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Abstract

Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to
developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays,
in silico methods fill multiple elements of the discovery stage, such as characterizing antibody–antigen interactions and identifying
developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms,
in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding
prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based
generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches
to therapeutic antibody design with implications for fully computational antibody design.
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Introduction
The number of newly approved antibody-based thera-
peutics is rapidly increasing. We have already passed the
point of 100 Food and Drug Administration approvals
with multiple antibodies in clinical trials and patent
filing stages [1, 2]. This is reflected in the market size
for these molecules, estimated at $130 billion in 2020
and projected to grow to 223 billion by 2025 [3, 4]. Most
of the antibodies on the market were developed using
costly and time-consuming techniques, chiefly phage
display or animal immunization platforms [5, 6]. With the
maturity and increasing integration of computational
protocols within pharma company pipelines, the time
and cost associated with therapeutic antibody develop-
ment are expected to decrease. This shall hopefully make

immunotherapy more affordable to patients and widen
the applicability to more disease conditions.

Our previous reviews delineated the computational
resources available to antibody engineers [7]. Most of
the tools we reported on covered various statistical
techniques such as homology modeling for structure
prediction and z-scores for humanness annotation.
The increasing availability of large-scale data on B-cell
receptors [8, 9] and advances in machine learning-based
model development [10–12] are significant developments
in the computational antibody field within the last few
years. Such advancements appear to have contributed
to several computational approaches to therapeutic
antibody discovery following the deep learning paradigm.
This trend not only resulted in employing such methods
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to tackle well-established problems (e.g. structure
prediction) but also created entirely new fields (e.g.
generative models for novel antibody design).

In this review, we describe the recent developments
in computational antibody engineering, specifically
highlighting the novel applications of deep learning. We
present the methods that improve the previous state-
of-the-art (e.g. structure prediction and humanization)
but also introduce novel concepts such as language-
motivated embeddings and automated sequence gen-
eration. The new paradigm shift towards machine
learning—encapsulated by embedding and generative
methods—offers a novel way of designing antibody-
based therapeutics computationally.

Encoding antibody, antigen sequence
and structure for machine learning
applications
Feature engineering is the process of creating new arti-
ficial input features from raw data to improve model
performance. This process is vital in developing machine
learning models that apply to biological data—to draw
the connections between sequence and phenotype, one
needs to formalize the biological representations [13]. In
the context of antibodies, we chiefly distinguish between
sequence, structure and graph representations.

One of the most basic approaches to encode anti-
body sequence information is to apply one-hot-encoding
(Figure 1A), where each letter representing residue in the
protein chain is replaced by a 20-element vector, with ‘1’
in place for represented amino acid and ‘0’ for others.
Such vectors can account for gaps or the start/end of the
sequence.

Such basic representation can be extended by replac-
ing 0/1 with encodings reflecting amino acid properties.
For this purpose, one can use substitution matrices (e.g.
Blosum, Figure 1B) that capture evolutionary relation-
ships. Here each amino acid is encoded as a 20-element
vector, in which each element represents a value taken
from the substitution matrix. Another option is using
an encoding that encapsulates known physicochemical
properties of amino acids (e.g. Vectors of Hydrophobic,
Steric, and Electronic (VHSE) properties [14], Figure 1C),
where the residue representation vector contains val-
ues of known hydrophobic, steric and electronic prop-
erties. In this approach, it is common to apply dimen-
sionality reduction algorithms (e.g. Principle component
analysis (PCA)) to reduce the size of the representation
vector.

In contrast to manually adding domain knowledge
to encodings, vectorizations for individual amino acids
can be also learned together with model parameters in
end-to-end learning (Figure 1D) [14]. Such task-specific
learned representation yields similar performance com-
pared to other encodings mentioned above, while keeping
a smaller vector size. This lower dimensionality may
be important in cases of deploying models to devices
with limited computing capacity or when operating on

large volumes of data, where processing time translates
directly to cost.

Amino acid encodings can also be supplemented by
additional details (Figure 1E) such as organism, gene and
more importantly, positional information. Numbering
schemes [15, 16] for antibodies act as an implicit multiple
sequence alignment that contextualizes the amino acid
residues in their functional positions (e.g. framework,
Complementarity Determining Region (CDR)). Amino
acid representation can take such positional dependen-
cies into account (e.g. input neuron 68 will correspond
to international ImMunoGeneTics information system
(IMGT) position 56) but can also be approached by
learning alignment-free dependencies [17].

Sequence-based encodings provide an initial layer of
information for three-dimensional (3D) structure encod-
ings. Since structural elements are interdependent in 3D
space, the machine learning method must either operate
within a well-defined frame of reference or remove the
variance altogether. One can define a single frame of
reference by aligning all the structures together [18] and
predicting the X, Y, Z coordinates. Another approach is to
make the coordinates insensitive to rotation and transla-
tion by operating on invariant features. Such features are
the distances between atoms and the orientation angles
(Figure 1F) [19].

A special case of structural representation is using
graphs. Protein structure and function result from
an inter-residual interaction network, which can be
abstracted into a graph where amino acid residues
are nodes and contacts or interactions between them
constitute graph edges. Such representation is denoted as
Residue Interaction Network or Protein Contact Network
and can be constructed using varying nodes and edges
definitions. For example, the Cα or Cβ atoms of a
residue can be nodes, and edges are drawn based on
the distances between them [20, 21]. It is also possible
to construct a network of non-covalent interactions
between residues [22]. Here, each amino acid is rep-
resented as a graph node, and edges are drawn where
noncovalent interaction strength is above an interaction
strength threshold. There are also variations, which
combine angle with distance information where each
edge connecting residues consists of four parts: their
positional distance, radial distance, direction encoding
and orientation encoding [23].

Alongside input encoding, it is equally important to
encode the predicted values suitably. Here, predictions
can be divided into categorical and continuous. Examples
of categorical predictions include predicting the source
of an antibody (e.g. murine or human) from its amino
acid sequence [24] or the incidence of amino acids at
specific positions in protein sequence [25]. On the other
hand, continuous predictions aim to capture values such
as aggregation propensity [26] or orientation angles of
residues in a structure [27]. Encoding the categorical val-
ues typically takes the form of an n-dimensional vector
where n is the target number of classes—for instance, in
attempting to call an organism based on an antibody’s
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Figure 1. Antibody encoding schemes. (A) One-hot encoding. Sparse vector representation for each residue with 1 for amino acid present and 0 s for
remaining positions. (B) Substitution matrix. Rather than 0/1 as in one-hot encoding, each amino acid present receives a score from the substitution
amino acid matrix, e.g. Blosum. (C) Amino acid properties. Similarly to substitution-matrix approaches, scores encapsulate knowledge-based properties,
such as size, charge, etc. (D) Learned amino acid properties. Infer embeddings for each amino acid based on training of the network. (E) Encoding of
supplementary attributes such as organism, gene, etc., alongside amino acid encoding. (F) Encoding of structural features. For invariant representations,
structures can be represented by distance matrices or by orientation angles between consecutive amino acids.

sequence, one could encode labels as (1,0) for mouse and
(0,1) for human. Since predicting continuous functions
is naturally challenging, the continuous variables are
often bucketed into equally sized intervals. For instance,
the prediction of pairwise residue distances in a protein
structure is naturally an continuous problem; prediction
can take the form of N equally spaced intervals with an
upper bound on maximal predicted distance [19].

Although, as described here, multiple ways of encoding
sequences and structures exist, these are not exclusively
associated with model architectures. For instance, one-
hot encoding can be used both to encode heavy chain
CDR3 input to a convolutional neural network (CNN) for
binding prediction and a heavy chain sequence for coor-
dinate prediction by a ResNet. The choice of architecture
is related to the problem that it attempts to address.
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Common network architectures
employed for therapeutic antibody
issues
Current strategies to tackle antibody problems are shift-
ing towards machine learning in general and deep learn-
ing in particular, comprising a specific set of techniques
to design and train artificial neural networks. Here we
summarize some of the architectures and methods cur-
rently used in antibody immunoinformatics.

