
Sphingosine-l-Phosphate Inhibits PDGF-induced Chemotaxis of Human 
Arterial Smooth Muscle Cells: Spatial and Temporal Modulation of PDGF 
Chemotactic Signal Transduction 
Karin E. Bornfeldt,* Lee M. Graves,* Elaine W. Raines,* Yasuyuki  Igarashi, § Gary Wayman,* 
Soichiro Yamamura ,  § Yutaka  Yatomi, ~ Jaspreet  S. Sidhu,ll Edwin G. Krebs, * Sen-itiroh Hakomori ,  § 
and Russell Ross* 

Departments of *Pathology, *Pharmacology, §Pathobiology, and IEnvironmental Health, University of Washington, and the 
• Biomembrane Institute, Seattle, Washington 98195 

Abstract. Activation of the PDGF receptor on human 
arterial smooth muscle cells (SMC) induces migration 
and proliferation via separable signal transduction 
pathways. Sphingosine-l-phosphate (Sph-l-P) can be 
formed following PDGF receptor activation and there- 
fore may be implicated in PDGF-receptor signal trans- 
duction. Here we show that Sph-l-P does not signifi- 
cantly affect PDGF-induced DNA synthesis, 
proliferation, or activation of mitogenic signal trans- 
duction pathways, such as the mitogen-activated pro- 
tein (MAP) kinase cascade and PI 3-kinase, in human 
arterial SMC. On the other hand, Sph-l-P strongly 
mimics PDGF receptor-induced chemotactic signal 
transduction favoring actin filament disassembly. Al- 
though Sph-l-P mimics PDGF, exogenously added 
Sph-l-P induces more prolonged and quantitatively 
greater PIP2 hydrolysis compared to PDGF-BB, a 

markedly stronger calcium mobilization and a subse- 
quent increase in cyclic AMP levels and activation of 
cAMP-dependent protein kinase. This excessive and 
prolonged signaling favors actin filament disassembly 
by Sph-l-P, and results in inhibition of actin nucleation, 
actin filament assembly and formation of focal adhe- 
sion sites. Sph-l-P-induced interference with the dy- 
namics of PDGF-stimulated actin filament disassembly 
and assembly results in a marked inhibition of cell 
spreading, of extension of the leading lamellae toward 
PDGF, and of chemotaxis toward PDGF. The results 
suggest that spatial and temporal changes in phosphati- 
dylinositol turnover, calcium mobilization and actin fil- 
ament disassembly may be critical to PDGF-induced 
chemotaxis and suggest a possible role for endogenous 
Sph-l-P in the regulation of PDGF receptor chemotac- 
tic signal transduction. 

T rIE accumulation of smooth muscle cells (SMC) 1 
during formation and progression of atherosclerotic 
lesions and in restenosis after angioplasty is due to a 

combination of proliferation and directed migration of the 
cells from the media into and within the intimal layer of the 
artery wall (for review see Ross, 1993). Initiation of both 
these events is most likely mediated by a number of regu- 
latory polypeptides that are present in the lesion, such as 
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1. Abbrevtations used in this paper. DMS, N,N-dimethyl sphingosine; 
FAK, focal adhesion kinase; IBMX, 3-isobutyl-l-methylxanthine; IP1, 
inositol monophosphate; MAP kinase, mitogen-activated protein kinase; 
PDGF-BB, PDGF B-chain homodimer; PDS, plasma-derived serum: PI, 
phosphatidylinositol; PIP2, phosphatidylinositol bisphosphate" PKA. 
cAMP-dependent protein kinase; PLC?, phospholipase C~/; SMC. smooth 
muscle cell; Sph-l-P, sphingosine-l-phosphate. 

PDGF (Ross et al., 1990; Ferns et al., 1991; Jawien et al., 
1992). Both proliferation and directed migration (chemo- 
taxis) of arterial SMC are markedly stimulated by PDGF 
B-chain homodimer (PDGF-BB), and inhibition of PDGF 
in vivo partially blocks SMC accumulation following bal- 
loon injury of a normal vessel (Grotendorst et al., 1981; 
Ferns et al., 1990; Raines et al., 1990). 

After binding of PDGF-BB to its cell surface receptors, 
the receptor dimerizes and becomes autophosphorylated 
intracellularly on a number of tyrosine residues that act as 
docking sites for molecules containing SH2 (src-homology 
2 domains). These include enzymes such as phospholipase 
C~, (PLC~/), phosphatidylinositol 3-kinase (PI 3-kinase), 
rasGTPase activating protein, the tyrosine phosphatase 
Syp, and members of the Src family, as well as linker mole- 
cules such as growth factor-receptor bound protein 2 and 
Src homology and collagen protein (Shc; for review see 
Claesson-Welsh, 1994). A number of different signal 
transduction pathways are thus induced after PDGF re- 
ceptor activation. The direct impact of individual signal 
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transduction pathways on specific biological functions are, 
in most cases, not well understood. 

Emerging results indicate that the intraceUular signaling 
pathways from the PDGF receptors leading to directed 
migration may be different from those leading to prolifer- 
ation (Rrnnstrand et al., 1992; Kashishian and Cooper, 
1993; Bornfeldt et al., 1994). In human arterial SMC, 
PDGF-stimulated phosphatidylinositol (PI)-turnover (me- 
diated through activation of PLC'y) correlates with di- 
rected migration (Bornfeldt et al., 1994). Migration of 
SMC on type I collagen toward PDGF-BB also requires 
functional et2131 integrins (Skinner et al., 1994). Activation 
of the MAP kinase cascade through growth factor-recep- 
tor bound protein 2 and ras'GTP formation, on the other 
hand, correlates with the magnitude of proliferation, and 
does not appear to be required for migration of SMC 
(Bornfeldt et al., 1994). 

Recently, a role for sphingolipids in growth factor signal 
transduction has been proposed (for review see Hakomori, 
1990; Kolesnick and Golde, 1994). One of the sphingolipid 
metabolites that levels can be altered after growth factor 
receptor stimulation is sphingosine-l-phosphate (Sph-l-P). 
Sph-l-P can be formed in vivo by phosphorylation of sphin- 
gosine by sphingosine kinase (for review see Hakomori, 
1990), and is degraded mainly by sphingosine-phosphate 
lyase, which cleaves Sph-l-P to a fatty aldehyde and etha- 
nolamine-phosphate (for review see van Veldhoven and 
Mannaerts, 1993). Sph-l-P has recently been suggested as 
a PDGF receptor signaling molecule (Olivera and Spiegel, 
1993), and yet exogenously added Sph-l-P inhibits mi- 
gration of some cell types through an unknown mecha- 
nism (Sadahira et al., 1992). This apparent discrepancy 
prompted us to further study the effect of Sph-l-P on 
PDGF-induced signal transduction pathways involved in 
proliferation versus migration of human SMCs. 

Here we show that Sph-l-P does not share the effects of 
PDGF-BB on mitogenic signal transduction. Instead, Sph- 
1-P selectively mimics PDGF receptor signaling events fa- 
voring actin filament disassembly, thereby inhibiting actin 
filament assembly, formation of focal adhesion sites and 
PDGF-induced migration and chemotaxis. Spatial and 
temporal differences between PDGF and Sph-l-P signal- 
ing may be critical to its interference with PDGF-induced 
migration. 

Materials and Methods 

Cell Cultures 
Human newborn (13 d) arterial smooth muscle ceils were obtained from 
the thoracic aorta of an infant after death due to congenital heart defects. 
The cells were isolated by the explant method and cultured as described 
previously (Ross and Kariya, 1980). Cells were used in passages 2-10, and 
were characterized as smooth muscle by morphologic criteria and by ex- 
pression of smooth muscle ct-actin. The cells were negative in mycoplasma 
assays and had a normal chromosome number. Subconfluent cell cultures 
were kept in DME/1% human plasma-derived serum (PDS) for 2 d before 
experiments. For degradation of the catalytic subunit of cAMP-dependent 
protein kinase (PKA), the cells were incubated in the presence of 25 ixM 
forskolin and 500 p,M 3-isobutyl-l-methylxanthine (IBMX), both from 
Calbiochem-Novabiochem (La Jolla, CA), 24 h before experiments as 
previously described (Richardson et al., 1990). This treatment resulted in 
a complete loss of PKA catalytic activity, and a marked reduction of PKA 
catalytic subunits from the cytosolic and the membrane fraction as judged 
by Western blot analysis (L. M. Graves, unpublished results). 

