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Abstract Plants are commonly attacked by a variety of insect
herbivores and have developed specific defenses against dif-
ferent types of attackers. At the molecular level, herbivore-
specific signalling pathways are activated by plants in re-
sponse to attackers with different feeding strategies. Feeding
by leaf-chewing herbivores predominantly activates jasmonic
acid (JA)-regulated defenses, whereas feeding by phloem-
sucking herbivores generally activates salicylic acid (SA)-reg-
ulated defenses. When challenged sequentially by both
phloem-sucking and leaf-chewing herbivores, SA-JA antago-
nism may constrain the plant’s ability to timely and adequately
divert defense to the second herbivore that requires activation
of a different defensive pathway. We investigated the effect of
the temporal sequence of infestation by the aphid Brevicoryne
brassicae and three caterpillar species, Plutella xylostella,
Pieris brassicae, and Mamestra brassicae, on the interaction
between JA and SA signal-transduction pathways in three
wild cabbage populations. We found no support for SA-JA
antagonism, irrespective of the temporal sequence of herbi-
vore introduction or the identity of the caterpillar species
based on the transcript levels of the JA- and SA-regulated
marker genes LOX and PR-1, respectively, at the examined
time points, 6, 24, and 48 h. In general, infestation with aphids
alone had little effect on the transcript levels of the two marker
genes, whereas the three caterpillar species upregulated not
only LOX but also PR-1. Transcriptional changes were differ-
ent for plants from the three different natural cabbage
populations.
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Introduction

Plants live in a hostile environment and are challenged by a
diverse range of attackers, including microbial pathogens and
insect herbivores that may attack the plant either simulta-
neously or sequentially. To cope with the diversity of biotic
threats that may reduce the survival and fitness of plants, they
are equipped with traits that prevent or reduce attack by biotic
agents. These traits, both physical and chemical, can be con-
stitutively expressed or may be activated or enhanced upon
attack (Agrawal 1999; Dicke and Baldwin 2010; Karban and
Baldwin 1997). To respond adequately to biotic threats, plants
need to detect and differentiate between different attacker spe-
cies. Following the perception and recognition of the attacking
herbivore, plants activate an herbivore-specific signal-trans-
duction network that leads to biochemical and physiological
changes (De Vos et al. 2005; Erb et al. 2012; Wu and Baldwin
2009, 2010).

Specificity in the response to attackers allows plants to
mount a defense that can more effectively cope with herbivore
species with distinct life styles and feeding strategies (Howe
and Jander 2008; Pieterse et al. 2009). Leaf chewing and
phloem feeding insect herbivores are particularly well studied
in relation to defense induction in plants. Leaf chewers re-
move plant tissues and can cause severe damage to plants,
whereas piercing-sucking phloem-feeding herbivores feed
more subtly, causing only minimal physical damage to plant
tissues (Schoonhoven et al. 2005). At the molecular level,
defenses against leaf-chewing and phloem-feeding herbivores
are regulated by two major signal-transduction pathways
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controlled by the phytohormones jasmonic acid (JA), and
salicylic acid (SA). Chewing herbivores generally activate
defense responses regulated by JA, whereas piercing-
sucking herbivores activate defense responses regulated by
SA, although this generalization may oversimplify the com-
plex interplay between hormone-regulated induced defenses
(Howe and Jander 2008; Kessler and Baldwin 2002; Mewis
et al. 2005; Thaler et al. 2012).

When plants are challenged by multiple herbivore species,
crosstalk between defense-related phytohormonal signalling
pathways may occur, which can help plants to fine-tune their
response timely and plastically to the attackers encountered
(Howe and Jander 2008; Pieterse et al. 2009; Stam et al.
2014). The best studied interaction between phytohormonal
signalling pathways is the antagonistic interaction between
JA- and SA-mediated signalling. The activation of the JA
signalling pathway may interfere with the SA signalling path-
way and vice versa when challenged simultaneously by leaf-
chewing and phloem-feeding herbivores (Koornneef and
Pieterse 2008; Pieterse et al. 2012; Thaler et al. 2012). The
ecological consequence of this negative SA-JA crosstalk in-
cludes e.g., the enhanced performance of caterpillars and their
parasitoids on aphid-infested plants as a result of the interfer-
ence of SA signalling with JA-induced plant defenses (Li et al.
2014; Rodriguez-Saona et al. 2010; Soler et al. 2012). The
negative interaction between JA- and SA-mediated signalling
suggests that plants are constrained in their ability to cope with
attack by multiple herbivore species that induce different sig-
nalling pathways.

The temporal sequence of herbivory may determine the
outcome of the SA-JA crosstalk (Mouttet et al. 2013). For
instance, a study on Nicotiana attenuata showed that the order
of attack by phloem-feeding mirids and leaf-chewing tobacco
hornworms is an important determinant explaining the differ-
ences in plant transcriptional responses (Voelckel and
Baldwin 2004). Moreover, the leaf chewing Spodoptera
frugiperda negatively affected the colonization of maize
plants by the root feeder Diabrotica virgifera, but only when
the leaf herbivore arrived earlier than the root herbivore (Erb
et al. 2011). Thus, when attacked by different species sequen-
tially, the kinetics of the plant’s response to the first attacker
may limit the ability of the plant to divert its response to a
second attacker that activates a different signal-transduction
pathway. However, in Lima bean plants, the order of attack by
JA-activating spider mites and SA-activating whiteflies
(Bemisia tabaci) did not exhibit major effects on induced plant
responses (Zhang et al. 2009). Similarly, the performance of
B. tabaci was not affected by pre-infestation by a chewing leaf
miner (Tuta absoluta) in tomato (Mouttet et al. 2013).
However, in the same study system, pre-infestation with either
whiteflies or a fungal biotrophic pathogen (Oidium
neolycopersici), which also is associated with SA-regulated
defense induction, negatively impacted the development of
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the leaf miner. These effects were either only locally expressed
in the induced leaf (response to whiteflies) or both locally and
systemic (response to pathogen) (Mouttet et al. 2013). These
examples also suggest that the outcome of plant-mediated
species interactions can be highly context-specific.