Recurrent neural networks (RNNs) [28] (Fig. 2A) receive
as input an entry in a sequence/time series and a hid-
den state of the previous recurrent cell. Each step pro-
duces an output value and the next hidden state. This
kind of architecture allows processing sequences with
different lengths. Examples here include the long-short
term memory networks [29] or gated recurrent unit [30].
For example, Wollacott et al. have recently applied a
bidirectional long short term memory network (LSTM)
(analyzing sequence going forward and backward) to
understand and predict the organism (nativeness) of an
antibody sequence [31].

Standard neural networks may accept data that does
not have any internal structure. On the other hand, if
our goal is to analyze data that exhibits some non-trivial
structure—e.g. our data points are sequences of letters or
images composed of pixels—we can design architectures
that take advantage of this additional information. Some
internal structure allows us to talk about local features,
i.e. patterns that can be identified by investigating only
a portion of the input. CNNs, Figure 2B identify local
features invariant to their global position. In antibodies,
this translates into focusing the convolutional layer on
consecutive sequence stretches or 3D configurations of
atoms in structures, which was employed for structure
[18] and binding prediction [32, 33].

Graph Neural Networks (Figure 2C) encapsulate a sim-
ilar paradigm for encoding structural features. Graph
representation focuses on input entities (e.g. residues)
and their relationships (e.g. distance<4 Å) rather than
on absolute positions, therefore it is insensitive to input
rotations. Such a graph model can then be used for
link prediction and for structure generation within the
antibody–antigen context [23].

ResNet is a type of network that utilizes skip connections
between layers (Figure 2D). Adding this type of shortcut
between layers solves the problem with vanishing gradi-
ents, allowing for the training of intense networks. The
most popular ResNets used for image recognition contain
34, 50, 101 or even 150 layers. Commonly used architec-
tures consist of several stacked blocks, each composed of
two or three connected layers with skip connections over
them. In the context of antibodies, ResNet was used by
NanoNet [11] to predict the structure of heavy chains.

One of the main tasks of machine learning meth-
ods is to arrive at an input representation internal to
the neural network that allows performing the predic-
tions efficiently. This implicitly makes the network learn
the hidden, latent representation that identifies input

Figure 2. Some common neural network architectures and concepts in
the context of some antibody-specific problems. Simplified examples are
given to show potential applications on sequence/structural inputs with
the networks capable of operating on more complex inputs (e.g. entire
variable region sequences rather than just CDR-H3 or more complex
molecular descriptors than just atomic coordinates). (A) Recurrent net-
works. Information is read one element at a time, maintaining a hidden
state. This architecture is often used for sequence-based input such as
CDRs or variable region sequences. (B) Convolutional Neural Networks.
Predictions are constrained to portions of the input and are then pooled
together. Such networks can focus on local patterns and combining them
into predictions, making them useful in identifying motifs in sequences
or identifying molecular surface features. (C) Graph Neural Networks.
The abstract linkage between elements in input can be reflected. Such
networks can process abstract representations of molecules. (D) Residual
Neural Networks. Portions of the network can be circumvented, allowing
for deeper networks without risking exploding or vanishing gradients.
Such networks were used with great success for structure prediction. (E)
Encoder-Decoder networks. The input is encoded into a latent represen-
tation by reducing the dimensionality and attempting to reconstruct the
input. The resulting latent representation can reflect intrinsic features
of the input, such as gene assignments and propensity towards similar
targets.
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features and their relationships. Such representation is
a model of the distribution of input values. Though each
network does it implicitly, one can also train the network
to achieve this task on purpose, whence one can con-
trol the properties of the latent space. In such encoder–
decoder architecture (Figure 2E), the network attempts
to encode the input in a lower number of dimensions
(encoder) and then reconstruct the original input from
it (decoder). Several network architectures attempt that,
such as variational autoencoders (VAEs) [34], Generative
Adversarial Networks [35] or Transformers [25]. Latent
representations can be trained from voluminous unla-
beled datasets (e.g. Next generation sequencing (NGS)),
and then the models used to train further on much
smaller labeled datasets (e.g. paratope prediction) in the
transfer learning process.

Many architectures describe above lack explainability
in that it is difficult to judge which features contribute
to the final predictions, which can be associated with
biological interpretation [36]. An important explainabil-
ity component (among others) that has been applied
to antibodies is attention. In classical models, input
sequences are compressed by an encoder to a fixed
size length vector (context), which is further used for
prediction or sequence modeling. This representation
becomes a bottleneck when the input sequence is long.
Attention [37] overcomes this problem by computing the
context vector as a weighted average of all intermediate
encoder outputs. Attention weights are calculated by
applying the softmax function over attention scores, which
are calculated by a small feedforward network. This
mechanism, therefore, allows selecting input elements
that contribute more to better predictions and boost
performance, especially in sequence-to-sequence tasks.
Attention plays a crucial role in the Transformer model
[38] and other state-of-the-art networks for text and
sequence processing with recent antibody applications
[25, 39].

Old problems, new solutions—novel deep
learning applications to traditional
computational antibody problems
Computational tools used to facilitate the therapeutic
design of antibodies can be divided into two broad
categories; ones focused on predicting antibody–antigen
interactions [20, 32, 58] and ones focused on the
developability properties of antibodies [26, 59]. As a basis
for many of such methods, one needs to determine the
3D coordinates of the antibody molecule [60]. Accurate
structure predictions can enrich sequence information
with molecular features [61], useful for machine learning
approaches to binding and developability prediction.

Embedding antibody 3D space–structure
prediction
Prediction of antibody structure has wide-ranging appli-
cations in antibody engineering as the molecular shape

of the paratope defines the antibody–antigen recognition
[61]. Determining proteins’ crystal structure is techni-
cally challenging, prompting a wide interest in devel-
oping methods for predicting the 3D coordinates from
sequence alone [62]. While there are thousands of crystal
structures available for fragments of antibodies such
as Fabs, Fcs, Fvs, the number of full-length antibody
structures amounts to merely six. Moreover, there are
no crystal structures of multispecific antibodies avail-
able. Until recently, the method of choice for tackling
this problem was homology modeling and energy-based
methods.

The advent of machine learning in the field recently
culminated in a spectacular performance by AlphaFold2
(AF2) at CASP 14 [10, 62]. Protein structure prediction
methods such as AF2 derive much information from
coevolutionary signals [63, 64]. Because of the specific
nature of the antibody problem, methods such as AF2
are not explicitly designed for capturing small structural
nuances such as hundreds of millions of available CDRH3
structures [65].

Because of their specific biology, the structural pre-
diction of antibodies has been a separate sub-area of
protein structure prediction. However, it has always ben-
efited from the progress in the broader field. As initial
protein structure predictions were homology and energy-
based, so were some of the first methods tackling this
problem [60, 66–69]. The nuance here is that predictions
are separated between frameworks (that are structurally
conserved) and CDRs, especially the most variable one,
the CDRH3 loop. The most recent methods that address
antibody-specific CDRH3 predictions are DeepH3 and
ABlooper (Table 1).

DeepH3 is based on RaptorX [70] and used for de novo
CDRH3 prediction. It is a deep residual network that
given a one-hot encoding predicts the inter-residue dis-
tances and orientations into a discrete set of bins used to
score poses generated by RosettaAntibody [71]. The train-
ing dataset consisted of records from SAbDab [72] with
thresholds of 99% sequence identity and 3.0 Å resolution.
The benchmark dataset consisted of 49 Fv structures
selected from the PyIgClassify database [73], based on
their quality, with CDRH3 loop of lengths between 9
and 20 residues. This method achieves accuracies in the
region of 2 Å, rather than 4 Å in trRosetta [74] (which was
designed for general protein structure prediction). This
work showed that the distributions of orientation angles
act as better discriminators than distance distributions
alone. The latter were the hallmark of many previous
methods in general protein structure prediction [10, 64,
70].