Growth Factors, Peptides, and Other Compounds 
D-Erythro-sphingosine-l-phosphate (the naturally occurring isomer) was 
chemically synthesized as previously described (Ruan et al., 1992), and 
N,N-dimethylsphingosine (DMS; another metabolite of sphingosine with 
structural similarities to Sph-l-P) was synthesized as described by Igarashi 
et al. (1989). Sph-l-P and DMS were not cytotoxic at any concentration or 
incubation time used, as judged by LDH (lactate dehydrogenase) release 
from cells. Exogenously added Sph-l-P (1 p,M) was rapidly taken up by 
the SMC to a level of approximately fourfold the level of endogenous 
Sph-l-P. Sph-l-P was not significantly converted to sphingosine during a 
30-rain incubation in the SMC. Human recombinant PDGF-BB was 
kindly provided by Zymogenetics Inc. (Seattle, WA). PKI peptide (a pep- 
tide inhibitor of PKA) and Kemptide were synthesized at the peptide syn- 
thesis facility, Howard Hughes Medical Institute (Seattle, WA). Recombi- 
nant rat Erk-2 was a gift from Dr. M. Cobb (University of Texas, Austin, 
TX). Monoclonal antibodies, derived from mouse, directed against [31 
(P4C10) and ct2 (P1H6) integrin subunits were kindly supplied by Dr. 
W. G. Carter (Fred Hutchinson Cancer Research Center, Seattle, WA). 

Measurement of Sphingolipids in Human 
Arterial SMCs 
Approximately 30 million cells were trypsinized (0.01% trypsin/0.11 mM 
EDTA) as previously described (Bornfeldt et al., 1994), washed twice in 
DME/0.25% BSA and the cell pellets were stored at -80°C until charac- 
terization of glycosphingolipids was undertaken. Sphingosine and Sph-l-P 
were quantified by acylation with radioactive acetic anhydride (Ohta et 
al., 1994; Yatomi et al., 1995.) after precipitation from ~8 million cells 
with 4 ml ice-cold methanol. Lipid extraction from the cells was per- 
formed as described previously by Bligh and Dyer (1959). The sphingolip- 
ids were separated using thin-layer chromatography as previously de- 
scribed (Sadahira et al., 1992) and compared to standard lipids. 

PDGF Receptor Autophosphorylation 
Cells in 6-well plates were preincubated for 30 min with 1 IxM Sph-l-P or 
DMS, and then were stimulated with PDGF-BB for 7 or 10 min at 37°C. 
The stimulation was terminated by three washes with ice-cold PBS fol- 
lowed by solubilization of the cells in 1% Triton X-100, 20 mM "Iris (pH 
8.0), 137 mM NaCI, 10% glycerol, 2 mM EDTA, 1 mM PMSF, 1 p,g/ml 
aprotinin, 1 ixg/ml leupeptin, and 1 mM Na3VO4. The samples were either 
directly separated on a 6% SDS-polyacrylamide gel (10 IJ, g protein/lane) 
or separated following immunoprecipitation over night with a PDGF re- 
ceptor 13 subunit-specific antibody (10 ~,g pR7212, kindly provided by Dr. 
D. Bowen-Pope, University of Washington) and blotted onto nitrocellu- 
lose membranes. The membranes were blocked in TBS containing 5% 
BSA at 45°C for 2 h and then incubated with 0.1 IJ.g/ml phosphotyrosine 
antibody PY20 (ICN ImmunoBiomedicals, Costa Mesa, CA) in TBS/ 
0.05% Tween-20 and 5% BSA for I h at room temperature. The bands 
were visualized using the ECL detection kit (Amersham Inc., Amer- 
sham, UK). 

Measurement of DNA Synthesis and Proliferation 
Cells were grown in 24-well trays, and when they reached ~80% conflu- 
ency, were changed to DME/1% human PDS for 48 h. Then, PDGF-BB 
and Sph-l-P or DMS were added, and the cells were incubated for an ad- 
ditional 18 h and subsequently labeled with 2 ~,Ci/ml [3H]thymidine (New 
England Nuclear, Boston, MA) for 2 h. [3H]thymidine incorporation into 
DNA was measured as trichloroacetic acid insoluble radioactivity. 

Proliferation was measured by determining cell number. Cells were 
plated in 12-well plates in DME/10% FCS with a density of 30,000 cells/ 
well (day 0). The following day (day 1) the medium was changed to DME/ 
1% PDS and PDGF-BB (1 riM) or 10 mM acetic acid/0.25% BSA (vehi- 
cle) were added to the cells on day 1 and 3. In one set of experiments, the 
cells were added Sph-l-P (1 p,M) or the same volume of 50% ethanol (ve- 
hicle) at the same time as PDGF-BB. In another set of experiments, Sph- 
1-P or vehicle were added to the cells daily. The cells were trypsinized, 
fixed in Holley's fixative (3.7% formaldehyde, 86 mM NaC1, 106 mM 
NaESO4) and counted 7 d after plating. 

Measurement of MAP-Kinase, MAP-Kinase Kinase and 
PKA Activity 
Enzyme activities were measured as previously described (Bornfeldt et 
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al., 1994). Briefly, cells in 100-mm dishes (~3 million cells) were stimu- 
lated with PDGF-BB for 5 min (the time giving maximal activation) or 
Sph-l-P at indicated times. Immediately after stimulation, the cells were 
scraped and sonicated in buffer H containing 50 mM [3-glycerophosphate 
(pH 7.4), 1.5 mM EGTA, 0.1 mM Na3VO4, 1 mM DT r ,  10 wg/ml aproti- 
nin, 5 p,g/ml pepstatin, 20 txg/ml leupeptin, and 1 mM benzamidine. 

PKA was assayed by measuring phosphorylation of Kemptide (0.17 
mM) in the presence or absence of PKI peptide (15 p,M) as described 
(Graves et al., 1993). PKA activity was calculated as the amount of Kemp- 
tide phosphorylated in the absence of PKI peptide minus that phosphory- 
lated in the presence of PKI peptide. 

Measurement of PDGF-induced Phosphatidylinositol 
3-Kinase Activity 
Phosphatidylinositol 3-kinase (PI 3-kinase) activity was measured follow- 
ing a 10 min preincubation of cells in 100-ram dishes with 1 p,M Sph-l-P or 
10 nM Wortmannin (a PI 3-kinase inhibitor; Sigma, St. Louis, MO) and a 
subsequent stimulation with 1 nM PDGF-BB for 10 min at 37°C. The cells 
were washed once in ice-cold PBS, then twice in Buffer A (20 mM Tris- 
HCI, pH 7.5, 137 mM NaC1, 1 mM MgC12, 1 mM CaCI 2 and 100 p,M 
Na3VO4). Thereafter, the cells were solubilized in Buffer A containing 1% 
NP-40 and 10% glycerol and centrifuged at 13,000 g for 10 min at 4°C. The 
PDGF receptor 13 subunit was immunoprecipitated at 4°C overnight using 
10 p.g/ml PDGF receptor [3 subunit polyclonal IgG1 antibody (pR7212). 
PI 3-kinase activity in immunoprecipitates was measured according to 
Myers et al. (1993). The spots comigrating with the phosphatidylinositol 
4-P standard (Sigma) were scraped off the plate, dissolved in Eeolume TM 

(ICN Biomedical Inc., Irvine, CA), and the radioactivity of each sample 
was determined. 

Migration Assays 
The migration and chemotaxis of cells were quantified using a 48-well mi- 
cro-Boyden chamber apparatus (NeuroProbe Inc., Cabin John, MD) as 
previously described (Bornfeldt et al., 1994) or a Transweil TM system 
(Costar, Cambridge, MA). Briefly, for the micro-Boyden chamber, 
PDGF-BB or vehicle (10 mM acetic acid with 0.25% BSA) with and with- 
out Sph-l-P, DMS or ethanol (diluent) were diluted in DME with 0.25% 
BSA and loaded into the lower wells of the chamber in triplicates. The 
wells were subsequently covered with a PVP-free filter with 8-p,m pores 
(Nucleopore Corp., Pleasanton, CA) coated with type I collagen (Vitro- 
gen; Collagen Corp., Palo Alto, CA). The cells were trypsinized (0.01% 
trypsin/0.11 mM EDTA),  washed twice in DME/0.25% BSA, and resus- 
pended at a density of 1 or 2 million cells/ml. Cells (25,000 or 50,000 ceils 
in 50 ILl) in the presence of PDGF-BB and/or Sph-l-P or DMS were 
loaded into the upper wells of the Boyden chamber. In the transwell assay, 
100,000 cells in 100 /xl were allowed to adhere to the collagen type 
I-coated membrane for 2 h at 37°C before addition of Sph-l-P (30-min 
preincubation) and PDGF-BB. The chambers were incubated for 4 h at 
37°C in an atmosphere of 95% air/5% CO2. At the end of the incubation 
time, the cells attached to the filter were fixed and stained in Dif Quick 
stain (American Hospital Supply Corp., McGaw Park, IL). The migrated 
cells on the lower side of the filter were counted manually. Chemotaxis 
was calculated as the difference between the number of migrated cells in 
the presence (i.e., total migration) or absence (i.e., chemokinesis) of a 
concentration gradient of the chemoattractant. 