Although herbivores of the same feeding guild generally
trigger the same major signalling pathway (Erb et al. 2012),
plant responses to species of the same feeding guild are not
exactly the same (Bidart-Bouzat and Kliebenstein 2011),
which likely is the result of modulation of defense responses
due to crosstalk at the molecular level (De Vos et al. 2005). For
example, feeding by various lepidopteran species resulted in
differential induction of the three major phytohormones in-
volved in induced plant responses, as well as differential tran-
scriptional responses (Diezel et al. 2009; Poelman et al. 2011;
Zhu et al. 2015).

Closely related plant species may vary in their responses to
the same type of herbivory (Schmidt et al. 2005). Moreover,
within one species, heritable variation in resistance traits is an
important component in the adaptation of plants to environ-
mental stresses (Gols et al. 2008; Newton et al. 2009a; Wu and
Baldwin 2010). Intraspecific variation was found for plant
secondary metabolites, such as glucosinolates in
brassicaceous plant species, in Arabidopsis thaliana acces-
sions and wild cabbage, Brassica oleracea, populations (
Gols et al. 2008; Kliebenstein et al. 2001; Newton et al.
2009b) and crosstalk between SA- and JA-regulated defenses
differed among A. thaliana accessions (Pieterse and Dicke
2007; Pieterse et al. 2009; Traw et al. 2003). In two accessions
of N. attenuata, large differences in herbivory-induced early
signalling events, such as MAPK activity, JA and ethylene
production, and transcript accumulation of genes that encode
transcription factors were recorded (Wu et al. 2008).
Therefore, the underlying regulatory mechanisms of plant de-
fense may vary among plant genotypes and populations.

The aim of this study was to investigate whether aphid- and
caterpillar-induced plant responses interfere with each other
through negative SA-JA crosstalk in different populations of
wild cabbage. Underlying mechanisms that explain plant re-
sponses to herbivory rely to a large extent on studies per-
formed on A. thaliana (De Vos et al. 2005; Koornneef and
Pieterse 2008; Kroes et al. 2015; Pieterse et al. 2009). The
question is to what extent the results of these studies are rep-
resentative for plant responses to herbivory in general or for
brassicaceous plants more specifically, as the interaction of
Arabidopsis with herbivores in nature is limited due to their
short life cycle early in the growing season (Harvey et al.
2007).

In this study, we used plants grown from seeds that origi-
nated from three wild cabbage populations that are known to
differ in secondary plant chemistry (Gols et al. 2008; Harvey
et al. 2011; Newton et al. 2009a), and interact in nature with
the herbivores used in this study, the aphid Brevicoryne
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brassicae L. (Hemiptera, Aphididae), and three chewing lep-
idopteran species, caterpillars of Plutella xylostella (L.)
(Plutellidae), Pieris brassicae L. (Pieridae), and Mamestra
brassicae L. (Noctuidae), respectively (Newton et al.
2009b). We addressed the following questions: 1) What is
the effect of the sequence of herbivore attack on SA-JA
crosstalk? 2) How general is this response when using differ-
ent species of chewing herbivores? and 3) Is there intra-
specific variation in the plant’s responses to herbivory by
aphids and caterpillars? We quantified the transcript levels of
two marker genes related to JA- and SA-signalling, i.c.,
LIPOXYGENASE (LOX) and PATHOGENESIS-RELATED
PROTEIN-1 (PR-1), respectively (Bell et al. 1995; Jirage
et al. 2001), at different time points following inoculation by
each of the three different chewing herbivore species and the
piercing-sucking aphid when introduced alone, simultaneous-
ly, or sequentially on wild cabbage plants from populations.

Materials and Methods

Plants and Insects Sceds of wild cabbage (Brassica
oleracea) populations were collected in Dorset, UK.,
at sites known as Kimmeridge (50°36'N, 2°07'W), Old
Harry (50°38'N, 1°55'W), and Winspit (50°35'N, 2°02'
W), hereafter called KIM, OH, and WIN, respectively.
At each site, 20 plants were randomly selected for seed
collection, and the seeds were pooled per site. Plants
were grown from seeds in 1.5-L pots (1 plant per pot)
containing potting soil (Lentse potgrond no. 4; Lent,
The Netherlands) in a greenhouse (22 + 3 °C, 50-
70 % relative humidity [RH], light:dark regime [L:D]
16:8 h). Plants were placed in large trays
(675 x 170 cm) that were automatically flooded with
water and nutrients (NH4 1.2, K 7.2, Ca 4.0, Mg
1.82, NO3 12.4, SO4 3.32, P 1.0, Fe 35.0, Mn 8.0,
Zn 5.0, B 20.0, Cu 0.5, Mo 0.5 in mmol/L) once every
day for 20 min.

Except for M. brassicae, all other herbivore species
(B. brassicae, P. xylostella, and P. brassicae) are spe-
cialist feeders on brassicaceous plant species, although
M. brassicae is considered a pest on cabbage crops like
the other three herbivore species. All insect cultures
were maintained on Brussels sprouts (B. oleracea L.
var. gemmifera cv. Cyrus) plants in a greenhouse or a
climate room at 22 + 2 °C, 60-70 % RH and
16:8 h L:D photoregime.