An alternative architecture for CDR (all loops) pre-
diction in the form of E(G)NNs was proposed in ABlooper.
Input data from SAbDab are encoded into 41-dimensional
vectors with amino acid type, the atom type and which
loop the residue belongs to. Additionally, sinusoidal
positional embeddings are given to each residue describ-
ing how close it is to the anchors. Data from SAbDab
were used to train five different E(G)NN networks, each
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Table 1. Recent examples of machine learning applications in antibodies

Category Method Problem solved Training input Architecture Training parameters Libraries Availability Paper

Structure
prediction

DeepH3 CDRH3 prediction 1388 structures Series of 1D and 2D
convolutions (3
1D + 25 2D blocks)

30 epochs, batch size
4, 35 h using one
NVIDIA Tesla K80
Graphics processing
unit (GPU)

PyTorch link [27]

DeepAb V region structure
prediction

118 386 sequences
and 1692 structures

A 1D ResNet (1D
convolution followed
by three 1D ResNet
blocks) and the
bi-LSTM encoder

60 epochs, batch size
128, NVIDIA K80
GPU requiring 60 h

PyTorch link [19]

AbLooper CDR Prediction 3438 structures Five E(n)-equivariant
graph neural
networks (EGNNs),
each one with four
layers

NVIDIA Tesla V100
GPU, predict the
CDRs for one
hundred structures
in under five
seconds

PyTorch link [40]

NanoNet Heavy chain
prediction

∼2000 structures Two 1D ResNets with
input tensor of
140 × 22

batch size of 16
and ∼ 130
epochs,10 min on a
GeForce RTX 2080 Ti

Keras/Ten-
sorFlow

link [18]∗

Humaniza-
tion/Deim-
munization

Nativeness
LSTM

Learn distribution
of amino acids at
positions

400 000 sequences Bidirectional LSTM
with dimensionality
64

10 epochs PyTorch link [31]

Sapiens Antibody
humanization

20 milion heavy
chains and
19 milion light
chains

RoBERTA
transformer, 4 layers,
8 attention heads,
568 857 parameters

700 epochs for heavy
chains, 300 epochs
for light chains

PyTorch/-
Fairseq
[41]

link [24]

hu-Mab Discriminate
between
human/mouse
sequences

65 million
sequences with 13
million non-human
ones

Random Forest n/a scikit-learn link [42]

Binding
models

Parapred Paratope residues
prediction

1662 sequences (277
antibody–antigen
complexes × 6
Complementarity
determining regions
each) and tested on
the same dataset
using 10-fold
cross-validation
technique

Convolutional and
recurrent neural
networks

16 epochs, 32 batch
size

Keras link [43]

Epitope3d Conformational
epitopes prediction

1351
antibody–antigen
structures (covering
40 842 epitope
residues) and 180
unbound antigen
structures; tested
on 20 unbound
antigen structures;
45 unbound antigen
structures used for
external blind test

Supervised learning
algorithms:
Multi-layer
Perceptron, Support
Vector Machines,
K-Nearest Neighbor,
Adaboost, Gaussian
processes (GP),
Random Forest,
Gradient Boost,
XGBoost, Extra Trees

N/A scikit-learn
Python

link [44]

mmCSM-
AB

Prediction of the
consequences of
multiple point
mutations on
antibody–antigen
binding affinity

1640 mutations
with associated
changes in binding
affinity (905 single
missense mutations
and 735 modeled
reverse mutations);
tested on 242
multiple missense
mutations with
associated changes
in binding affinity

Supervised learning
algorithms for
example: Random
Forest, Extra Trees,
Gradient Boost,
XGBoost, SVM and
Gaussian Process

n/a scikit-learn
Python

link [45]

(continue)

link
link
link
link
link
link
link
link
link
link
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Table 1. Continue.

Category Method Problem solved Training input Architecture Training
parameters

Libraries Availability Paper

Phage display
LSTM

Generate novel
kynurenine binding
sequences from
LSTM

959 sequences LSTM, two layers
with 64 units.

269 epochs Keras/Ten-
sorflow

n/a [46]

Phage display
CNN

Predict phage
enrichment and
generate novel
CDRH3

96 847 sequences
(largest dataset on
github)

Ensemble of CNNs,
largest with two
convolutional layers
and 18 706
parameters

20 epochs Keras link [47]

Image-based
prediction

Distinguish between
binding antibodies
and lineages

24 953 models with
calculated
fingerprints from
308 EBOV and 54 HIV
antibodies.

ResNet-50 [48] Pre-trained model Keras/Ten-
sorflow

link [33]

Paratope and
Epitope
Prediction with
graph
Convolution
Attention
Network
(PECAN)

Epitope and
paratope prediction

162 structures for
epitope prediction
and 460 for paratope
prediction

Graph Convolutional
Attention Network

Up to 250 epochs,
batch size of 32
(multiple
parameters tested)

Tensorflow link [20]

DLAB Sorting of protein
docking poses

759 Antibody–
antigen complexes

Convolutional
Neural Network

n/a PyTorch link [32]

Embed-
dings/Lan-
guage
Methods

immune2vec Embed CDRH3 into
100 dimensions
using skip-gram

15,63 million
sequences

Two dense layers n/a Gensim link [49]

ProtVec CDRH3 Embed CDRH3
sequences to
predict COVID-19
status

COVID-119 data
from OAS

Based on ProtVec
from Harvard
DataVerse [50] and
SVM

Reused previous
model.

Reused
previous
model

link [51]∗

AntiBerty Masked language
modeling, paratope
prediction

558 milion sequences BERT transformer
encoder model, 8
layers, 26 M trainable
parameters.

8 epochs, 10 days
on four NVIDIA
A100 GPUs

PyTorch n/a [39]∗

AntiBerta Masked language
modeling, paratope
prediction

57 million sequences Antibody-specific
Bi-directional
Encoder
Representation from
Transformers, 86 m
parameters

12-layer
transformer model
that is pre-trained
on 57 M human
BCR sequences, 3
epochs, batch size
of 96 across 8
NVIDIA V100 GPUs

PyTorch n/a [25]

AbLang Masked language
modeling,
reconstruct
erroneous
sequences

14 milion heavy
chains, 200 000 light
chains training.
Evaluation sets of
100 k, 50 k for heavy
lights respectively.

Based on RoBERTA
from HuggingFace.
12 layers.

20 epochs for
heavy chains, batch
8192, light chains
40 epochs 4096
batch size

PyTorch link [52]∗

Genera-
tive
method-
s/anti-
body
design

Mouse VAE Model latent space
of CDR triples of
antigen challenged
mice

243 374 sequences. VAE with encoder
and decoder each
having two dense
layers
(256 512 units each)

200 Epochs on a
single GPU from
the ETH cluster.

Tensorflow n/a
(available
after peer
review)

[53]∗

Developability-
controlled
GAN

Learn latent
representation of
human sequences
and bias it towards
biophysical
properties

400 000 sequences Generative
Adversarial Network,
(single chain) seven
layers consisting of
2D convolution and
dense layers.

500 epochs, batch
size of 128

Keras/Ten-
sorflow

n/a [35]∗

Nanobody
generation

Autoregression on
nanobody sequences
to generate novel
CDRH3

1.2 milion sequences ResNet with nine
blocks with six
dilated convolutional
layers.

250 000 updates,
batch size of 30.

Tensor-
flow/PyTorch

link [17]

(continue)

link
link
link
link
link
link
link
link
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Table 1. Continue.