Scanning Electron Microscopy 
The cells were trypsinized and plated in a Transwell chamber as described 
above. Following 2-h incubation to allow adherence of the cells to the 
membrane,  Sph-l-P (1 ~M) was added to the upper and lower well for 30 
min. Migration was stimulated by the addition of PDGF-BB (1 nM) to the 
lower chamber for 2 h. The cells were subsequently fixed in 3% glutaral- 
dehyde in PBS for 1 h at 4°C, rinsed twice in PBS, and postfixed in 1% 
OsO4 in PBS for 1 h at room temperature. After rinses in PBS and dis- 
tilled water, the cells were dehydrated in a series of graded ethanol solu- 
tions to 70% ethanol and stained in 3% uranyl acetate in 70% ethanol for 
1 h. Critical point drying was performed after dehydration in 100% etha- 
nol, and the cells were then gold-palladium sputter coated (resulting in an 
~10 nM coat) and studied using a scanning electron microscope at 15 kV 
(JEOL 35C; Jeol Ltd., Tokyo, Japan). 

Attachment and Spreading of SMC 
Cells were trypsinized in a similar manner as for the chemotaxis assay and 
plated (50,000 cells/well) onto collagen type I-coated 96-well trays in the 
presence or absence of DMS or Sph-l-P at the indicated concentrations. 
After 15 min to 4 h the unattached cells were washed off twice in PBS, the 
attached cells were fixed in 3.7% formaldehyde for 1 h at room tempera- 
ture. The cells were stained with 0.5% toluidine blue in 3.7% formalde- 
hyde for 1 h and then solubilized in 2% SDS. Attachment was measured 
as absorbance at 650 nm using a kinetic microplate reader (Molecular De- 
vices, Menlo Park, CA). 

The time-course of cell spreading on type I collagen was examined with 
cells plated onto glass cover-slips coated with collagen type I in presence 
of 1 IxM Sph-l-P. 10 min, 30 min, 2 h, and 4 h after plating the ceils were 
washed in PBS, fixed in 2% formalin/PBS for 30 rain at room tempera- 
ture, washed again, and were photographed using a phase contrast micro- 
scope ( Zeiss Axiovert 100; Carl Zeiss, Inc., Thornwood, NY). 

Measurement of Inositol Phosphates 
Levels of inositol monophosphate (IP1) and inositol trisphosphate (IP3) 
were measured after PDGF-BB, Sph-l-P, or DMS stimulation as previ- 
ously described (Bornfeldt et al., 1994). Cells in 6-well plates were labeled 
with 2 p, Ci/ml myo-[3H]inositol (Amersham Corp., Arlington Heights, IL) 
for 24 h at 37°C and incubated for 30 min in the presence of 20 mM LiC1 
and then stimulated with 1 nM PDGF-BB and/or the indicated concentra- 
tions of Sph-l-P or DMS for different times. IP1 was eluted following sep- 
aration and elution of glycero-derivates on Bio Rad 1X8 AG columns, 
with 0.2 M ammonium formate and 0.1 M formic acid. IP 3 was eluted with 
0.8 M ammonium formate and 0.1 M formic acid after elution of IP 2 with 
0.4 M ammonium formate and 0.1 M formic acid. 

Measurement of lntraceUular Calcium Levels 
Intracellular Ca 2+ levels were measured according to Grynkiewicz et al. 
(1985). SMC were grown on chambered cover glass slides (Island Scien- 
tific). The cells were washed twice in DME, and then incubated in DME 
with 2 IxM Fura 2-acetoxymethylester (Calbiochem-Novabiochem) for 30 
min at room temperature, and subsequently washed and kept for 20 rain 
in the dark in 0.5 ml calcium imaging buffer with the following composi- 
tion: 140 mM NaC1, 10 mM Hepes, 5 mM KCI, 0.5 mM MgCl2, 1.5 mM 
CaCI2. and 10 mM glucose (pH 7.4). The buffer was made with ultra pure 
reagents (Sigma) and sterile H20, using tissue culture glassware. Fluores- 
cence in single cells was measured as a 340/380 nm ratio (R) with a Nikon 
fluorescence microscope following PDGF-BB, Sph-l-P or DMS stimula- 
tion. Some experiments were performed in the presence of 5 mM EGTA 
or after depletion of intracellular calcium stores with 1.5 IxM thapsigargin 
(Calbiochem-Novabiochem). Random areas in single ceils (excluding the 
nucleus) were selected and analyzed using "Image 1" (Universal Image 
Corp., Westchester, PA). For calibration, Rm~ and free fura fluorescence 
were estimated by equilibrating the cells in calcium-free imaging buffer 
with 2 mM EGTA and 2 ~M A23187, and Rm~x and bound fura fluores- 
cence was estimated by raising the calcium concentration to 60 mM. 

Measurement of Cyclic AMP 
SMC in 100-mm dishes were stimulated with Sph-l-P, DMS or vehicle for 
different periods of time. The plates were washed with ice-cold PBS, and 
proteins were subsequently precipitated with 1 ml 70% ice-cold ethanol. 
After scraping of the plates, the suspension was centrifuged at 13,000 g for 
20 min at 4°C, the supernatant collected and 0.5 ml was dried in a 
speedvac centrifuge. Levels of cAMP were determined by a cAMP 
ELISA kit in prototypic stage, generously provided by GIBCO BRL 
(Gaithersburg, MD). 

Actin Nucleation Assay 
Human SMC were trypsinized and plasma membranes were subsequently 
isolated. The cells were homogenized by 50 strokes in a Dounce homoge- 
nizer at 4°C in 20 mM MOPS, 0.2 M sucrose, 10 mM EDTA, and 10 mM 
EGTA (pH 7.0). The suspension was centrifuged at 500 g for 10 min at 
4°C and then the supernatant was centrifuged for 10 min at 7,000 g. The 
supernatant was centrifuged at 100,000 g for 1 h at 4°C, and the pellet re- 
suspended in 50 mM Tris-HCl (pH 7.0). The membranes (2-4 p,g/ml) were 
incubated in 50 mM Tris-HC1 (pH 7.0) with pyrene-labeled actin (0.8 ixM 
G-pyrenyl actin) and 8 ixM unlabeled actin. To label actin with N-(1- 
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pyrene)iodacetamide (NPI; Molecular Probes, Inc., Eugene, OR), actm 
from rabbit skeletal muscle (Sigma) was homogenized in a Dounce ho- 
mogenizer (15 strokes) in 0.1 mM CaC12, 0.2 mM ATP, 1 mM NaHCO3, 
0.02% NAN3, and 1 mM DTT. The solution was then adjusted by the addi- 
tion of MgCI2 (final concentration: 2 mM), KC1 (final concentration: 105 
mM), and NPI at a molecular ratio of actin/NPI at 1:7.5, and then stirred 
at room temperature for 24 h. The solution was centrifuged at 180,000 g at 
4°C for 2 h, and the pellet (polymerized actin) was collected. The pellet 
was homogenized in 0.2 mM CaCI2, 0.4 mM ATP, 1 mM DT]?, 2 mM Tris- 
HC1 (pH 8.0) and 0.02% NaN 3 and dialyzed against the same buffer for 2 
days (molecular weight cut-off 3,500). After centrifugation at 180,000 g for 
30 min at 4°C, the supernatant (pyrene-labeled actin) was used for actin 
nucleation assays within 2-4 d. Actin nucleation was measured as increase 
in fluorescence at 407 nm (excitation 365 nm) as described previously 
(Kouyama and Mihashi, 1981), and expressed as nucleating activity (arbi- 
trary fluorescence units). 

Immunocytochemistry and Phalloidin Staining 
of Actin Filaments 
SMC were plated on glass cover slips coated with collagen type I (Vitro- 
gen) in presence or absence of I nM PDGF-BB, 1 ~M Sph-l-P, or DMS. 
The cells were fixed in 2% formalin for 30 min at room temperature, per- 
meabilized in 0.2% Triton X-100 in 50 mM Tris-HCl (pH 7.5) for 2 rain, 
and incubated with a monoclonal vinculin antibody at a dilution of 1:20 in 
PBS/I% BSA (Calbiochem-Novabiochem), monoclonal [31 integrin anti- 
body or a monoclonal a2 integrin antibody (1:5 dilution of monoclonal su- 
pernatant) for 1 h at room temperature. The cells were subsequently incu- 
bated with biotin-labeled anti-mouse IgG (Vector Labs., Inc., Burlingame, 
CA). Actin filaments were visualized with 0.2 I~M F1TC-labeled phalloi- 
dm (Sigma) following the fixation and permeabilization methods de- 
scribed above• 

Results 

Sph-l-P Does Not Affect 
PDGF-stimulated Proliferation or Its Associated 
Signal Transduction Pathways 

Since glycosphingolipids and their metabolites have been 
implicated in various signal transduction pathways, the 
glycosphingolipids expressed by the human arterial SMC 
used in this study were characterized. The glycosphin- 
golipid profile is similar to that observed in fibroblasts that 
express the gangliosides GM2 and GM3, with the major 
neutral glycosphingolipid being ceramide mono-hexose 
(data not shown). SMC under basal conditions show high 
levels of sphingosine and Sph-l-P (both 40-80 pmol/106 
cells) compared to other cell types, such as Swiss 3T3 cells 
(16 pmol/106 cells; Olivera and Spiegel, 1993). In our ex- 
periments, PDGF-BB does not markedly alter the levels 
of sphingosine at any time up to 60 min after stimulation. 
Small (up to 50%) and transient increases in levels of Sph- 
1-P were observed following stimulation of SMC with 1 
nM PDGF-BB (data not shown). 