General Treatment and Sampling Protocol In a pilot ex-
periment, we first determined the amount of damage
inflicted in 24 h by each caterpillar species, and then
adjusted the number of caterpillars per species to stan-
dardize the consumed area of leaf tissues. We used a

transparent plastic sheet with a 1-mm? grid to quantify
the area of the consumed leaf tissue in mm?. Results of
the pilot showed that three 2-d-old second instar (L2)
P xylostella, four 1-d-old L1 M. brassicae, and three
neonate P. brassicae larvae, respectively, consume sim-
ilar amounts of leaf tissue (P xylostella, 53 + 4.6;
M. brassicae, 59 + 6.0; P. brassicae, 49.9 + 2.3 mmz)
in 24 h. These numbers of caterpillars were used to
inoculate the plants in the experiments described below.
The initial inoculation density of B. brassicae was set at
8 adult aphids per plant.

Plants were exposed to herbivory treatments when
they were 4 wk. old, and had 3-6 expanded leaves.
Insects were introduced onto the first fully expanded
leaf. To confine the insects to this leaf, the leaf petiole
was wrapped with cotton wool. In each of the three
experiments described below, one set of plants served
as a control and was not exposed to herbivory, but
was otherwise treated similarly. Plants of the three cab-
bage populations, exposed to different herbivory treat-
ments, were placed randomly on the tables in a green-
house. For gene-transcript quantification, per plant two
leaf discs were punched with a cork-borer (diam
1.8 cm) from the herbivore-exposed leaves, and leaf
discs were collected from three plants and pooled
(=one replicate sample). Insects remained on the plants
during the various exposure periods, and were only re-
moved just before leaf sample collection. Twelve plants
were prepared to obtain four replicate samples in total
for each plant population, herbivore treatment, and time-
point combination (see below). At each time point, an
equal number of samples was collected from control
plants, and a new cohort of control plants was used at
each time point. Plants were sampled only once, i.e.,
distinct groups of plants were prepared for each time-
treatment combination. Immediately after sample collec-
tion, samples were flash-frozen in liquid nitrogen and
stored in a freezer at —80 °C until further processing
for qRT-PCR.

Experiment 1: Single Vs. Dual Infestation with
B. brassicae Aphids and P. xylostella Caterpillars Plants
were inoculated with either B. brassicae (B) or P. xylostella
(Px), or a combination of simultaneous B. brassicae and
P, xylostella inoculation (Px + B). Samples for gene expres-
sion were collected at 6, 24, and 48 h after introduction of the
herbivores as described in the previous section.

Experiment 2: Effect of the Order of Arrival of
B. brassicae Aphids and P. xylostella Caterpillars Plants
initially were inoculated with B. brassicae aphids or
P. xylostella caterpillars, or left free of herbivores. The insects
were allowed to feed and reproduce (aphids only) for 5 d.
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Following this incubation with the first herbivore, half of the
plants that were exposed to each of the two herbivore treat-
ments were co-infested with the other herbivore (coded BPx
and PxB), whereas the remaining half of the plants were left as
they were (B and Px). In addition, cohorts of plants that had
not been exposed to herbivores previously, were inoculated
with either B. brassicae or P. xylostella caterpillars (CB and
CPx). Samples for gene expression were collected from all
plants including controls (=without any herbivory) at 24 and
48 h after the second herbivore had been introduced.

Experiment 3: Effect of Sequential Infestation with
B. brassicae Aphids and Caterpillars of Different
Herbivore Species Sets of plants were or were not inoculated
with B. brassicae aphids, and were incubated for 5 d, and then
were infested with caterpillars of one of three different lepi-
dopteran species, i.e., P. xylostella, P. brassicae, or
M. brassicae (without aphids CPx, CPb, and CMb, and with
aphids BPx, BPb, and BMb). Samples for gene expression
were collected from all plants including controls (=without
any herbivory) at 24 and 48 h after the second herbivore had
been introduced.

RNA Isolation and Real-Time Quantitative Reverse
Transcription PCR (qRT-PCR) Samples were kept frozen
with liquid nitrogen, and ground to a fine powder with
a mortar and pestle. RNA was isolated from homoge-
nized material by using RNeasy Plant Mini Kit
(Qiagen), and were treated with DNAsel (Invitrogen)
following the manufacturer’s instructions. After isola-
tion, the RNA concentration and purity were measured
using a NanoDrop ND-100 (NanoDrop Technologies,
Wilmington, DE, USA) spectrophotometer (all samples
with OD 260 nm / 280 nm of 1.9-2.2 ratio). RNA
integrity numbers (RIN) of randomly selected samples
were confirmed by Bioanalyzer (Agilent 2100) with
the Agilent RNA 6000 Nano Kit (Agilent
Technologies, Waldbronn, Germany). The concentration
of RNA obtained from the plant material was adjusted
to 1 pg/ul, and subsequently was reverse-transcribed
into cDNA with the iScript cDNA synthesis Kit (Bio-
Rad). RNA samples were randomly selected for a neg-
ative control cDNA reaction by omitting the reverse
transcriptase, to ensure that no samples were contami-
nated with genomic DNA. Quantitative Reverse-
Transcriptase PCR (qRT-PCR) analysis was performed
in an Mx3000P™ real-time PCR Detection system
(Rotorgene). The qPCR amplification mix consisted of:
12.5 ul of SYBER Green Supermix (Bio-Rad), 5 ul
cDNA, 5.5 ul DEPC-treated water, and 10 pmol of each
primer in 1 pul each (see Table 1, Wageningen,
The Netherlands) adding up to a total volume of
25 ul. The primers of the two tested genes were

