is a QTL for ferulic
acid on chromosome 6 at 475.9IcM [7]. We found QTL for 2-methoxyphenol and acetic acid
in this region (477.9IcM and 484.5IcM, respectively) that are consistent with this finding, as
ferulic acids can link hemicelluloses to guaiacyl lignin units.

Finding these QTL across studies, for similar traits, suggests that these chromosomal regions
are promising candidates for further research. In addition, common QTL between these traits
provides evidence that cell wall composition prior to pyrolysis is closely tied to bio-oil compo-
sition. From a breeding perspective, this could be beneficial as less expensive and higher
throughput methods to determine cell wall composition (e.g. based on near infrared reflectance
spectroscopy), as compared to Py/GC-MS, are available. Because all of these studies found
areas where QTL for multiple cell wall related traits co-located, it is highly likely that separate
breeding programs will be required to produce maize for cellulosic ethanol conversion and
maize for bio-oil conversion. Common QTL between our study and Lorenzana et al. [7], would
in most cases require opposite alleles (B73 vs. Mo17) to be selected for lignin and hemicellulose
content. For example, on chromosome 2 around 300IcM, we found QTL for five lignin derived
compounds. The Mo17 allele increased area % for each of these compounds. A breeding pro-
gram to select for bio-oil quality would select for the Mo17 allele, while a breeding program for
cellulosic ethanol conversion would select for the B73 allele.

We found genetic variation for 10 bio-oil compounds in the IBM Syn4 population, and exclu-
sively minor QTL, each of which explained a small amount of phenotypic variance. This infor-
mation, taken together with relatively high (> 0.62) heritabilities for seven compounds, suggests
that favorable maize varieties for improved bio-oil composition can be developed. Due to finding
exclusively minor QTL, we expect that genomic selection, rather than marker assisted selection,
would be the best strategy for a breeding program to improve maize for bio-oil conversion. By
using all available markers, genome wide selection can capture more genetic variation compared
to marker-assisted selection [43], and, therefore, maximize response to selection [44]. For bipa-
rental populations (which are common maize breeding populations), as few as 100 markers are
sufficient for predicting breeding values when using genomic selection [45].
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