Exogenous addition of 1 ixM Sph-l-P to the human 
SMC does not alter PDGF-BB-induced DNA synthesis 
(Fig. 1). Alone, Sph-l-P increases basal DNA synthesis by 
73.4 _+ 9.8%, while the same concentration of DMS (an- 
other sphingosine metabolite with structural similarities 
with Sph-l-P, used as a control) tends to decrease basal 
DNA synthesis (23.4 -- 2.4% decrease). The concentration 
of PDGF-BB required to give half-maximal stimulation 
(ECs0) is similar in the presence or absence of i ~M Sph- 
1-P or DMS (50.0 pM in vehicle-treated cells, 58.5 pM in 
Sph-l-P treated cells and 63.1 pM in DMS-treated cells). 
Daily additions of i p,M Sph-l-P do not significantly affect 

PDGF-induced increases in cell number after 6 d. Addi- 
tion of 1 nM PDGF-BB results in a 69% increase in cell 
number 6 d after addition (222,600 _ 20,500 cells/well 
compared to 131,400 __+ 6,900 cells/well in vehicle-treated 
cells, mean _ of triplicate samples), and daily addition of 1 
p,M Sph-l-P does not markedly alter the effect of PDGF- 
BB (193,800 + 16,900 cells/well in presence of Sph-l-P). 
Further, daily addition of 1 p~M Sph-l-P to the SMCs does 
not increase cell number (131,400 _+ 6,900 cells/well in ve- 
hicle-treated cells compared to 108,700 -4- 6,900 cells/well 
in Sph-l-P-treated cells) in spite of the 73% increase in 
DNA synthesis. Similar results were obtained in three in- 
dependent experiments, all performed in triplicate. 

The MAP kinase cascade has been implicated in PDGF- 
induced mitogenic responses of human SMC (Bornfeldt et 
al., 1994). Preincubation in the presence of 1 p~M Sph-l-P 
or DMS for 10 min show that neither Sph-l-P nor DMS al- 
ter maximal activation of MAP kinase kinase or MAP ki- 
nase by PDGF-BB at a time (5 min) when activation is 
maximal in these cells (Fig. 2, A and B) although Sph-l-P 
tends to shift the PDGF-BB MAP kinase kinase dose- 
response curve to the right approximately twofold (Fig. 2 
A). Thus, the ECs0-values of PDGF-BB-induced MAP ki- 
nase kinase activation is estimated to be 447 pM in Sph- 
1-P treated cells and 178 pM in vehicle and DMS-treated 
cells. As shown in Fig, 2 A, a concentration of PDGF close 
to the ECs0-value (300 pM), results in an ~23-fold activa- 
tion of the MAP kinase kinase in the presence of vehicle 
or DMS but only an ~ l l - f o ld  activation in the presence of 
Sph-l-P. This effect of Sph-l-P does not seem to be attrib- 
utable to an inhibition of PDGF receptor function, since 
neither Sph-l-P, nor DMS (both at 1 ~tM) affects PDGF 
13-receptor autophosphorylation in human arterial SMC 
(data not shown). However, at higher concentrations of 
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Figure 1. Sph-l-P does not affect PDGF-BB-induced DNA syn- 
thesis. To measure DNA synthesis human SMC were stimulated 
with PDGF-BB at the indicated concentrations in the absence or 
presence of 1 p,M Sph-l-P or DMS for 18 h at 37°C. [3H]thymi- 
dine incorporation into DNA was measured as trichloroacetic 
acid (5%) insoluble radioactivity after an additional incubation 
period of 2 h in the presence of 2 ~Ci/ml [3H]thymidine. The re- 
suits are presented as mean cprn/well _+ SD (n = 3). The basal 
[3H]thymidine incorporation was 487 + 2 cpm/mg protein. 
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PDGF-BB similar maximal activities of MAP kinase ki- 
nase are observed in the presence and absence of Sph-l-P. 

Alone, Sph-l-P (1 ~M) does not significantly activate 
MAP kinase (see Fig. 9) and activation of MAP kinase ki- 
nase was never more than 10% of that observed with i nM 
PDGF-BB. However, stimulation of the cells with 20 IxM 
Sph-l-P results in a consistent and measurable activation 
of MAP kinase kinase (~30% of that stimulated by 1 nM 
PDGF-BB) and MAP kinase (~50% of the activation 
seen with 1 nM PDGF-BB: data not shown). 

PI 3-kinase activation by PDGF-BB has also been impli- 
cated in the signaling pathways required for mitogenic re- 
sponses (Fantl et al., 1992). In the SMC used in the present 
study PDGF receptor-associated PI 3-kinase activity is 
markedly increased 10 min after stimulation with 1 nM 
PDGF-BB. Incubation of the cells for 10 rain in 1 I~M Sph- 
1-P has a slight inhibitory effect on PDGF-BB-induced PI 
3-kinase activation (Table I). The inhibition by the PI 
3-kinase inhibitor Wortmannin (10 nM) is, however, more 
significant (~70% inhibition; data not shown). 

Sph-l-P Inhibits PDGF-BB-induced Migration 
and Chemotaxis 

Despite the lack of effect of Sph-l-P on SMC prolifera- 
tion, Sph-l-P markedly inhibits basal migration of human 
arterial SMC, as well as PDGF-BB-induced migration and 
chemotaxis in the Boyden chamber assay (Fig. 3). The 
concentration of Sph-l-P required to give half-maximal in- 
hibition (ICs0) of total migration is estimated to be 16 nM 
and is ~20 nM for chemotaxis, whereas DMS does not in- 
hibit migration or chemotaxis even at i lxM (Fig. 3). When 
SMC are allowed to attach and spread in the absence of 
Sph-l-P for 2 h in the Transwell assay, and then are sub- 
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Figure 2. Sph-l-P does not 
alter maximal PDGF-BB- 
induced MAP kinase signal- 
ing in human SMC. SMC in 
100-mm dishes were incu- 
bated in DME/1% human 
PDS for 2 d, preincubated for 
10 min with vehicle (ethanol/ 
water 1:1), 1 p.M DMS, or 1 
~M Sph-l-P, and then stimu- 
lated with PDGF-BB for 5 
rain at 37°C. For measure- 
ment of MAP kinase kinase 
activity (A) cell lysates were 
precleared on a DE-52 mini 
column, and phosphorylation 
of myelin basic protein by ac- 
tivated recombinant Erk-2 
was measured. MAP kinase 
activity (B) was measured as 
phosphorylation of myelin 
basic protein during a 15-min 
incubation at 30°C. The re- 
sults are expressed as mean 
fold increase over basal lev- 
els in vehicle-treated cells of 
three different experiments, 
each performed in triplicate. 

Table L Sph-l-P and PDGF-BB-Induced PI 3-Kinase 
Activation 

Treatment PI 3-Kinase acfiwty 

cpm 

Vehicle  75 - 14 
1 ~ m S p h - l - P  88 _ 36 
Vehicle  + 1 nM P D G F - B B  4963 _-. 725 
1 I-LM S p h - l - P  + 1  n M  P D G F - B B  3494 ± 416  

Human SMC in 100-ram dishes were preincubated with 1 p,M Sph-l-P for 10 rain at 
37°C, and then stimulated with PDGF-BB (1 nM) for an additional 10 rain. The ceils 
were washed, scraped and PI 3-kinase associated with the PDGF receptor 13 subunit 
was immunoprecipitated with the PDGF receptor 13 subunit monoclonal antibody 
pR7212. PI 3-kinase activity was measured according to Myers et aL (1993), and the 
spots comlgrating with the phosphatidyhnosltol 4-P standard were scraped and the ra- 
dioactivity quantitated. The results are shown as mean of triplicate dishes ± SD of a 
representative experiment. 

jected to Sph-l-P-treatment for 30 rain and a gradient of 
PDGF-BB for 4 h, it becomes clear that cells in the pres- 
ence of Sph-l-P do not extend leading lameUae (Fig. 4 B), 
whereas vehicle-treated cells extend long processes to- 
wards a higher concentration of PDGF-BB (Fig. 4 A). In 
fact, most of the Sph-l-P-treated cells are still found 
within the pores of the filter (Fig. 4 B, arrowhead). Total 
migration towards 1 nM PDGF-BB in the Transwell assay 
was increased by 120 + 13% (mean _ SD, n = 3) com- 
pared to basal migration, and 46 +_ 14% in the presence of 
1 IxM Sph-l-P (data not shown). 