Cate-
gory

Method Problem solved Training input Architecture Training
parameters

Libraries Availability Paper

In silico LSTM In silico
proof-of-principle
of virtually
unconstrained
antigen-specific
antibody sequence
generation

70 000 murine
CDR3 sequences

1024 LSTM with
embedding layer and
dense output layer.

20 epochs, batch
size 64

Tensorflow link [54]

Immunoglobulin
Language Model
(IgLM)

Masked language
modeling, generate
synthetic libraries
of antibodies by
solving masked
language model

558 milion
sequences

Transformer decoder
architecture based
on the GPT-2 model
with 512
embeddings,
12 milion
parameters

batch size of 512
and 2 gradient
accumulation steps
using DeepSpeed,
3 days when
distributed across 4
NVIDIA A100 GPUs

GPT-2 from
Hugging-
Face

n/a [55]∗

IG-VAE Immunoglobulins
structure
generation

10 768
immunoglobulins
structures
(including 4154
non-sequence-
redundant
structures)- set
covers almost 100%
of the antibody
structure database
(AbDb); Tested on
5000 structures
from the latent
space of the Ig-VAE

VAE n/a PyTorch n/a [34]∗

Generative method
Benchmarking: (AR)
the sequence-based
autoregressive
generative model,
geometric vector
perceptron (GVP)
the precise
structure-based
graph neural
network and
(Fold2Seq)
fold-based
generative model

Antibody CDR
regions design
based on portion of
sequence or
structure.

Sequences from
natural llama
nanobody
repertoire

AR- Autoregressive
Causal Dilated
Convolutions; GVP
-based
Encoder-Decoder
GNN; Fold2Seq-
Encoder-Decoder
Transformer

n/a n/a n/a [56]∗

GNN-based
generation

CDRs sequence and
3D structure design

∼5000 structures.
For CDR-H1, the
train/validation/test
size is 4050, 359 and
326. For CDR-H2,
the
train/validation/test
size is 3876, 483 and
376. For CDRH3, the
train/validation/test
size is 3896, 403 and
437.

Message passing
network (MPN):
Iterative Refinement
Graph Neural
Network
(RefineGNN)

batch size of 16,
dropout of 0.2 and
learning rate of
0.0005

n/a n/a [23]∗

AntBO CDRH3 region
design

Bayesian
Optimization and
GP

87 cores 12 GB GPU
memory

GPyTorch,
Botorch

n/a [57]∗

For each method, we present the basic reported parameters used for training the network and approximate input. Wherever available, we report the architecture
and libraries used to offer a point of reference for the currently used techniques in the field. Some methods (e.g. hu-Mab or mmCSM-AB) were not deep-learning-
based, though they are included here for completeness. The non-peer-reviewed Biorxiv/Arxiv papers are indicated by ‘∗’ in the Paper column.

with four layers. The agreement of the five networks
on the generated coordinates is taken as the prediction
confidence. An advantage of its method is its speed since

it does not rely on other structure generation algorithms
and can produce coordinates for thousands of structures
within seconds.

link
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Though predicting CDRH3 loops is the most challeng-
ing task, reconstructing the entire antibody variable
region is the overarching goal. DeepAb is built on top
of the DeepH3 method, but it is designed to predict
the whole variable regions. The method consists of two
main stages: a deep residual convolutional network
predicting bins of distances and orientation angles and
a Rosetta-based protocol for structure realization of the
predicted distance and angle constraints. Additionally
to the structural information fed as input, the network
incorporates a bidirectional-LSTM network trained on a
set of 118 386 paired heavy and light chain sequences
from observed antibody space (OAS) [8] to teach the
network the general features of antibody sequence
space. Such feature extraction allowed for implicitly
capturing certain structural properties, such as recre-
ating the PyIgClassify annotations [73]. Furthermore, the
network tracks residues contributing to coordinate/angle
prediction of each other via an attention mechanism.
The network primarily attends to residues surrounding
each loop of interest, with the distinction that CDRH3
predictions draw from a broader set of dependencies
across the heavy and light chains.

Though methods such as DeepAb demonstrate the
power of machine learning techniques in antibody
structural predictions, they can be hindered by slower
methods required to generate coordinates. This problem
was addressed by NanoNet [18], which was designed to
predict structures of single antibody chains. Originally
designed for the prediction of single-chain nanobodies,
it is a residual convolutional network that produces
predicted coordinates as output when given a variable
region sequence. NanoNet aligns the input structures,
creating a single frame of reference regarding which
the predictions are being made. Since the structure
realization is accomplished within a single network,
it can produce thousands of structures in a matter of
seconds.

The methods discussed above provide a tangible per-
formance increase in terms of the most challenging prob-
lem, the CDRH3 prediction being achieved now in the
region of 2 Å rather than 3-4 Å beforehand [75]. The pre-
dictions are approaching sufficient levels to be reliably
used as substitutes for crystal structures, specifically
providing models at speed and scale [76] necessary to
tackle the antibody-binding problem for the ultimate
prize of virtual antibody screening.

Embedding the ab-ag space: prediction of
antibody–antigen binding
Three-dimensional structures of antibodies and anti-
gens are important determinants of antibody–antigen
interactions. Typically, the development of novel binders
was confined to animal immunizations of phage-display
methods. Methods used to analyze antibody–antigen
interactions were previously categorized into paratope
[43, 77, 78], epitope [79–82], or docking [83–85] reviewed

previously [7]. Although certain previous methods, such
as Parapred [43], pioneered the use of deep learning
in predicting antibody–antigen interfaces (paratopes
specifically), the current combination of next-generation
sequencing and machine learning methods accounts for
novel applications going beyond the confines of the three
categories (Table 1).

Deep learning methods are combined with high-
throughput sequencing to improve the predictions
obtained from display technologies. In order to get
high-affinity binders, one needs to perform several
costly and time-consuming panning rounds. To address
this, Saka and colleagues employed binders from their
panning experiments (against hapten kynurenine) to
train an LSTM model using 959 heavy sequences [46].
This model provided a basis for capturing the features
of their binding antibodies to sample novel binders.
They used their model to generate novel sequences by
sampling amino acids and feeding these to the model
to obtain consecutive amino acids in sequence. At the
softmax layer (that gives a likelihood of each amino
acid at a position), they added a temperature factor
that introduced more randomness. Following such a
generative strategy, they removed sequences with amino
acids in positions not seen in the training set. They
hypothesized that the generated antibodies could be
better binders; indeed, the best one achieved a significant
improvement concerning the parental sequences.

Another application to improve the phage display
technology was proposed by Liu et al. They predicted
phage enrichment (better binders) against ranibizumab,
bevacizumab, etanercept and trastuzumab based on
CDRH3 sequences [47]. They ran three rounds of panning
against ranibizumab, with predictions on the enrichment
of round 2 to round 3. They employed a CNN to predict
this property, the largest of which was a 2-layer CNN.
They trained ensemble classifiers from the trained mod-
els that outperformed the individual models on held-out
data, showing that the model generalizes to unseen data.
The authors also trained separate ensembles on anti-
bevacizumab, anti-etanercept and anti-trastuzumab
antibodies. They removed anti-bevacizumab predictions
with a higher score for etanercept and trastuzumab,
avoiding 75% of such non-specific predictions. To
generate new sequences, they used a seed sequence that
they optimized using their ensemble. They keep the same
network parameters but use the back-propagation to
project a new version of the input sequence—if the score
is not improved within 10 iterations. They compared
the results of their generated sequences. Two improved
binders (1.899 and 2.888 log10 round 1- to round 2
enrichment) were only two mutations away from the
seeds. However, exploring all such 2-point mutations in
6566 used seeds would translate to 2.193 × 108 sequences
making in silico exploration of this space much faster and
more economical.