@ Springer

designed based on those used in the study by Zheng
et al. (2007) and Poelman et al. (2011). The amplifica-
tion efficiency of primers was determined by generating
standard curves using a 10-fold dilution of the randomly
selected samples per treatment and per cabbage popula-
tion. Each dilution was assayed in triplicate. The ampli-
fication efficiency was between 90 and 100 % for all
primer pairs tested on the three cabbage populations.
For each ¢cDNA sample, qPCR amplification reactions
were performed in duplicate. The following PCR pro-
gram was used for all amplification reactions: an initial
denaturation step of 3 min at 95 °C, followed by 40 cy-
cles of 15 s at 95 °C, 45 s at 59 °C. At the end of each
run, melting curve analysis was performed to verify that
only a single gene transcript had been amplified.
Relative gene transcript levels were calculated by nor-
malizing transcript levels to the threshold cycle (Ct)
values of the reference gene GAPDH using the 2724
method (Livak and Schmittgen 2001). The Ct values of
the reference gene GAPDH were consistent across
treatments.

Statistics The response variables, relative transcript levels of
LOX and PR-1, were log-transformed to meet assumptions of
normality and homoscedasticity. Data were analyzed using
General Linear Model analysis of variance in Genstat (17th
edition, VSN International, Hemel Hempstead, UK). In exper-
iments 1 and 2, plant population, herbivore treatment and time
points were entered as fixed factors in the statistical model.
The data of experiment 2 were split into two sets: data of gene
transcript levels of control plants and those exposed to aphid
infestation alone (C, CB, and B) were analyzed separately, to
confirm the effect of aphid infestation in experiment 1; data of
gene transcript levels of plants with caterpillar (P. xylostella)
infestation alone and in combination with aphid feeding (CPx,
Px, BPx, and PxB) were analyzed to investigate the effect of
temporal order of infestation. In experiment 3, we investigated
whether transcript levels of the two genes were similarly af-
fected by the infestation of different caterpillar species, both in
the presence and absence of aphid feeding. In addition to
population and time points, caterpillar species and presence /
absence of aphids were entered as fixed terms in the statistical
model. When terms in the GLM were significant, pairwise
differences among factor levels were determined using
Tukey-Kramer-corrected LSD tests.

Results

Experiment 1: Single Vs. Dual Infestation with
B. brassicae Aphids and P. xylostella Caterpillars - LOX
Expression There was a significant effect of herbivore
treatment, time point, and population on the transcript
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Table 1  Primer sequences used for amplifying Gapdh, Pr-1, And Lox genes of Brassica oleracea

Gene name Forward primer Reverse primer

BoGAPDH 5-AGAGCCGCTTCCTTCAACATCATT-3’ 5-TGGGCACACGGAAGGACATACC-3’
BoLOX 5'-AAGGCATCGAGCTTCCCAA-3’ 5-TTGCTTTTCAACGGCCACTC-3’
BoPR-1 5'-GTCAACGAGAAGGCTAACTATAACTACG-3’ 5-TTACACCTTGCTTTGCCACATCC-3’

levels of LOX (Table 2, Fig. la-c). Feeding by
P. xylostella caterpillars alone or in combination with
B. brassicae aphids (Fig. la) similarly up-regulated the
expression of LOX (Px vs. Px + B, P = 0.32), whereas
transcript levels of LOX were similar in the controls and
in plants exposed to B. brassicae alone (C vs. B,
P = 0.71). The marginally significant interaction be-
tween herbivore treatment and plant population further
indicated that the extent to which LOX was transcribed
was somewhat plant-population specific. The relative
expression of LOX in caterpillar-exposed plants in-
creased with time, and the temporal dynamics of this
gene also differed among the populations (Table 2).
For example, in KIM plants, LOX transcripts were sig-
nificantly different only in samples taken at 6 and 48 h
following herbivore introduction (KIM-6 vs. KIM-48,
P = 0.02), whereas in WIN plants transcript levels dif-
fered at both 24 and 48 h from those at 6 h (P < 0.001

Table 2 GLM analysis results of the main effects of wild cabbage
(Brassica oleracea) plant population, herbivore treatment, time point
and their interaction terms on the transcript level of lox and pr-I in
experiment 1%

Experiment 1

Tested gene Factor Ndf D.df F statistic P value

LOX Plant population (1) 2 107 12.57 <0.001
Treatment (2) 3 107 15.16 <0.001
Time point (3) 2 107 36.08 <0.001
Interaction 1*2 6 107 1.99 0.074
Interaction 1*3 4 107 6.78 <0.001
Interaction 2*3 6 107 8.41 <0.001
Interaction 1#*2%3 12 107 1.10 0.368

PR-1 Factor Ndf. D.df F statistic P value
Plant population (1) 2 105 7.67 <0.001
Treatment (2) 3 105 7.07 <0.001
Time point (3) 2 105 3.07 0.051
Interaction 1*2 6 105 1.40 0.223
Interaction 1%*3 4 105 4.99 0.001
Interaction 2%*3 6 105 1.40 0.222
Interaction 1%2%*3 12 105 1.15 0.331

P-values in bold denote significant effects

# In the statistical model, plant population had three levels (KIM, WIN,
OH), treatment had four levels (see Fig. 1) and time point had three levels
(6, 24, and 48 h)

both comparisons). In OH plants, the patterns were sim-
ilar to those in KIM plants, but they were not statisti-
cally significant due to the high levels of variation (6 h
vs. 48 h P = 0.10).