The inability of SMC to migrate towards PDGF-BB in 
the presence of Sph-l-P is also manifested by inhibition of 
cell spreading in response to PDGF-BB. 10 min after plat- 
ing on collagen type I, DMS-treated (1 txM) cells are still 
round, whereas cells plated in presence of 1 nM PDGF-BB 
and DMS (or vehicle) show extensive spreading (compare 
Fig. 5, A and B). In contrast, cells plated in presence of 1 
p.M Sph-l-P and 1 nM PDGF-BB are not spread at all at 
this point in time, but show characteristic blebbing (Fig. 5 
C). 2 h after plating, DMS-treated cells have extended 
long processes and are more elongated compared to the 
Sph-l-P-treated cells. The differences between DMS- 
treated cells and Sph-l-P-treated cells are less obvious 4 h 
after plating (data not shown). Thus, cells plated in pres- 
ence of 1 IxM Sph-l-P spread slower (an ,'o2-h delay is gen- 
erally seen), but the effects of Sph-l-P are completely re- 
versible. Despite the marked effects of Sph-l-P on spreading 
and migration of SMC, there is no difference in attachment 
of SMC to type I collagen in presence or absence of con- 
centrations of Sph-l-P or DMS up to 10 p.M when mea- 
sured at 15 min to 4 h after plating (data not shown). 

Sph-l-P Increases Phosphatidylinositol Turnover and 
Calcium Mobilization, but with Temporal and Spatial 
Differences as Compared with PDGF-stimulation 

Formation of IP1 and IP 3 is markedly induced by Sph-l-P 
in human SMC, but not by DMS. The effect of 1 ~xM Sph- 
1-P is threefold greater than the maximal effect (1 nM) of 
PDGF-BB (Fig. 6 A). Furthermore, the kinetics of the ef- 
fect of Sph-l-P and PDGF-BB on IP3 formation are differ- 
ent. The induction of IP 3 by Sph-l-P is observed earlier (1 
min after stimulation) and is still marked as late as 60 min 
after stimulation (Fig. 6 B). PDGF-BB stimulation of IP3 
formation is more transient, with a peak at 5 min after 
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Figure 3. Sph-l-P inhibits PDGF-induced migration and chemo- 
taxis of human SMC. Human SMC were plated in a Boyden 
chamber coated with collagen type I, and Sph-l-P or DMS was 
added in both the upper and lower well simultaneously with 
PDGF-BB. Total migration (A) and chemotaxis towards PDGF- 
BB (B) was measured after a 4-h incubation, at which time the 
migrated cells on the lower side of the filter were fixed, stained, 
and counted. The results are presented as mean _+ SD (n = 3). 
Basal migration was 39 + 8 cells/400XHPF. 

stimulation and a normalization after 30 min (Fig. 6 B). 
The effects of Sph-l-P and PDGF-BB on IP1 and IP3 are 
additive at all time-points. The dose-response curve of 
Sph-l-P on IP1 formation shows an ECs0-value of ~200 
nM Sph-l-P, whereas DMS is without effects up to 10 I~M 
(Fig. 6 C). 

Studies of calcium fluxes in single cells reveal that Sph-l-P 
gives a rapid, transient, and concentration-dependent in- 
crease in intracellular calcium levels. Sph-l-P at 1-100 nM 
increases intracellular calcium without affecting the subse- 
quent response to 1 nM PDGF-BB (Fig. 7 A). Addition of 
1 I~M Sph-l-P results in a calcium mobilization about two 
to three times (intracellular calcium levels from 30 nM up 
to ~2  ~tM) that of a maximal concentration of PDGF-BB 
(Fig. 7 B). This concentration of Sph-l-P inhibits the sub- 
sequent effect of PDGF-BB in approximately half of the 
cells in a representative field. The maximal calcium mobi- 
lization following stimulation with 100 nM Sph-l-P (or 1 

Figure 4. SMC in the presence of Sph-l-P do not extend leading 
lamellae in a concentration gradient of PDGF-BB. In the Trans- 
well assay, the cells were allowed to adhere for 2 h, and subse- 
quently preincubated with Sph-l-P for 30 rain. 4 h after addition 
of PDGF-BB in the lower well, the cells were fixed in glutaralde- 
hyde and the lower side of the filter processed for electron mi- 
croscopy. Vehicle (ethanol)-treated cells (A), 1 IxM Sph-l-P- 
treated cells (B). Note the extended processes in control cells and 
the number of Sph-l-P-treated cells remaining in the pores of the 
membrane (arrowhead). Bar, 10 IxM. 

IxM Sph-l-P) propagates throughout the entire cytosol 
(compare Fig. 8, C with D), whereas PDGF-BB induces 
increased calcium levels in localized areas of the cytosol 
(compare Fig. 8, A with B). DMS (1 IxM) does not affect 
basal or PDGF-induced calcium mobilization. Sph-l-P (1 
ixM) is capable of generating calcium mobilization in pres- 
ence of 5 mM EGTA (which reduces extracellular calcium 
levels to a concentration similar to the resting intraceUular 
calcium level). However, exhaustion of the intracellular 
calcium stores with thapsigargin markedly reduced the ef- 
fect of 1 txM Sph-l-P (data not shown). Together, these re- 
suits suggest that Sph-l-P generates an extensive calcium 
mobilization from intracellular stores in human SMC. 

Sph-l-P Elevates cAMP and Activates PKA through 
a Calcium-dependent Mechanism 

Although Sph-l-P has not previously been shown to ele- 
vate cAMP levels, the effect of Sph-l-P on cAMP levels in 
human SMC is marked (Table II). The time-course of 
cAMP elevation by Sph-l-P is rapid and peaks 2-5 min af- 
ter stimulation, with a sharp (~3 min) decline to basal lev- 
els (data not shown). The effect of Sph-l-P on levels of 
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Figure 5. Sph-l-P inhibits 
spreading of SMC. Human 
SMC were plated onto col- 
lagen type I-coated glass cov- 
erslips (100,000 ceUs/ml) in 
the presence of 1 ~xM DMS 
or 1 p,M Sph-l-P and 1 nM 
PDGF-BB, and were fixed 
with 2% formalin. After 30 
min fixation at room temper- 
ature, the cells were perme- 
abilized in 0 .2% Triton 
X-100 and incubated for 1 h 
at room temperature with 
FITC-labeled phalloidin. In 
some cases the ceils were de- 
pleted of PKA catalytic ac- 
tivity as described in the 
methods. The ventral plasma 
membrane is shown. The 
cells were incubated for (A) 
10 min with DMS, (B) 10 min 
with DMS + PDGF-BB, (C) 
10 min with Sph-l-P + 
PDGF-BB, (D) 10 min with 
Sph-l-P + PDGF-BB in 
PKA-deficient cells, (E) 30 
min with DMS + PDGF-BB, 
(F) 30 min with Sph-l-P + 
PDGF-BB in PKA-deficient 
cells. The experiment was re- 
peated several times with 
similar results. Bar, 20 p~M. 

cAMP is dependent on the increase in intracellular cal- 
cium, since the stimulation of cAMP by Sph-l-P could be 
completely inhibited by depleting internal calcium stores 
for 1 h with thapsigargin. Thapsigargin-treatment did not 
elevate LDH release during the incubation time, showing 
that it is nontoxic. 

Consistent with the elevation of levels of cAMP, stimu- 
lation of human SMC with 1 p~M Sph-l-P results in a rapid 
and transient activation of PKA (Fig. 9). The effect of 
Sph-l-P on levels of cAMP and PKA activation (not 
shown) are additive to those of 1 nM PDGF-BB (PDGF- 
BB stimulates PKA in human SMCs; Graves and Born- 

Table II. Sph-l-P Increases cAMP Levels in Human SMC 

Levels of cAMP 

pmol/ml 

0,1 ~ M  D M S  7 
1 ~ M  D M S  10 
0.1 p.M S p h - l - P  95 
1 p.M Sph- I -P  570 

Human SMC in 100 mm dishes (~2 million cells) were incubated with DMS or Sph- 
1-P for 5 rain at 37°C, and then were washed with me-cold PBS, precipitated with I ml 
70% ethanol on ice and scraped off the plates. After centnfugation, the levels of 
cAMP in the supematant were determined as stated m Materials and Methods. A rep- 
resentative experiment is shown (mean of duplicate samples), 

feldt, manuscript in preparation). The activation of PKA 
by 1 ~M Sph-l-P is comparable to that of ~,300 nM for- 
skolin and 1 nM PDGF-BB. 

Sph-l-P Promotes Actin Filament Disassembly and 
Inhibits Formation of  Focal Adhesion Sites 

To investigate the effect of Sph-l-P on membrane-depen- 
dent actin nucleation, an in vitro actin nucleation assay 
was performed (Fig. 10). Sph-l-P specifically inhibited ac- 
tin nucleation while DMS had no effect during a 15-min 
measurement. Actin nucleation in the presence of 1 IxM 
DMS was 128.3 +__ 2.9% of control, in the presence of 0.1 
p~M Sph-l-P was 78.9 +_ 14.8% of control, and in the pres- 
ence of 1 p~M Sph-l-P was 39.6 _ 6.1% of control (mean +-_ 
SD, n = 3, data not shown). Actin nucleation to plasma 
membranes from SMC is also inhibited by cytochalasin D 
(the actin nucleation in presence of 10 p,M cytochalasin D 
for 15 rain was 55.8 +_. 15% of that in control experiments; 
n = 4 ) .  