Identifying an antibody binder needs to be coupled
with selecting those exhibiting favorable developability
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properties. This problem was tackled by Mason et al. [86],
who combined experimental data generation with subse-
quent neural network binding training and developabil-
ity filtering. They generated 11 300 and 27 539 binders
and non-binders towards Her2 based on trastuzumab.
They benchmarked several neural network architectures
on the problem of predicting the binding probability. Out
of several standard architectures such as plain Artificial
Neural Network, LSTM, Random Forest, support vector
machine (SVM), the CNN achieved the best discriminat-
ing performance and was chosen as the standard model.
The objective function to predict binders was employed
to select putative binders from computationally gener-
ated sequences (based on the Deep Mutational Scanning
profile of trastuzumab CDRH3). The authors generated
7.2 × 107 sequence variants and used their CNN predictor
to select a set of sequences that were predicted to bind
(P > 0.7) and not (P < 0.1), stipulating that they need to
have at least a Levenshtein distance of 5 from the orig-
inator trastuzumab. The authors confirmed experimen-
tally that 30 of the predicted binders and 11/12 of non-
binders did not bind. One of the binders experienced an
almost 4-fold increase in binding affinity concerning the
original trastuzumab. The authors calculated the Fvcsp
[87], Camsol score [88] and NetMHC2PAN [89] to filter
the set of predicted binders. They experimentally vali-
dated 55 variants to demonstrate that one of them had
a comparable expression profile, better solubility and a
putatively better immunogenicity profile. This showed
how one could combine experimental screening with
machine learning binding models to select variants with
favorable therapeutic properties.

Even if improving experimental screening via machine
learning undoubtedly facilitates the therapeutic discov-
ery process, it still falls short of the ultimate prize, which
is the generation of antibodies purely in silico. For this,
one requires an objective function to determine whether
an arbitrary antibody–antigen complex could interact.
This problem was tackled by Pittala and Bailey-Kellogg
using neural graph networks [20]. Each protein structure
is represented as a graph, with nodes for the amino acid
residues and edges between residues with Cβ-Cβ dis-
tance <10 Å (with Cα for Gly). Each residue is associated
with the one-hot encoding of the amino acid type, sur-
face accessibility, psi-blast conservation profile and local
(<8 Å) amino acid context profile. When given graphs for
the two input proteins, the network learns the probability
of a given residue being part of the recognition interface.
Their method performs better than previous methods,
namely EpiPred [80] and Discotope [82]. One of the key
improvements of the method is the attention layer, which
indicates the scores contributing to the final predictions
for each residue.

Another application of developing a predictor of anti-
body–antigen interactions was proposed by Ripoll et al.
[33]. The authors aimed to predict structural interfaces
by using image recognition paradigms. They assumed
that distinct antibodies targeting the same epitope need

to share some features that are specific to the particular
antigenic configuration. Therefore, they created finger-
prints of the antibody binding site and projected them
onto a plane for image recognition, labeled with a par-
ticular epitope. On the basis of ResNet-50, they trained
a deep convolutional network to predict Ebola and HIV
epitopes. They identified datasets of anti-Ebola and anti-
HIV antibodies and modeled them using RosettaAnti-
body [27] to obtain the structural fingerprints. The anti-
HIV dataset consisted of 7310 fingerprint models from 53
antibodies, with the Anti-Ebola dataset comprising 17 643
models from 308 antibodies. They employed the classifier
to distinguish the fingerprints from a single lineage from
a pool of unrelated fingerprints.

The ultimate goal of antibody–antigen interaction pre-
diction is enabling researchers to employ a large volume
of NGS data to mine for novel binders, termed ‘virtual
screening’. Such virtual screening attempts in the field
of small molecules are often combined with large-scale
docking [90]. Deep learning models are increasingly used
to score the different docking poses for protein–protein
functions in general [91–93], with antibody–antigen dock-
ing treated as a separate case [85, 94] (reviewed recently
[95]). Docking was employed recently by deep learning
for antibodies (DLAB) to address virtual screening by
rescoring ZDOCK [96] poses in an antibody-specific fash-
ion. The network used to re-score docking poses was
a deep convolutional network that classified the poses
into a bucket, indicating an interval of the fraction of
native reconstructed contacts (fnat). Though the overall
prediction of docking scoring was improved, the method
did not achieve strong discrimination between binders
and non-binders.

All the approaches above use novel datasets and
machine learning models to predict antibody–antigen
interactions. However, none provides the ultimate
general ‘objective function’. To address the issue of
‘learnability’ of the Ab-Ag recognition, Akbar et al. tested
this concept in silico by simulated Ab–Ag binding data
[54]. They trained the LSTM-RNN on CDRH3 that were
apriori computationally associated with developability
data [13]. The network can generate sequences that
exceed the developability parameters of the sequences
used for training the network. It is demonstrated that
the network can also generate specific binders against
HER2 by giving it binders against this target to train on.
This shows that antibody properties are, in principle,
trainable on a multitude of its modalities, binding and
developability.

Developability—deimmunization
using large-scale NGS data and machine
learning
An antibody binder towards a therapeutic target should
meet a range of biophysical features, termed collec-
tively as manufacturability/developability [97]. Previous
approaches to tackle this issue employed statistical
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models [59] or non-deep learning approaches such
as random forests [98] that were reviewed in-depth
elsewhere [99]. The increasing availability of NGS data
and developments in machine learning have spurred
progress in a specific branch of developability, namely
deimmunization.

Natural B-cell repertoires of mice, sometimes engi-
neered human germline repertoire, often serve as the
source of therapeutic antibodies. However, animal anti-
bodies administered to humans may induce an immune
response that can neutralize the therapeutic effect of the
antibody. To avoid this, antibodies must be engineered to
resemble human antibodies without loss of activity in a
humanization process [100].

Traditionally, humanization was approached using
frequency-based methods quantifying the similarity
of the animal sequence to human ones (e.g. T20
[101] or humanness scores [102]). Such approaches,
however, were based on a small number of sequences (in
thousands), giving limited ability to learn the correlation
between different residues. The availability of NGS
increased the antibody sequence samples from the order
of magnitude thousands to millions. Improved positional
frequencies were created based on such data [103, 104].

Even if enriched by NGS data, positional profiles lack
the positional correlation granularity. To quantify possi-
ble positional correlations, an multivariate gaussian (MG)
statistical score was developed based on the OAS data
[105]. This was later expanded to an LSTM model by
Wollacott [31]. Both models focused on predicting what
constitutes the human sequence, introducing the neces-
sary element of correlations between positions. Crucially,
the authors of MG compared their score to the immuno-
genicity of therapeutic sequences, though it resulted in
a weak correlation (r2 = 0.18), indicating that sequence
identities alone might not encode the immunogenic-
ity information. This observation is consistent with the
industry experience on the origins of immunogenicity.
Immunogenicity towards biotherapeutic drugs is often
observed in clinical trials via the generation of Anti-Drug
Antibodies (ADAs) by the patients receiving immunother-
apy. The origin of immunogenicity in patients is mul-
tifactorial, with factors related to drug product quality
(e.g. formulation, presence of aggregates in the product or
aggregation of the product in vivo upon administration),
patient’s disease history, and their genetic background
playing crucial roles, along with humanness of the anti-
body sequence [106–108].

Though Wollacott and colleagues employed NGS data,
they only used a relatively small fraction of OAS, namely
400 000 sequences. By contrast, the authors of hu-mab
[42] used a far more extensive dataset (Table 1), also
drawn from OAS. Their method was not based on a
deep learning framework, but on a random forest model
trained to distinguish human and non-human sequences
of a specific V gene type from ones originating from other
species. Hu-mab correctly discriminated between human
and other animal sequences in both validation and test

sets, with slightly worse performance on the light chain,
which might be caused by the greater amount of negative
training data available for the VH models than VL mod-
els, but also because of smaller variability of light chains
both in terms of isotypes and CDRs. The previous LSTM
model [31] was not entirely capable of discriminating
between human and other animal sequences, which can
be because LSTM models were only trained on sequences
from a single species.