PR-1 Expression The transcript levels of PR-1, a SA-
responsive marker gene, were affected by herbivore treatment
and plant population, and the effect of time point was popu-
lation specific (Table 2, Fig. 1d-f). The expression of this gene
was up-regulated only in KIM plants (KIM vs. OH, P =0.005,
KIM vs. WIN, P = 0.01; WIN vs. OH, P = 0.97), and the
transcript levels increased only in response to feeding by
P, xylostella alone or in combination with aphids (B vs. C,
P=0.77, Px vs. Px + B, P = 0.92, all other pair-wise compar-
isons P < 0.05). In KIM plants, PR-I transcript levels
were higher in tissue sampled at 24 h than in those
sampled at 6 h following infestation (KIM-6 vs. KIM-
24, P = 0.007; all other within population-time point
comparisons P > 0.05).

Experiment 2: Effect of the Order of Arrival of
B. brassicae Aphids and P. xylostella Caterpillars In a first
analysis including data from control plants (C) and
plants infested with aphids (CB and B) alone (for
treatment coding see Fig. 2), we confirmed the results
of experiment 1. The transcript levels of both LOX and
PR-1 were similar in plants infested by B. brassicae
alone for a short period, i.e., 1 or 2 days (CB), or an
extended period, i.e., 6 or 7 days (B) compared to con-
trol plants (C), irrespective of the plant population
(Table 3a; Fig. 2). In a second analysis, we investigated
the effect of the temporal infestation order of
P xylostella caterpillars and B. brassicae aphids on
gene transcript levels.

LOX Expression Herbivore treatment and plant population
had a significant effect on the expression of LOX (Table 3b,
Fig. 2a-c). Overall, the presence of B. brassicae had relatively
little effect on the expression of LOX, regardless of the order
of arrival (CPx vs. BPx, P = 0.72, Px vs. PxB, P = 0.99,
Fig. 2a-c). LOX transcription differed only between plants that
were infested with caterpillars first and aphids second and
between plants that were infested with caterpillars late, irre-
spective of whether there were also aphids on the plant (PxB
vs. CPx, P = 0.02; PxB vs. BPx, P = 0.01). However, there
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Fig. 1 Quantitative RT-PCR analysis of transcript levels of the jasmonic
acid (JA)-responsive defense marker gene LOX (panels a-c¢) and the
salicylic acid (SA)-responsive defence marker gene PR-1 (panels d-f) in
leaves of plants from three different wild Brassica oleracea populations
(KIM [a;d]; WIN [bse]; OH [c;f]) at 6, 24, and 48 h after infestation
with Plutella xylostella caterpillars (Px); Brevicoryne brassicae
aphids (B); both P. xylostella and B. brassica simultaneously

also was a significant interaction between the time point of
sampling and treatment. At both time points, LOX transcript
levels were equally high in plants that were infested with
caterpillars late, irrespective of the presence of aphids (CPx-
24 h vs. CPx-4 h and BPx-24 h vs. BPx-48 h, P > 0.95). In
plants infested with caterpillars early and no aphids, LOX
transcript levels were significantly lower at 48 than at 24 h
(Px-24 h vs. Px-48 h, P = 0.006), whereas in plants infested
with caterpillars early and aphids late (PxB), transcription
levels were equally low at both time points (P > 0.05). The
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(Px + B), or without any herbivory (C). Transcript levels of genes
are shown as fold changes in mean relative expression compared to
those of control plants (C). Bars present means + SE (N = 4). The
temporal sequence of plant inoculation with different insect herbi-
vore species is given in a schematic overview above the bar graphs.
Sampling time points for gene transcript analysis are indicated by
the red coloured arrows on the X-axis

late infestation of B. brassicae and the extended period of
caterpillar feeding tended to suppress the transcript level of
LOX (PxB-48 h vs. Px-48 h). LOX transcripts were higher in
WIN than in KIM plants, whereas levels of this gene in OH
plants did not differ from those in plants from the other two
populations (Fig. 2a-c, WIN vs. KIM, P =0.01, OH vs. KIM,
P =0.17,and OH vs WIN, P = 0.53). The effect of time point
on LOX expression differed among plant populations. The up-
regulation of LOX was fastest in WIN (levels were higher at
24 h than at 48 h, P = 0.006), whereas for the other two
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Table 3 GLM analysis results of the main effects of plant population,
herbivore treatments, time point and their interaction terms on the
transcript level of Jox and pr-1 in experiment 2 *

Experiment 2(a) Treatment of C, CB, B

Tested gene  Factor Ndf D.df F statistic P value

LOX Plant population (1) 2 53 0.30 0.739
Treatment (2) 2 53 0.56 0.572
Time point (3) 1 53 1.92 0.171
Interaction 1*2 4 53 0.14 0.968
Interaction 1*3 2 53 0.04 0.956
Interaction 2*3 2 53 0.53 0.593
Interaction 1#2%*3 4 53 0.29 0.883

PR-1 Factor Ndf D.df F statistic P value
Plant population (1) 2 53 0.09 0.918
Treatment (2) 2 53 0.75 0.479
Time point (3) 1 53 0.71 0.403
Interaction 1*2 4 53 0.04 0.996
Interaction 1*3 2 53 1.54 0.224
Interaction 2*3 2 53 0.76 0473
Interaction 1#2%*3 4 53 0.60 0.664

Experiment 2(b) Treatment of CPx, Px, BPx,PxB

Tested gene Factor Ndf D.df F statistic P value

LOX Plant population (1) 2 72 4.33 0.017
Treatment (2) 3 72 4.57 0.005
Time point (3) 1 72 331 0.073
Interaction 1*2 6 72 0.45 0.846
Interaction 1%*3 2 72 6.02 0.004
Interaction 2*3 3 72 435 0.007
Interaction 1#2%*3 6 72 0.45 0.845

PR-1 Factor Ndf D.df F statistic P value
Plant population (1) 2 78 0.07 0.929
Treatment (2) 3 78 0.74 0.532
Time point (3) 1 78 5.17 0.026
Interaction 1*2 6 78 0.57 0.751
Interaction 1*3 2 78 1.71 0.187
Interaction 2*3 3 78 3.99 0.011
Interaction 1#2%3 6 78 0.52 0.793

P-values in bold denote significant effects

# In the statistical model, plant population had three levels (KIM, WIN,
OH), treatment had three levels for experiment 2(a), four levels for ex-
periment 2(b) (see Fig. 2) and time point had two levels (24 and 48 h)

populations, there was no difference between transcript levels
at 24 and 48 h (KIM-24 vs. KIM-48, P = 0.84, OH-24 vs. OH-
48, P =0.99).