Formation of actin filaments in the presence and ab- 
sence of Sph-l-P in living cells was studied by visualization 
of filamentous actin with FITC-labeled phalloidin, and fo- 
cal adhesion site assembly was examined by immunostain- 
ing of vinculin and the et2 and [31 integrin subunits. 30 min 
after plating of SMC on collagen type I, more than 90% of 
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Figure 6. Sph-l-P stimulates PI turnover in human SMC. Levels 
of IP1 and IP3 were measured in cells incubated in 2 t~Ci/ml myo- 
[3H]inositol in Medium 199 containing 1% human PDS in 6-well 
trays for 24 h. Phosphatidylinositol turnover was blocked with 20 
mM LiC1 for 30 min, and the cells subsequently stimulated with 
PDGF-BB and/or Sph-l-P or DMS for the indicated periods of 
time at 37°C. Cells were extracted with TCA and free inositol was 
eluted from a Bio Rad 1-X8 AG column. IP1 was eluted with 02 M 
ammonium formate and 0.1 M formic acid, and IP3 was eluted 
with 0,8 M ammonium formate with 0.1 M formic acid. The re- 
suits are shown as cprn/100,000 cells (mean --+ SD of triplicate 
samples). Time-course of the effects of 1 p,M Sph-l-P, 1 nM 
PDGF-BB or the combination of Sph-l-P and PDGF-BB on lev- 
els of 1P1 (A) and IP3 (B) are shown. C shows a Sph-l-P dose- 
response curve for IP1 levels following a 60-min stimulation with 
Sph-l-P or DMS. The experiment was repeated several times 
with similar results. 
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Figure 7. Sph-l-P increases calcium mobilization in human SMC. 
Cells grown on chambered cover glasses were loaded with 2 ixM 
fura-2 acetoxymethylester for 30 rain at room temperature, 
washed and stimulated with (A) 100 nM Sph-l-P (left arrow) and 
1 nM PDGF-BB (right arrow) or (B) 1 txM Sph-l-P and 1 nM 
PDGF-BB. The intracellular changes in calcium in single cells 
were monitored using a Nikon fluorescence microscope and the 
software "Image 1" (Universal Image Corp.). Basal levels of in- 
tracellular calcium were 30--40 nM. The experiments were re- 
peated three times with similar results. 

the DMS-treated (or vehicle-treated) cells are spread, and 
~ 5 0 %  of the cells have obvious actin filaments that termi- 
nate in typical focal adhesion sites containing a2 integrin 
subunits (Fig. 11, A and B). In the presence of 1 nM 
PDGF-BB the fraction of cells showing clear actin fila- 
ments and focal adhesion sites increase to close to 90% 
(data not shown). The a2 integrin immunostaining is co- 
localized with staining for (31 integrin subunits and vincu- 
lin (data not shown). 

Approximately 50% of the Sph-l -P- t reated cells are 
still around 30 min after plating, and show no obvious for- 
mation of actin filaments (Fig. 11 D). Instead, most of the 
phalloidin stained actin is cortical, which is more readily 
observed when Sph-l -P- t reated cells are studied with con- 
focal microscopy (not shown). Furthermore,  c~2 integrin 
subunits (as well as [31 integrin subunits and vinculin) are 
not localized in typical focal adhesion sites, but are rather 
found in less well-defined patches (Fig. 11 C). There is no 
obvious difference when the Sph-l -P- t reated cells are 
plated in the presence of  1 nM PDGF-BB,  compared to 
the absence of  PDGF-BB.  At  2 h after plating, peripheral 
actin filaments are more frequently seen in the Sph- l -P-  
treated cells, and they display peripheral focal adhesion 
sites (data not shown). 

Despite the slow formation of  typical focal adhesion 
plaques in the presence of Sph-l-P, no inhibition of ty- 
rosine phosphorylation of focal adhesion kinase (p125 rAK) 
is found. Immunoprecipitat ion of p125 FAK using 10 Ixg of a 
mouse monoclonal  p125 FAK IgG1 antibody (UBI,  Lake 
Placid, NY) following a 10-min adherence of SMC to col- 
lagen type 1 in the presence or absence of Sph-l-P, DMS 
and/or PDGF-BB reveals no difference in tyrosine phos- 
phorylation of  p125 FAK (data not shown). At  this time, 
Sph- l -P- t reated cells are still round, whereas PDGF-  
treated cells are actively spreading. 

Part of the Sph-l-P-induced Inhibition of Actin 
Filament Assembly, Spreading, and Chemotaxis Can Be 
Reversed by Inhibition of PKA 

Activation of P K A  inhibits actin filament assembly in hu- 
man SMC. For  example, activation of  P K A  with 1 I~M for- 
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Figure 8. Spatial differences 
in calcium mobilization fol- 
lowing stimulation of human 
SMC with PDGF-BB and 
Sph-l-P. The SMC were 
loaded with 2 txM fura-2 ace- 
toxymethylester as in Fig. 7. 
Changes in intracellular cal- 
cium were monitored in sin- 
gle cells following stimu- 
lation with PDGF-BB or 
Sph-l-P using a Nikon flu- 
orescence microscope as in 
Fig. 7. The spatial patterns of 
calcium levels were moni- 
tored before (A) and after 
maximal stimulation with 1 
nM PDGF-BB (B) and be- 
fore (C) and after maximal 
stimulation with 100 nM Sph- 
1-P (D). Note that the scales 
are ranging from 0-1  in A 
and B and from 0 -2  in C and 
D. The experiments were re- 
peated three times with simi- 
lar results. 

Figure 11. Sph-l-P inhibits 
actin filament assembly and 
formation of typical focal ad- 
hesion plaques. SMC were 
plated onto collagen type 
I-coated glass cover slips, and 
the cells were allowed to at- 
tach and spread for 30 rain. 
The cells were then fixed in 
2% formalin for 30 min at 
room temperature, perme- 
abilized in 0.2% Triton 
X-100, and incubated for i h 
at room temperature with 
mouse monoclonal antibod- 
ies directed against ct2 inte- 
grin subunits (left panel) and 
with FITC-labeled phalloidin 
(right panel). Omitting the 
primary antibody resulted in 
no detectable immunostain- 
ing. The ventral plasma 
membrane is shown. The 
photos show a representative 
SMC plated in vehicle (A 
and B) or 1 I~M Sph-l-P (C 
and D) and subsequently 
stained with an et2 integrin 
antibody (A and C) and dou- 
ble-stained with FITC- 
labeled phalloidin (B and D). 
Typical focal adhesion sites 
are marked by arrows. Bar, 
20 ~M. 
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Figure 9. Sph-l-P activates PKA without activating MAP kinase. 
Activities of MAP kinase (E]) and PKA (<>) were measured in 
the same cell extracts following stimulation with 1 txM Sph-l-P 
for the indicated periods of time. MAP kinase activity was mea- 
sured as in Fig. 2. PKA activity was assayed by measuring 
phosphorylation of Kemptide in the presence or absence of PK! 
peptide, and was calculated as the amount of Kemptide phos- 
phorylated in the absence of PKI peptide minus that phosphory- 
lated in the presence of PK1 peptide. The results are expressed as 
fold increase in enzyme activity over basal levels. Similar results 
were obtained in three independent experiments. 

skolin results in an almost complete loss of actin filament 
assembly in response to PDGF-BB 30 min after plating on 
collagen type I (data not shown). Based on this observa- 
tion, it seemed possible that Sph-l-P activation of PKA 
might play a role in Sph-l-P inhibition of actin filament as- 
sembly and migration of SMC. To study this, PKA catalytic 
activity was down-regulated by an overnight treatment of 
cells with 25 }xM forskolin/500 }xM IBMX (Richardson et 
al., 1990), or PKA was inhibited with the PKA inhibitor 
H-89 (BIOMOL Research Laboratories, Inc., Plymouth 
Meeting, PA). 

Down-regulation of the PKA catalytic activity reverses 
part of the Sph-l-P inhibition of PDGF-induced spreading 
and actin filament assembly. 10 min after plating on col- 
lagen type I, cells lacking PKA catalytic activity are clearly 
spreading in response to PDGF-BB in the presence of 1 
;xM Sph-l-P (Fig. 5 D) whereas cells not subjected to PKA 
down-regulation are still round in the presence of Sph-l-P 
and PDGF-BB and show characteristic blebbing (Fig. 5 
C). At later time-points (30 min), cells lacking PKA cata- 
lytic activity show increased actin filament assembly in re- 
sponse to PDGF-BB even in the presence of Sph-l-P 
(compare Fig. 5, E with F), whereas cells with normal 
PKA activity are lacking obvious actin filaments in the 
presence of Sph-l-P (Fig. 11 D). 