Another computer method that intends to accelerate
the process of humanization is BioPhi [24], an antibody
design interface with automated methods that capture
the diversity of natural human antibody repertoires. By
combining adaptive immune repertoire sequencing and
antibody engineering, BioPhi integrates two data-driven
methods—novel humanization (Sapiens) and human-
ness evaluation methods (OASis). Sapiens is a deep learn-
ing humanization method based on masked language
modeling (MLM) trained with human variable region
antibody sequences from the OAS. Sapiens is trained
to recognize and repair masked or mutated positions in
unaligned amino acid sequences. OASis is a humanness
metric based on peptide search in the OAS. OASis evalu-
ates the humanness of an antibody sequence by dividing
it into all overlapping 9-mer peptides (inspired by human
string content [109]) and then comparing them against
the OAS database to predict their universality across the
human population. Based on an in silico humanization
benchmark of 177 antibodies, this software offers muta-
tional choices similar to ones achieved by experimental
humanization methods. The chief advantage of BioPhi is
its attention layer and granularity that allows the user to
examine the residue dependencies and mutational effect
on the score. By drawing from language models, BioPhi
pioneers a new trend in antibodies where such methods
are used not only to provide solutions to established
problems such as humanization but also to open new
areas of research altogether.

New opportunities in computational
antibody design owing to deep learning
Machine learning methods fundamentally learn a latent
embedding of the input space. This can be interpreted
as a vector space where features of the input instances
and associations between them are implicitly accounted
for. In the antibody world, this can mean sequence-
similar antibodies, or even more abstractly, distinct
paratopes sharing identical/similar antigens. With a
large amount of NGS data, employing such methods—
often drawn from natural language processing (NLP)—
opens opportunities for encoding the antibody sequence
space with learned embeddings and employing it
for transfer learning (e.g. paratope prediction). More
importantly, it allows for a radical paradigm shift in
antibody design as novel sequences with pre-defined
properties can be ‘sampled’ from such learned latent
representations, or embeddings.
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Embedding the antibody sequence space:
applications of natural language-processing
techniques in antibodies

An emerging strand in antibody sequence analysis is
employing NLP to develop embeddings of antibodies
(Table 1). Protein and nucleic acid sequences can be sim-
plified to a textual representation allowing embedding
these in vector space [50, 110]. The purpose of such an
operation is to transform sequences into a vectorized
representation [50] that implicitly accounts for intrinsic
biophysical properties (e.g. function-similar proteins
should be closer to each other in vector space).

Antibodies are well suited for NLP applications as they
are proteins characterized by great molecular diversity,
estimated to be as many as 1018 unique molecules
[111]. Therefore, it is plausible to draw parallels between
words, sentences, documents, amino acid k-mers, CDRs,
frameworks and antibody repertoires. With multiple NGS
datasets annotated with disease states available now,
the application of NLP methods in antibodies holds the
potential to encode the antibody space, revealing novel
insights into the biology of immunoglobulins.

NLP’s word2vec provides an embedding for a natural
language word. Here, words semantically related by
context, are also close in vector space. Word2vec-inspired
unsupervised learning was used by Protvec for antibody
data [51]. Protvec started with the original sequence
split into three separate lists of non-overlapping 3-
mers, which are trained on 546 790 sequences from
Swiss-Prot [112]. The vector representations were then
summed into a 100-dimensional vector representing a
single protein sequence. In the specific case of antibodies,
the authors encoded the CDRH3 sequences to offer
an embedding for a single immunoglobulin sequence
using Immunoglobulin G heavy chain (IGHG) sequences
from OAS [8]. The Protvec embeddings were used for
classifying and tracking b-cell receptor (BCR) repertoires
of COVID-19 patients and healthy individuals. Authors
encoded the entire repertoires by adding vectors from 100
most common sequences in a repertoire that separated
into clusters of either healthy patients or those with an
ongoing COVID-19 infection.

Nevertheless, Protvec was only used to produce the
embedding without explicitly training the network. By
contrast, Immune2vec used the word2vec framework
to adapt it to antibody sequence embedding [49]. Here,
the CDRH3s are tokenized into non-overlapping 3-
grams (three consecutive amino acids). On this basis,
the word2vec model predicts the surroundings of
a given word based on n-gram sequences without
knowing the labels (with window size set to 25). Such
unsupervised learning captures some of the biochemical
and biophysical properties of the 3-grams, implicitly
classifying the sequences according to their corre-
sponding Immunoglobulin heavy chain variable region
(IGHV) families. The embedding was further applied to
classify samples from hepatitis C virus (HCV)-positive

patients. Repertoire level representation was achieved
by clustering the 100-dimensional representations, using
random forest to identify the most relevant features,
followed by logistic regression achieving close to 90%
prediction accuracy.

Previous methods attempted skip-gram modeling to
predict the rest of the sequence based on a stretch of
amino acids. This is related to another notion in language
modeling, specifically MLM. Here one obscures (masks)
part of the text and attempts to recreate it based on
the learned context. There are currently three methods
that were proposed for this problem, AntiBERTa [25],
AntiBERTy [39] and AbLang [52].

AntiBERTa [25] is a Bidirectional Encoder Represen-
tations from Transformers-based transformer with 12
layers and a total of 86 million parameters. For training,
random residues are masked and the task is to pre-
dict these. The latent representation reflects multiple
features of antibody function, such as correspondence
with ADA scores and discrepancy from the germline. The
pre-trained AntiBERTa was used for binary prediction
of whether a residue is part of the paratope or not.
Compared to Parapred and pro-ABC, AntiBERTa achieves
the highest precision of the methods at 74%. The ability
to predict paratope positions outside the CDRs was a
significant advantage. This method makes particular use
of the attention mechanisms that can reveal the context
of the entire sequence that influences the predicted
position. For instance, AntiBerta does not focus on the
invariant disulfide bridge in antibodies between 23–104.

With a convergent name, AntiBERTy [39] is also based
on the transformer model of BERT architecture, obtained
from HuggingFace, attempting the MLM task. Using the
embeddings, they construct k-nearest neighbor graphs
for individuals producing anti-HIV antibodies. Without
being specifically trained to do so, after visualizing the
embeddings from anti-HIV producing individuals, one
could note the trajectories of differentiation from the
germline akin to the typical affinity maturation process.
They defined the problem of identifying paratopes as
identifying highly redundant features within the reper-
toire. On a set of antibodies from anti-HIV-producing
individuals and compared against known anti-HIV
structures, they found binding consistencies indicating
orthogonal paratope prediction capacity to that of
AntiBERTa.

AbLang is a transformer adapted from HuggingFace
(specifically, Roberta [113]) and trained on OAS data.
Its main application is filling in missing portions of
sequences lost in the high throughput sequencing pro-
cess. Following typical MLM protocols, several residues
are chosen to be masked, tasking the predictor with
inferring them. Each residue is encoded into 768-
dimensional vectors. AbLang provides encodings for all
residues or entire sequences (mean residue encodings).
AbLang encodings implicitly group the vectors by V-
genes. When compared to the task of filling missing
N-terminal residues, protein-based model evolutionary
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scale modeling 1b (ESM-1b) [114] performs worse than
AbLang and copying germlines. Authors note, however,
that AbLang is comparable to just employing germline
information.

One of the main assets of the language models is
learning the latent space of antibodies, which implic-
itly accounts for certain features. This can be treated
as a space from which one can sample novel antibod-
ies, changing the paradigm of computational antibody
design.

Sampling the embedded antibody space:
generative methods for novel antibody
sequences in silico
One of the biggest challenges in therapeutic antibody
discovery is finding novel sequences. Antibody sequence
space is estimated to cover up to 1018 unique molecules
[111, 115]. One of the traditional approaches to finding
a binder was to create a sample of this space in the
form of phage display libraries. These libraries can
reach a diversity of 1011 possible molecules, which is
a small sample of the total possible space and does
not guarantee the reproduction of naturally functional
molecules [116]. Animal immunization provides access
to the entirety of the animal repertoire. However, this
is a burdensome approach where molecules still need
to be engineered for favorable developability properties
[117]. Therefore antibody engineers are faced with the
problem of how to traverse the antibody sequence
space, only enumerating the antibodies that can be
functional.