PR-1 Expression The effect of herbivore treatment on PR-1
transcription depended on the time of sampling (Table 3b,
Fig. 2d-f). PR-1 transcript levels did not differ among the plant
populations (Table 3b). In the treatments where caterpillars
were introduced late, i.e., CPx and BPx, PR-1 transcript levels

were higher at 48 than at 24 h, but this was significant only in
the treatment where aphids were introduced first and caterpil-
lars second (BPx-24 vs. BPx-48, P = 0.05).

Experiment 3: Effect of Dual Infestation with B. brassicae
Aphids and Caterpillars of Different Herbivore Species

LOX Expression The extent to which LOX was up-regulated
was affected by caterpillar species, plant population, and the
time of sampling, while it was not affected by the presence or
absence of feeding aphids (Table 4; Fig. 3a-c). LOX transcript
levels were highest in plants infested with M. brassicae, inter-
mediate in plants infested with P. xylostella, and lowest in
plants infested with P. brassicae (Fig. 3a-c; Mb vs. Pb,
P < 0.001, Mb vs. Px, P = 0.03, Px vs. Pb, P < 0.001).
Overall, transcript levels of LOX were higher in KIM and OH
plants than in WIN plants (KIM vs. OH, P = 0.18, WIN vs.
KIM, and WIN vs. OH, P < 0.001), and they were higher at 48 h
than at 24 h after initiation of caterpillar feeding. However, the
extent to which transcript levels increased with time depended
on the population; whereas transcript levels were similar at 24 h
following the introduction of the herbivores (all comparisons
P > 0.05), transcript levels at 48 h were highest in KIM, inter-
mediate in OH, and lowest in WIN (KIM vs. OH, P = 0.005,
KIM vs. WIN and OH vs. WIN, P < 0.001).

PR-1 Expression The results for transcript levels of PR-1 in
response to feeding by different caterpillar species in the pres-
ence or absence of aphids were more idiosyncratic; two of the
four three-way interactions were significant (Table 4, Fig. 3d-
f). Overall, PR-I transcripts increased more in response to
M. brassicae than to P. xylostella feeding (P = 0.002), whereas
transcription of this gene was similar in response to
P, brassicae feeding and feeding by the other two caterpillar
species (Pb vs. Px and Pb vs. Mb, P > 0.05). Early aphid
infestation did not affect transcript levels of PR-1 in response
to P. xylostella and M. brassicae feeding, whereas it had a
tendency to decrease PR-1 transcript levels in plants infested
with P. brassicae larvae for 48 h; however, this was not sta-
tistically significant. Overall transcript levels of PR-/ in OH
plants were higher than in the other two populations (OH vs.
KIM, P < 0.001, OH vs. WIN, P = 0.04, KIM vs. WIN,
P = 0.46). Transcript levels of PR-1 were higher at 48 than
at 24 h following the introduction of the caterpillars, but the
extent of this increase was plant-population dependent.

Discussion
Both marker genes, LOX and PR-1, were up-regulated in re-

sponse to a single P, xylostella infestation in all three cabbage
populations, whereas a single infestation by B. brassicae
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Fig. 2 Quantitative RT-PCR analysis of transcript levels of the jasmonic
acid (JA)-responsive defense marker gene LOX (panels a-c) and a
salicylic acid (SA)-responsive defence marker gene PR-/ (panels d-f) in
leaves of plants from three wild Brassica oleracea populations (KIM
[a;d]; WIN [b;e]; OH [c;f]). Plants were infested with Plutella
xylostella or Brevicoryne brassicae either at d 0 (Px and B) or d 5
(CPx and CB), or they were dually infested with P. xylostella at d 0
and with B. brassicae at d 5 (PxB), or with B. brassicae at d 0 and

aphids did not affect transcript levels of either of these two
genes. In addition, dual infestation with aphids and
P, xylostella caterpillars, simultaneously or separated in time
(regardless of the order of infestation) had little or no effect on
transcription levels of LOX and PR-1 compared to the tran-
script levels in treatments with individual herbivores.
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with P. xylostella at d 5 (BPx). Gene expression was measured 24
and 48 h following treatment with the second herbivore. Gene tran-
script levels are shown as fold changes in mean relative expression
compared to those in herbivore free control plants (C). Bars present
means + SE (N = 4). The temporal sequence of plant inoculation
with different insect herbivore species is given in a schematic over-
view above the bar graphs. Sampling time points for gene transcript
analysis are indicated by the red coloured arrows on the X-axis