Down-regulation of the PKA catalytic activity also re- 
verses part of the Sph-l-P inhibition of PDGF-induced mi- 
gration and chemotaxis as shown in Table III. Although 
migration of SMC toward PDGF-BB in the presence of 
Sph-l-P was not fully recovered in cells lacking PKA cata- 
lytic activity, migration toward PDGF-BB in the presence 
of Sph-l-P was 49% of that seen in the absence of Sph-l-P 
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Figure 10. Sph-l-P inhibits actin nucleation in vitro. Plasma 
membranes from SMC were isolated by homogenization and ul- 
tra centrifugation. The membranes were incubated in the pres- 
ence of pyrene-labeled actin and unlabeled actin in the presence 
or absence of the indicated concentrations of Sph-l-P. Actin nu- 
cleation was measured as increase in fluorescence at 407 nm (ex- 
citation 365 rim). The results are presented as mean of three inde- 
pendent experiments. 

(Table III). In contrast, migration toward PDGF-BB in 
the presence of Sph-l-P was only 9% of that seen in the 
absence of Sph-l-P in control cells. Activation of PKA by 
1 p,M forskolin also inhibited PDGF-induced migration 
and chemotaxis in normal ceils, and this effect was lost in 
cells lacking PKA catalytic activity (Table III), confirming 
that PKA was efficiently down-regulated by the procedure 
used. There is no obvious difference in ability of 1 }xM 
Sph-l-P to stimulate PIP2 hydrolysis and calcium mobiliza- 
tion in cells lacking PKA catalytic activity as compared to 
normal cells (data not shown). 

Consistent with the results obtained in cells where the 
PKA catalytic activity has been'down-regulated, inhibition 
of PKA by 20 ~M H-89 (a concentration that completely 
inhibits PKA catalytic activity in human SMC following a 
20 min preincubation), reverses Sph-l-P-induced actin fil- 
ament disassembly and partly reverses the Sph-I-P inhibi- 
tion of migration of SMCs toward PDGF-BB (data not 
shown). 

Discussion 

Sph-l-P Does Not Mimic or Affect PDGF 
Receptor Signaling Associated with Smooth Muscle 
Cell Proliferation 

Two recent studies have implicated sphingolipids as sec- 
ond messengers in PDGF receptor mitogenic signal trans- 
duction. These studies show that formation of Sph-l-P and 
sphingosine are rapidly stimulated by PDGF in Swiss 3T3 
cells (Olivera and Spiegel, 1993), and that levels of sphin- 
gosine are increased following PDGF stimulation of the rat 
arterial SMC-derived cell line A7r5 (Jacobs and Kester, 
1993). The fact that Sph-l-P stimulates DNA synthesis in 
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Table IlL Sph-l-P Inhibition of PDGF-stimulated Migration is 
Partly Mediated Through PKA 

Total rmgration Chemotaxis 

Control  cells 

Basal  55 ± 4 0 ± 8 

P D G F - B B  106 ± 9 42  ± 12 
P D G F - B B  + S p h - l - P  10 _~ 4 2 _+ 4 
P D G F - B B  + forskol in  43 _+ 4 26 _+ 4 

Cells lacking  P K A  catalyt ic  activity 

Basal  72 ± 7 5 ± 15 

P D G F - B B  177 + 12 66 ± 19 
P D G F - B B  + S p h - l - P  87 _+ 5 37 ___ 3 
P D G F - B B  + forskol in  176 _ 6 82 __+ 15 

The PKA catalytic activity was down-regulated by an overnight treatment with 25 
p~M forskolin/500 ixM IBMX. The cells were then allowed to nugrate toward 1 nM 
PDGF-BB in presence or absence of 1 ~M Sph-l-P or 1 p.M forskolin in the Boyden 
chamber for 4 h at 37°C. The chemotactic response was calculated as the number of 
migrated ceils in presence of PDGF-BB only in the lower chamber (total magration) 
minus the number of cells in abscence of a PDGF-gradient (equal concentrations of 
PDGF-BB on both sides of the filter; chemokinesis). The results are expressed as 
number of cells/400X HPF (mean -+ SD of tfiphcate samples). The experiment was 
repeated four ames with similar results. 

Swiss 3T3 cells approximately eightfold (Zhang et al., 
1991), and that PDGF-induced DNA synthesis is inhibited 
by DL-threo-dihydrosphingosine (a sphingosine kinase in- 
hibitor: Olivera and Spiegel, 1993) support the possible in- 
volvement of Sph-l-P in PDGF receptor mitogenic signal- 
ing. Further, binding of the "transcription factor AP-1 
(activator-protein 1) to c-Jun and c-Fos has recently been 
found to be increased by Sph-l-P in Swiss 3T3 cells (Suet 
al., 1994). 

Endogenous basal levels of Sph-l-P in human arterial 
SMC are 2.5-5-fold those reported in quiescent Swiss 3T3 
cells (Olivera and Spiegel, 1993). Thus, high levels of en- 
dogenous Sph-l-P in human SMC are consistent with a 
possible role for Sph-l-P in signal transduction in this non- 
transformed, diploid cell. However, in human SMC, Sph- 
1-P does not activate the MAP kinase cascade associated 
with stimulation of proliferation at concentrations that 
markedly stimulate PI-turnover and calcium mobilization. 
Only at concentrations of 20 ~M or more is a weak stimu- 
lation of the MAP kinase cascade observed. Sph-l-P (1 
~M) is able to induce an ~l.7-fold increase in DNA syn- 
thesis, compared to the fourfold increase by 1 nM PDGF- 
BB. The small increase in DNA synthesis induced by Sph- 
1-P does not lead to an increased cell number, even when 1 
txM Sph-l-P is added daily during a 6-d period, whereas 
PDGF-BB gives an ,'-~70% increase of cell number within 
this period. Thus, although endogenous formation of Sph- 
1-P may play a role in PDGF receptor signaling in human 
SMC, the effect of PDGF on the MAP kinase cascade and 
the subsequent mitogenic effect of PDGF does not seem 
to be mediated by, or significantly modified by, Sph-l-P. 
In addition, DMS at a concentration that inhibits sphingo- 
sine kinase (20 IxM) better than DL-threo-dihydrosphingo- 
sine, does not significantly inhibit PDGF-activation of MAP 
kinase (our unpublished results). Taken together, these re- 
suits do not agree with the notion of Sph-l-P as a ubiqui- 
tous mediator in PDGF receptor mitogenic signaling. 

PKA can antagonize PDGF-induced activation of the 
MAP kinase cascade (Graves et al., 1993). Activation of 
PKA by Sph-l-P is ~30% of the PKA activity required to 

maximally inhibit MAP kinase kinase and MAP kinase in 
these cells. The shift in the dose-response of MAP kinase 
kinase activation by PDGF-BB following preincubation 
with Sph-l-P suggests that the MAP kinase kinase is 
slightly inhibited by the PKA activation caused by Sph- 
1-P. This inhibition is potentially not marked enough to be 
transferred to measurable downstream changes in MAP 
kinase activity, or alteration of DNA synthesis or prolifer- 
ation. 

Finally, these studies show that extensive PIP 2 hydroly- 
sis and calcium mobilization induced by Sph-l-P are not 
sufficient to induce proliferation in human SMC, and that 
activation of this pathway is distinct from signal transduc- 
tion associated with stimulation of proliferation (as shown 
by Fig. 12). In contrast, in certain circumstances, and in 
certain cell types, activation of PLCy is sufficient to induce 
a mitogenic response (Valius et al., 1993). In this context, 
it is important to bear in mind that similar signal transduc- 
tion pathways can generate different biological responses 
depending on the strength and the duration of the signal 
(Marshall, 1995). Further, activation of a growth factor re- 
ceptor may stimulate different signals depending on the 
balance of signaling molecules and on the state of differen- 
tiation of a certain cell type (Campbell et al., 1995). Thus, 
to further understand the biological effects of PDGF, it 
will be important to compare and contrast differences in 
PDGF receptor signal transduction in diploid cell types, 
such as human SMC, and in cell lines, such as 3T3 cells. 

Sph-l-P Inhibits SMC Spreading and Migration 
by Excessively Mimicking PDGF Receptor Signaling 
Leading to Actin Filament Disassembly 

In contrast to the lack of effect of Sph-l-P on proliferation, 
Sph-l-P markedly inhibits migration and chemotaxis of 
human SMC. The inhibitory effect of Sph-l-P on migration 
appears to be due to reduced ability of the SMC to extend 
leading lamellae and spread in the presence of Sph-l-P. 
These effects by Sph-l-P seem to be explained by an accel- 
erated and prolonged actin filament disassembly, since ac- 
tin nucleation and formation of actin filaments and focal 
adhesion sites are delayed in presence of Sph-l-P. 