Previous computational antibody design methods
operated based on enumerating sequences, mutations, or
structural variants and then attempting binding predic-
tion [118–120]. Such methods emulated physics to sam-
ple novel conformations reflective of fundamental rules
of nature but might not explicitly account for strategic
statistical biases in biologically and therapeutically
relevant antibody space. From a statistical standpoint,
despite great diversity, the antibody sequence–structural
space does not follow uniformly random patterns.
Convergences can be found in the identical CDRH3
sequences developed by different individuals responding
to the same pathogens [121]. Despite following different
‘development pathways’, multiple therapeutic CDRH3
sequences can be found in naturally-sourced repertoires
[122, 123]. Antibody structure space (short of CDRH3)
appears to be particularly constrained to a certain
number of folds [76].

Revealing the biological contours of the antibody
molecular space can be addressed by a novel field within
computational antibody discovery, namely Generative
Networks [56] (Table 1). A neural network by design
attempts to learn the latent distribution of the input
space (Figure 3). Therefore, one can also employ the
learned latent space to sample from it—sequences
or structures. There exist certain limitations, though,

as to be sampled reliably, the space should ideally
be isomorphic and continuous. The alternative is a
disorderly latent space which though encoding the input
in efficient representation, does not allow to sample
reasonably. Architectures such as VAEs or Generative
Adversarial Networks address this problem by learning to
reconstruct input and forcing the latent space to be ‘well-
behaved’. Specifically, within the field of antibody design,
such networks can be used to learn the latent space from
input sequence [56] and bias it towards specific binders
and developability properties (Figure 3).

As an example of such an approach, Friedensohn et al.
immunized 45 mice with four antigens (OVA, HEL, BCP
and RSV-F) and collected approximately 240 000 combi-
nations of three CDRs in total (though antibodies were
not sorted by antigen specificity) [53]. They assumed that
the sequences in the latent space were generated using
a Gaussian Mixture Model to train a VAE to capture the
distribution of the training data. The VAE was tasked with
placing one-hot encoded input CDR combinations into a
cluster, the number of which is pre-defined. The group-
ings are imposed to reveal relationships between the
sequences that would not be apparent from clonotyping.
At around 2000 clusters and sequence dimensionality of
10, the reconstruction accuracy plateaued at 93%. The
VAE captured obvious relationships such as reflecting
closeness between CDRH3 lengths and variable gene seg-
ments being mapped to corresponding areas of the latent
space. They used sequences placed in the same cluster
as a confirmed RSV-F binder to check for shared speci-
ficity. All 12 sequences selected in this fashion bound
the antigen and were sufficiently dissimilar so as not to
be called convergent binders using traditional clonotype
definitions. They further studied the sequences in the
RSV-F binder cluster by sampling latent representations
from these. A total of 5005 novel sequences were gener-
ated in this way, 96 were checked experimentally, 71 of
which (74%) were binders.

Sequences can also be generated by predicting the con-
secutive residues in the sequence, called ‘autoregression’
[17]. An autoregressive model was proposed by Shin et al.
where a combination of ResNet with dilated convolutions
was used to model the following elements in the
sequence of amino acids (WaveNet [124]). They used
1.2 milion nanobody sequences to learn the distribution
of amino acids in these sequences. It was assumed
that such natural sequences would be associated with
favorable biophysical properties, such as stability. Using
germline CDR1 and CDR2 sequences as starting points,
they generated new CDRH3 sequences one amino
acid at a time and rejected those that do not fit the
constraints of nanobodies (e.g. ending in beta-strand).
In total, they generated approximately 3.7 m sequences,
and of these, they got 185 836 CDRH3s as seeds for
the experimental library generation. The nanobodies
coming from this library were confirmed to have
better expression. They further showed that this library
contains weak/moderate binders to human serum
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Figure 3. Generative methods for computational antibody design. (A) Millions of natural NGS sequences can be used to learn the general features of
the antibody sequences, such as positional frequencies, amino acid dependencies and gene groupings. (B) Feeding antigen-specific sequences, one can
bias the distribution to learn the features of sequences specific to a given antigen. (C) Sequences that have known favorable biophysical properties (e.g.
solubility, low immunogenicity) can be used to bias the latent space towards such features. (D) One can use the latent space to randomly sample points
from it in a directed fashion that complies with certain specifications, such as specificity and biophysical properties.

albumin, suggesting a low probability of non-specific
interactions.

Another generative method, Immunoglobulin Lan-
guage Model (IgLM) addresses the issue of unidirectional
autoregressive methods, where the prediction of the

following amino acids is only dependent on the previous
ones. Here the authors perform predictions to redesign
parts of the sequence, taking the entire context into
account [125]. For sequence generation, they use the
Generative Pre-trained Transformer (GPT)-2 architecture



Machine-designed biotherapeutics | 15

from the HuggingFace repository. For training, they
use 558 milion sequences from OAS. As expected,
prediction performs the worst on the CDRH3 region
and the best on the framework regions while learning
residue embeddings that capture their physicochemical
properties. To generate new sequences, they start with
the beginning residues of framework 1 (e.g. EVQ) and
predict the following (masked) residues. They introduce
the temperature factor that increases the diversity in
predictions to introduce the randomness of generated
sequences. On the basis of the predictor, a library of
CDRH3 sequences is generated. They computationally
analyze the library using tools CamSol and spatial
aggregation propensity (SAP), showing that the in silico
generated sequences have better (predicted) properties
than a random mutagenesis library or grafting existing
CDRs onto the framework.

Though previous methods either assumed better
developability properties based on input data (e.g. better
thermostability [17]) or performed filtering based on
predicted properties [86], they were not specifically
biasing the latent space for that task. This was addressed
by Amimeur et al., who used 400 000 sequences
from OAS as a base model of antibody amino acid
sequences [35]. Such a base model was used for
transfer learning, biasing the predictions using smaller
datasets with known developability properties. They
used transfer learning to bias towards: (i) shorter CDR
lengths, (ii) major histocompatibility complex (MHC) II
binding prediction for immunogenicity, (iii) isoelectric
point and (iv) lower negatively charged patch on the
molecular surface. Using the sampled sequences, they
experimentally produced full-length antibodies and
experimentally checked their behavior across four
metrics: differential scanning fluorimetry (DSF, ther-
mostability), self-interaction nanoparticle spectroscopy
(self-interaction), polyethylene glycol (PEG) solubility and
size-exclusion chromatography (solubility), showing that
their molecules indeed fall within acceptable ranges for
these
assays.

All the previous pieces of work focused on sequence
generation, disregarding the structure which actually
bestows the binding specificity. This was addressed by
the authors of IG-VAE, who used antibody structure
data from the database ABDB [126] to generate a VAE
learning the latent structure representation of antibody
molecules [34]. IG-VAE is a backbone generation algo-
rithm that does not generate the associated sequence.
The VAE model reconstruction loss was composed of the
torsion and distance, trying to optimize both, though
authors note that in the beginning that they had to
up-weigh the torsion loss. They tested the ability of
the VAE to reconstruct the structures by generating
500 structures and comparing their geometries to a
non-redundant set of 500 real structures. The dataset
did not naively recapitulate the training set as the
authors discover a set of novel loop shapes that still

have plausible bond geometries. To test whether the
novel backbones could be associated with a sequence,
the authors used Rosetta FastDesign, which puts an
amino acid sequence on a backbone. They demonstrated
a proof of concept of how one could employ the
method for designing molecules by designing backbones
targeting the ACE2 epitope of severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) receptor
binding domain (RBD). They generated 5000 backbones
and performed docking using PatchDock [127]. Two
decoys with favorable complementarity were confirmed
as low energy according to Rosetta Energy Units though
not experimentally confirmed. Finally, the authors
showed that it is possible to specify constraints to the
network such as distance constraints for a loop, antigen
positioning and complementarity, showing the potential
to control for a set of desired properties.