Caterpillar species differentially affected up-regulation of the
two marker genes. As was found for P. xylostella, aphid pres-
ence did not interfere with transcription of LOX and PR-1 in
response to feeding by P. brassicae or M. brassicae caterpil-
lars. The main effects were consistent across the three cabbage
populations, although there were population-related
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Table4 GLM analysis results of the main effects of plant population, herbivore treatment, time point and their interaction terms on the transcript level

of lox and pr-1 in experiment 3 *

Experiment 3

Tested gene Factor Ndf. D.df F statistic P value

LOX Plant population (1) 2 108 37.69 <0.001
Caterpillar infestation (2) 2 108 20.98 <0.001
B. brassicae infestation (3) 1 108 2.82 0.096
Time point (4) 1 108 190.11 <0.001
Interaction 1*2 4 108 2.17 0.077
Interaction 1*3 2 108 0.90 0.41
Interaction 2*3 2 108 2.50 0.087
Interaction 1*4 2 108 12.39 <0.001
Interaction 2*4 2 108 0.81 0.45
Interaction 3*4 1 108 0.32 0.57
Interaction 1#2*3 4 108 1.66 0.16
Interaction 1#2*4 4 108 2.00 0.10
Interaction 1#3*4 2 108 1.47 0.23
Interaction 2#3*4 2 108 2.65 0.075
Interaction 1*2%3*4 4 108 1.25 0.30

PR-1 Factor Ndf. D.df F statistic P value
Plant population (1) 2 108 6.83 0.002
Caterpillar infestation (2) 2 108 6.30 0.003
B. brassicae infestation (3) 1 108 0.07 0.799
Time point (4) 1 108 59.87 <0.001
Interaction 1#2 4 108 243 0.052
Interaction 1*3 2 108 1.35 0.263
Interaction 2*3 2 108 1.78 0.174
Interaction 1*4 2 108 342 0.036
Interaction 2*4 2 108 0.05 0.948
Interaction 3*4 1 108 0.11 0.742
Interaction 1#2%*3 4 108 1.40 0.238
Interaction 1#2*4 4 108 2.66 0.036
Interaction 1#3*4 2 108 1.14 0.324
Interaction 2#3*4 2 108 5.01 0.008
Interaction 1*2%3*4 4 108 0.10 0.983

P-values in bold denote significant effects

# In the statistical model, plant population had three levels (KIM, WIN, OH), treatment had seven levels (see Fig. 3) and time point had two levels (24 and 48 h)

differences in the temporal dynamics of LOX and PR-1 tran-
scription, in the response to the three caterpillar species, and also
in the extent to which plants of the three populations up-regulated
gene expression in response to the various herbivore treatments.

Based on negative SA-JA crosstalk, we hypothesized that
aphid infestation would lead to higher transcript levels of SA-
responsive genes and would suppress the transcription of JA-
responsive genes in response to caterpillar attack. The temporal
order of herbivore attack can further influence the timing and
intensity of plant defense responses to aphid and caterpillar
feeding and their interaction (Erb et al. 2011; Stam et al.
2014). In contrast to our hypothesis, the results of the present
study show no effects of aphid infestation on the transcript

levels of a JA- and a SA-responsive gene when plants were
challenged by both B. brassicae and different caterpillar species,
irrespective of the temporal sequence of aphid and caterpillar
attack. The lack of interference with transcription of JA- or SA-
responsive genes by aphid infestation on the B. oleracea plants
may be attributed to: 1) a lack of effects of aphid infestation on
SA production, as was also reported by Ali and Agrawal (2014)
for Asclepias tuberosa. Low transcript levels of PR-1 in the
present study may imply overall low activation of SA signalling
in B. oleracea plants in response to aphid infestation. 2)
Absence of negative crosstalk between SA and JA in
B. oleracea. A review by Thaler et al. (2012) reported the ab-
sence of SA-JA antagonism in several plant species, e.g., Zea
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Fig. 3 Quantitative RT-PCR analysis of transcript levels of the jasmonic
acid (JA)-responsive defense marker gene LOX (panels a-¢) and a
salicylic acid (SA)-responsive defense marker gene PR-1 (panels d-f) in
leaves of wild Brassica oleracea populations (KIM [a;d]; WIN [bse]; OH
[e;f]). Plants were infested with caterpillars of one of three lepidopteran
species Plutella xylostella (CPx), Pieris brassicae (CPb), or Mamestra
brassicae (CMb) on d 5, or they were dually infested with Brevicoryne
brassicae at d 0 and caterpillars on d 5 (BPx, BPb, and BMb,

mays (Poaceae), Asclepias exaltata (Apocynaceae), and Picea
abies (Pinaceae), suggesting that this phenomenon is not ubig-
uitous across taxa even when they are in the same family like
A. thaliana and B. oleracea. 3) The temporal kinetics of JA- and
SA-mediated defense induction and concomitant gene expres-
sion in wild cabbage may differ from those reported for the
model plant A. thaliana. 4) In wild B. oleracea, genes other
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respectively). Gene expression was measured 24 and 48 h following
treatment with the second herbivore. Gene transcript levels are shown
as fold changes in mean relative expression compared to those in herbi-
vore free control plants (C). Bars present means + SE (N = 4). The
temporal sequence of plant inoculation with different insect herbivore
species is given in a schematic overview above the bar graphs.
Sampling time points for gene transcript analysis are indicated by the
red colored arrows on the X-axis

than LOX and PR-1I are involved in JA-SA antagonism.
Alternatively, the selected genes may not be involved in nega-
tive JA-SA cross talk in wild B. oleracea. 5) The duration of the
time interval of aphid feeding (5 days) before the caterpillars
were introduced onto the plants was not long enough to have a
measurable effect on transcription levels of the genes examined.
In some other systems, aphid feeding has been shown to take up
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to a week to elicit chemical defences (Appel et al. 2014; Mewis
et al. 2005, 2006).