Actin filament disassembly and assembly play an impor- 
tant role in the leading edge of a cell migrating in a gradi- 
ent of PDGF-BB, where these processes enable cytoplas- 
mic flow and protrusion of new leading lamellae (for 
review see Stossel, 1993). During chemotaxis of a cell in a 
gradient of a chemoattractant, intracellular signal trans- 
duction must be localized and gradients of signaling mole- 
cules are crucial (Gilbert et al., 1994; for review see Ber- 
ridge, 1994; Clapham, 1995). Thus, the local intracellular 
balance and cycling between actin filament disassembly 
and assembly must be finely regulated. What are the intra- 
cellular signal transduction events leading to the acceler- 
ated actin filament disassembly during chemotaxis toward 
PDGF? Results obtained by several different approaches 
imply a role for PLCy in PDGF-induced chemotaxis (Mat- 
sui et al., 1989; Bornfeldt et al., 1994; Kundra et al., 1994). 
Hydrolysis of PIP2 and the subsequent increase in intracel- 
lular calcium promotes actin filament disassembly by in- 
ducing capping of actin filament barbed ends and actin 
monomer sequestration (for review see Stossel, 1993). 
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Figure 12. Signal transduction pathways associated with prolifer- 
ation versus directed migration of human arterial smooth muscle 
cells. The PDGF-induced signal transduction pathways associ- 
ated with proliferation ( [ ]  ) versus those associated with di- 
rected migration ( [ ]  ) are shown. Sph-l-P selectively mimics 
PDGF receptor signal transduction associated with migration but 
not with proliferation. Localized and temporal changes in actin 
filament disassembly and assembly by modulation of levels of 
PIP2, calcium, and activation of PKA are crucial for directed cell 
migration in a gradient of PDGF. Sph-l-P mimics the signals fa- 
voring actin filament disassembly and when added exogenously, 
Sph-l-P disturbs the spatial and temporal balance between actin 
disassembly and assembly and inhibits migration. Local changes 
in concentration of endogenous Sph-l-P may potentially play an 
important role in regulating these events in a migrating human 
SMC. Localized and temporal interactions between the cell and 
the extracellular matrix is also a requisite for directed migration 
and can be mediated through modulation of et2131 integrin inter- 
action with collagen type I chains. Activation of the MAP kinase 
cascade and PI 3-kinase are associated with the mitogenic effects 
of PDGF, and Sph-l-P does not significantly mimic or affect 
these signal transduction pathways or proliferation in human 
SMC. Although Sph-l-P-induced activation of PKA is important 
in regulating spreading and migration of SMC, the PKA activity 
is not sufficient to induce measurable inhibition of MAP kinase 
activity or proliferation. 

Point mutation of Y1021 in the human PDGF receptor 
13-subunit disables activation of PLC~/and reduces PDGF- 
induced migration (Kundra et al., 1994). 

The intracellular effects of Sph-l-P in SMC seem partly 
attributable to a marked hydrolysis of PIP2, and a strong 
mobilization of calcium. Dose-response curves show that 
doses of Sph-l-P that increase PI-turnover and calcium 
mobilization also inhibit PDGF-induced cell migration. In 
other cell types, Sph-l-P has previously been described to 
increase PI-turnover (Peng Chao et al., 1994) and calcium 
release from intracellular stores (Ghosh et al., 1990; Mat- 
tie et al., 1994; Peng Chao et al., 1994). The effects of Sph- 
1-P on intracellular calcium stores are not due to a non se- 
lective increase in permeability of the membranes (Ghosh 
et al., 1990). Instead, Sph-l-P seems to release calcium 
mainly from the IP3-sensitive calcium pool, but not directly 
through IP 3 receptors or ryanodine receptors (Ghosh et 
al., 1994). An effect mediated through IP3 in the present 
study cannot be excluded, since Sph-l-P markedly in- 
creased levels of IP 3. The maximal effect of Sph-l-P on 
PIP2 hydrolysis is stronger and more prolonged than that 
of PDGF, shifting the actin cycle to favor actin filament 
disassembly. The effect of Sph-l-P on calcium mobiliza- 
tion is also stronger, and calcium levels are increased in 
the entire cytosol of cells stimulated with concentrations 

of Sph-l-P that inhibit chemotaxis, whereas the effect of 
PDGF is more localized. By disturbing the local balance of 
PIP2 and calcium, exogenously added Sph-l-P may inhibit 
PDGF-induced events leading to localized actin filament 
disassembly and subsequent reassembly (see Fig. 12). An 
increase in endogenous levels of Sph-l-P following PDGF 
stimulation may also be involved in regulation of cytoskel- 
etal reorganization required for cell movement. 

The increased levels of intracellular calcium following 
stimulation with Sph-l-P lead to increased formation of 
cAMP. The fact that depletion of intracellular calcium 
stores by pretreatment with thapsigargin blocks the mobi- 
lization of calcium and generation of cAMP by Sph-l-P in- 
dicates that Sph-l-P may act through activation of cal- 
cium-dependent adenylate cyclase(s) with a subsequent 
activation of PKA. Activation of PKA leads to actin fila- 
ment disassembly in many cell types. Numerous cytoskele- 
tal proteins are phosphorylated by PKA, and elevation of 
cAMP has been found to result in disruption of actin fila- 
ments, diffusion of integrins from adhesion sites (Lampu- 
gnani et al., 1990; Glass et al., 1993) and inhibition of cell 
migration (Lampugnani et al., 1990). This is consistent 
with results from the SMC, where activation of PKA by 
forskolin inhibits PDGF-induced migration, and results in 
loss of actin filaments (data not shown). Down-regulation 
of the PKA catalytic activity, or inhibition of PKA with 
the selective inhibitor H-89, partly reverses the effects of 
Sph-l-P on migration, spreading and actin filament disas- 
sembly. Thus, part of the effects of Sph-l-P on migration 
and actin filament disassembly may be explained by acti- 
vation of PKA. 

Compartmentalized Changes in the Extent and 
Kinetics of  Particular Signal Transduction Pathways 
May Be Critical to Cytoskeletal Connections to the 
Plasma Membrane 

In human SMC, et2131 integrins seem to mediate migration 
toward PDGF-BB on collagen type I (Skinner et al., 1994). 
In the presence of Sph-l-P, localization of a2131 integrin 
(and vinculin) into focal adhesion sites is markedly slower 
than in the absence of Sph-l-P. In general, focal adhesion 
sites are also sites for actin filament attachment to the 
plasma membrane and actin nucleation sites (for review 
see Mitchison, 1992). The slower time-course of formation 
of focal adhesion sites when SMC are allowed to spread in 
the presence of Sph-l-P is likely to be related to formation 
of actin nucleation sites in the plasma membrane. Interest- 
ingly, it has recently been shown that localization of inte- 
grins in focal adhesion plaques seems to be required for 
their ability to mediate cell migration (Zhang et al., 1993). 
The impaired localization of ct2131 integrins and other 
components of focal adhesion plaques in presence of Sph- 
1-P may lead to inhibition of integrin-transmembrane sig- 
naling. 

Cell adhesion to the matrix is a requisite for cellular 
movement involving the generation of tractional forces. 
These cell-matrix interactions must be made and broken 
in a temporally coordinated fashion during the process of 
cell translocation. It is known that the chemotactic re- 
sponse to growth factors is bell-shaped (Grotendorst et al., 
1982). This is most likely due to a loss of the chemotactic 
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gradient at higher concentrations of growth factors, which 
affects gradients of both receptor occupancy and intracel- 
lular signaling events. It is also known that PDGF stimula- 
tion of 3T3 cells induces tyrosine phosphorylation of 
paxillin and p125 FA~:, both proteins associated with focal 
adhesions, with a bell-shaped dose response curve. In con- 
trast, phosphorylation of PLC~/exhibits a sigmoidal dose- 
response curve (Rankin and Rozengurt, 1994). It has been 
proposed that in these cells, higher concentrations of PDGF 
disrupt the actin cytoskeleton, possibly through activation 
of PLC',/, stimulation of PIP 2 hydrolysis and calcium mobi- 
lization. PDGF is known to induce rapid and time-depen- 
dent alterations in the distribution of vinculin and actin 
(Herman and Pledger, 1985; MellstrSm et al., 1988; La- 
tham et al., 1994). Consequently, higher concentrations of 
PDGF (greater than those giving a maximal chemotactic 
response) may be ineffective due to the dependence of 
particular signal transduction pathways on cytoskeletal in- 
tegrity. 

In our studies, Sph-l-P mimicked PDGF's early and 
rapid induction of actin disassembly, and induction of PI- 
turnover and calcium mobilization. However, PDGF- 
induced PI turnover is rapid and transient, while Sph-l-P 
changes in PI turnover are greater, and more sustained, 
than those induced by maximal concentrations of PDGF. 
Sph-l-P-stimulated calcium mobilization is also greater 
than that induced by PDGF and, in contrast to PDGF, the 
increase in calcium is propagated throughout the cyto- 
plasm. Therefore, it is possible that the kinetics of the 
PDGF signaling response and/or the spatial localization of 
a particular response may be critical to allow the dynamic 
interaction of the cell with its matrix required for cell loco- 
motion. Understanding which changes in intracellular sig- 
naling molecules are sufficient to inhibit migration, and 
whether endogenously produced Sph-l-P is involved in 
regulation of the signal transduction pathways, should al- 
low further definition of the necessary cross-talk between 
growth factor-induced signaling and the cytoskeleton. 
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