Altogether, the generative methods provide a novel
paradigm in computational antibody design that employs
learned representations of structure and sequence space.
To fully deliver on the promise of in silico antibody
generation, these methods must be made sufficiently
generalizable without the initial experimental data
generation steps.

Discussion
The steady development of data resources and asso-
ciated computational methods addressing therapeutic
antibody design increases the role of in silico methods in
antibody discovery [7, 99, 128]. One of the seminal works
on computational antibody design was the framework of
Lippow in 2007 [118]. It was molecular mechanics-based
(CHARMM forcefield [129]), trying to capture the physics
of studied molecules that set the tone for antibody design
for the next decade [7].

By contrast, machine learning methods do not aim to
reproduce physical phenomena but rather to distribute
observed data. Recent advances in machine learning, cul-
minating in a dramatic performance by AlphaFold, will
keep inspiring similar work in the context of antibodies.
Attempts at expanding AlphaFold work in the antibody
sphere have already been made beyond structure pre-
diction to molecular complex prediction [130]. Structural
modeling of the proteome in AlphaFoldDB also describes
the structural molecular space that is potentially drug-
gable [131]. Seeing how AlphaFoldDB solved an age-old
problem in bioinformatics using publicly available data,
it is encouraging to think that a similar feat of clever data
re-use and model development could be reproduced in
certain spheres of computational antibody design.

Machine learning approaches are already making their
mark on antibody bioinformatics, such as structure pre-
diction. They streamline the existing discovery methods,
such as identifying antigen-specific sequences that have
long been dominated by clonotype methods that rely
on sharing germlines and high (>80%) CDRH3 sequence
identity. Using paratope predictions to select convergent
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binders (called ‘paratyping’ [132]) perhaps was not out-
right better than clonotyping. However, it provided alter-
native identifications to clonotypes. The VAE [53], intro-
duced by Friedensohn, was better at identifying conver-
gent sequences than clonotyping by grouping antigen-
specific sequences across multiple features. However,
further investigations on ground truth data are needed
for an unbiased ranking of ML-based antibody bioinfor-
matics approaches [13, 54].

The contribution of deep learning methods to anti-
body discovery is not constrained to streamlining exist-
ing methods—it is redefining how the discovery process
is approached. Generative methods offer a tangible way
to encode the natural and therapeutic features of anti-
bodies to sample novel sequences purely in silico. Though
existing methods need to be fully decoupled from exper-
imental methods to deliver on their potential fully, they
do set the tone for the future.

Entirely in silico antibody generation is within reach,
and when it is achieved, it will open a new chapter in
therapy development. Rapid identification of antibodies
combating emerging viral diseases is necessary to use
the full potential of these molecules [133]. This would
also open the opportunity in precision medicine. Cur-
rently, a single antibody sequence is used to treat mul-
tiple patients. The caveat of this approach is reflected in
highly varied patient-drug responses. Tailoring a drug to
a patient in a highly complex system is currently out of
reach because of time and resource limitations. However,
this goal will become achievable if antibody discovery
speeds up thanks to in silico methods.

On a more immediate note, in silico antibody discovery
will dramatically reduce the time and costs required for
drug discovery projects. For example, the current time-
line required from the definition of a novel therapeutic
concept to the start of development is approximately
2–3 years. By combining computational technologies of
drug discovery with affinity maturation and developabil-
ity assessments, it may be feasible to reduce this timeline
to <6 months, including the time required for experimen-
tal validation and characterization of the lead molecules.
The enablement of computational technologies for bio-
logic drug discovery will also help overcome the hur-
dles associated with poor solubility and conformational
instabilities of the target molecules such as membrane
proteins. The costs associated with drug discovery and
development shall also be reduced because computation
does not require any material.

Any future applications will crucially depend on data
curation and method development. There is an ever-
growing ecosystem of free federated data covering a
broad spectrum of antibody data types [1, 8, 72, 123, 126,
134–137]. The availability of antibody-specific antibody
models is also encouraging, as many methods in Table 1
make their predictors available. Tying data and models
together, no matter how sound the benchmarking and
reproducibility, is still challenging even when all data is
available. This is due to diverse setups in the multitude

of available parameters. Such issues are addressed by
frameworks that perform data collation and acquisition
[8, 134] and formalize the machine learning pipelines
such as ImmuneML [138].

Though we expound on the benefits of deep learning,
this approach should not be treated as a panacea and its
drawbacks should be acknowledged as well. Though deep
learning offers a practical solution to many data-driven
problems, these architectures can lack interpretation. For
instance, in a specific case of AlphaFold, the method
might not shed light on the underlying physical pro-
cesses [139]. Side-stepping biological interpretation can
be convenient for practical purposes but not desired in
general as such fundamental understanding is important
for developing safe drugs. Furthermore, in many applica-
tions, much data is needed. This is not an issue in some
areas of antibody discovery, such as embedding antibody
sequences which can rely on millions of data points from
NGS. Predicting solubility and immunogenicity is more
challenging as data paucity exists. Such considerations
are pertinent regarding the dangers of misuse of models,
as such models carry the danger of overfitting data if
not used properly. Despite the drawbacks, deep learning
provides a novel approach that should be espoused by
the pharmaceutical industry to streamline drug develop-
ment.

Furthermore, the advent of deep learning did not
replace all the other computational approaches alto-
gether (see recent review here [99]). Non-machine
learning statistical methods in the therapeutic antibody
sphere continue to be developed [123, 140, 141]. Learnings
from antibodies are being transferred to their sisterly
format such as nanobodies [18, 135, 141]. Of note,
synergies between existing data sources provide novel
findings, such as employing structural information to
annotate large NGS datasets [76, 95, 142–144]. The
increasing momentum of computational methods is
therefore encouraging to speed up the development of
therapeutics by the biotechnology industry.

Within biopharma and biotechnology companies,
there is also a critical need for embracing digital
transformation by actively curating the data on discovery
and development projects and using it to connect
microscopic molecular properties with macroscopic
experimental observations via a combination of machine
learning and molecular simulation methods. Making
this paradigm shift in how biological drug discovery
and development projects are prosecuted will help
realize the vision of Biopharmaceutical Informatics
which calls for syncretic use of modern computational
and experimental technologies to make biological drug
discovery more efficient [7, 99, 145, 146].

In our review, we focused on providing a systematic
overview of deep learning in the therapeutic antibody
context that would help biopharma companies espouse
these concepts for the benefit of faster and more
efficient drug development. Deep learning methods have
given new momentum to the computational antibody
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design field by showing a realistic path for future
pipelines having artificial intelligence (AI)-designed
antibodies. The accurate measure of the success shall
be the translation of AI-enabled biotherapeutic drug
discoveries into medicines available in the market
after passing through all the challenges associated
with drug production and clinical development. The
realization of their promise shall require embrac-
ing a new ‘culture’ of computation by the industry.
This requires therapeutic project execution and data
generation that are intrinsically data and prediction
driven.

Key Points

• Machine Learning methods in general and Deep Learning
approaches in particular are incresingly being applied to
analyzing and designing novel therapeutic antibodies.

• Use of Deep Learning not only provides improved solu-
tions to existing problems in computational antibody
design, such as structural modeling, but also opens new
avenues such as language-inspired modeling.

• Generative Modeling applied to antibodies offers new
opportunities of in-silico designing novel molecules with
desired properties.

• Realisation of the full potential of Deep Learning meth-
ods in therapeutic antibody discovery would require a
paradigm/cultural shift in the way novel biotherapeutics
are discovered, by increased use of computational meth-
ods.
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