Aphid (B. brassicae) feeding alone had no effect on the
transcript levels of either PR-1, a gene supposedly responsive
to aphid feeding (De Vos et al. 2005) or LOX. This is consis-
tent with data by Moran and Thompson (2001) who reported
that B. brassicae did not induce responses associated with JA-
or SA-related metabolic processes in A. thaliana plants. Due
to the stealthy feeding style of aphids and the minimal
wounding they cause to plants, induction of SA in response
to aphid herbivory occurs very locally, i.e., only at the site of
aphid feeding, and, therefore, transcript levels of PR-/ may be
low and difficult to detect (De Vos et al. 2005). Previous
studies have reported that the saliva of aphids is rich in elici-
tors (Hogenhout and Bos 2011; Walling 2000). Both SA- and
JA-responsive genes reacted to feeding by B. brassicae and
M. persicae in Arabidopsis (Kusnierczyk et al. 2008, 2011;
Moran and Thompson 2001). However, the aphid-induced
responses of plants also can be aphid species-specific. For
instance, M. persicae feeding induced SA-responsive genes
in A. thaliana, whereas B. brassicae did not (Appel et al.
2014). Brevicoryne brassicae may have evolved to avoid in-
ducing defensive responses in wild cabbage plants that are
often attacked by this aphid in its natural habitat (Newton
et al. 2009a), or it may manipulate the plant defense for its
own benefit (Howe et al. 2007; Walling 2008). This also has
been reported for a population of the herbivorous spider mite
Tetranychus urticae that does not induce JA-regulated de-
fenses in tomato that negatively affect spider mite perfor-
mance (Kant et al. 2008).

Feeding by P. xylostella caterpillars significantly up-
regulated gene expression not only of LOX, but also of
PR-1, irrespective of whether the caterpillars were feeding
alone or together with aphids. Studies by Kroes et al.
(2015) and Ehlting et al. (2008) showed similar results,
confirming that P. xylostella induces the expression of
both SA- and JA-responsive genes in Arabidopsis.
Glucose oxidase, present in the saliva of Helicoverpa
zea caterpillars, induces SA signalling, which leads to
inhibition of JA signalling and eventually prevents the
induction of nicotine in Nicotiana tabacum plants
(Musser et al. 2002, 2005). In our study, not only infes-
tation by P. xylostella, but also by two other lepidopteran
species, P. brassicae and M. brassicae, consistently up-
regulated the expression of both LOX and PR-1 genes on
all three cabbage populations, regardless of the differ-
ences in dietary specialization and salivary elicitors
(Felton 2008). In previous studies, it has been shown that
both P. xylostella and P. brassicae, but not M. brassicae
gained fitness benefits by feeding on wild and cultivated
cabbage plants co-infested with B. brassicae aphids (Li
et al. 2014; Soler et al. 2012). However, as we did not
record an effect of aphid infestation on the transcription of

the JA-responsive gene LOJX, it remains to be investigated
whether the enhanced performance of P. xylostella and
P, brassicae (Li et al. 2014; Soler et al. 2012) results from
attenuation of JA-mediated defenses. Alternatively, nega-
tive interference between JA and SA may affect genes
other than LOX and PR-1 in wild B. oleracea.

The extent to which LOX and PR-1 were up-regulated dif-
fered among plants infested by different species of caterpil-
lars: infestation with M. brassicae up-regulated both genes
more compared to infestation by P. brassicae or
P, xylostella. Herbivores with a similar feeding mode tend to
induce more similar transcriptome responses in A. thaliana
plants than herbivores with a different feeding mode (Appel
et al. 2014; Bidart-Bouzat and Kliebenstein 2011; Ehlting
et al. 2008). However, for transcriptional responses induced
by the chewing herbivores P. xylostella or P. rapae, only 32 to
40 % of the genes were elicited commonly (Ehlting et al.
2008). Thus, induction of signal transduction components in
plants may differ among herbivore species, even when the
attacking herbivore species are from the same feeding guild
(Bidart-Bouzat and Kliebenstein 2011; Diezel et al. 2009;
Mewis et al. 2006). Although the chewing herbivores in this
study are all members of the Lepidoptera, they differ in their
feeding behavior. First and second instar P. xylostella larvae
usually mine the leaf spongy mesophyll tissues, while later
instars feed on the abaxial surface of leaves often leaving the
upper epidermis intact (Sarfraz et al. 2005). Pieris brassicae
larvae chew the leaf tissues gregariously, and initially cause a
single damage site on the leaf. Mamestra brassicae larvae
disperse immediately after egg hatching and then feed solitar-
ily causing scattered sites of feeding damage on the leaves. It
remains unknown to what extent the different feeding patterns
of these caterpillars contribute to the differences in induced
plant transcriptional responses.

At the plant population level, we found differences in the
overall transcriptional responses of plants to the various treat-
ments and also in the temporal dynamics of these responses.
These population-related differences were not consistent,
however, among the various experiments. This suggests that
variation in conditions that could not be controlled, either
related to the greenhouse environment or the plants them-
selves, may have resulted in population-specific variation in
the response to the various treatments. These results reveal
that the expression of genes involved in JA and SA defense
signalling can be quite subtle and linking gene expression to
responses occurring at a higher level of biological organiza-
tion should be done with caution. Nevertheless, also at the
population level, there is no evidence to support JA-SA an-
tagonism based on transcript levels of the two marker genes.

The non-interactive effects of aphid and caterpillar infesta-
tion on the transcription levels of JA- and SA- responsive
marker genes in the wild cabbage populations, regardless of
the temporal sequence of both types of herbivory, implies that
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JA-SA antagonism may not occur ubiquitously in all plant
taxa. In this study, we examined only two genes that are con-
sidered representative for the two signalling pathways. Future
studies should aim to investigate genes with different func-
tions, and genes that are transcribed along the sequence of
molecular events that are activated in response to herbivory.
The interaction between the JA and SA signalling pathways is
likely to be far more complex involving various genes of
which some interact antagonistically and others do not.
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